Supporting Information. Sandmeyer Cyanation of Arenediazonium Tetrafluoroborate Using Acetonitrile as Cyanide Source

Similar documents
Supporting Information

Silver-Catalyzed Cascade Reaction of β-enaminones and Isocyanoacetates to Construct Functionalized Pyrroles

Supplementary Information

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids

Supporting Information

Supporting Information

Domino reactions of 2-methyl chromones containing an electron withdrawing group with chromone-fused dienes

Supporting Information

Hai-Bin Yang, Xing Fan, Yin Wei,* Min Shi*

Supporting Information

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

Supporting Information for Synthesis of C(3) Benzofuran Derived Bis-Aryl Quaternary Centers: Approaches to Diazonamide A

Supporting Information for: Direct Conversion of Haloarenes to Phenols under Mild, Transition-Metal-Free Conditions

Electronic Supplementary Material

Electronic Supplementary Information (12 pages)

Halogen halogen interactions in diiodo-xylenes

Supporting Information

Supporting Information for

Supporting Information

Supporting Information. DBU-Mediated Metal-Free Oxidative Cyanation of α-amino. Carbonyl Compounds: Using Molecular Oxygen as the Oxidant

PTSA-Catalyzed Green Synthesis of 1,3,5-Triarylbenzene under Solvent-Free Conditions

SUPPORTING INFORMATION

Supporting Information

for Brønsted Base-Mediated Aziridination of 2- Alkyl Substituted-1,3-Dicarbonyl Compounds and 2-Acyl-1,4-Dicarbonyl Compounds by Iminoiodanes

Supporting Information

Supplementary Material

Supporting Information

Supporting Information

Supporting Information

Synthesis of Trifluoromethylated Naphthoquinones via Copper-Catalyzed. Cascade Trifluoromethylation/Cyclization of. 2-(3-Arylpropioloyl)benzaldehydes

Supporting Information

Efficient Pd-Catalyzed Amination of Heteroaryl Halides

Organoselenium-Catalyzed Mild Dehydration of Aldoximes: An Unexpected Practical Method for Organonitrile Synthesis

Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocylic Carbene Complexes of Rh, Ir and Pd

Pd(II) Catalyzed C3-selective arylation of pyridine with (hetero)arenes SUPPORTING INFORMATION

Supporting Information. A rapid and efficient synthetic route to terminal. arylacetylenes by tetrabutylammonium hydroxide- and

Curtius-Like Rearrangement of Iron-Nitrenoid Complex and. Application in Biomimetic Synthesis of Bisindolylmethanes

Supporting Information

Supporting Information

How to build and race a fast nanocar Synthesis Information

SUPPORTING INFORMATION

Palladium-Catalyzed Oxidative Cyclization of Tertiary Enamines for Synthesis of 1,3,4-Trisubstituted Pyrroles and 1,3-Disubstituted Indoles

A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones. Jin-Quan Yu, a and E. J.

Regioselective Synthesis of 1,5-Disubstituted 1,2,3-Triazoles by reusable

Supporting Information. A turn-on fluorescent probe for detection of Cu 2+ in living cells based on signaling mechanism of N=N isomerization

Suzuki-Miyaura Coupling of Heteroaryl Boronic Acids and Vinyl Chlorides

Supporting Information

Supporting Information

Supporting Information

SYNTHESIS OF A 3-THIOMANNOSIDE

Supporting Information:

Straightforward Synthesis of Enantiopure (R)- and (S)-trifluoroalaninol

Enantioselectivity switch in copper-catalyzed conjugate addition. reaction under influence of a chiral N-heterocyclic carbene-silver complex

Supporting Information

Supporting Information

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2012

Supporting Information. An AIE active Y-shaped diimidazolylbenzene: aggregation and

Silver-catalyzed decarboxylative acylfluorination of styrenes in aqueous media

A Facile and General Approach to 3-((Trifluoromethyl)thio)- 4H-chromen-4-one

Supporting Information

Supporting Information for

Electronic Supplementary Information

Effect of Conjugation and Aromaticity of 3,6 Di-substituted Carbazole On Triplet Energy

Supporting information for A simple copper-catalyzed two-step one-pot synthesis of indolo[1,2-a]quinazoline

Supporting Information for

SUPPORTING INFORMATION. Fathi Elwrfalli, Yannick J. Esvan, Craig M. Robertson and Christophe Aïssa

Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA Experimental Procedures

Dual role of Allylsamarium Bromide as Grignard Reagent and a. Single Electron Transfer Reagent in the One-Pot Synthesis of.

Supporting Information

Supporting Information:

Supporting Information

Supporting Information For:

Electronic Supplementary Information

Anion recognition in water by a rotaxane containing a secondary rim functionalised cyclodextrin stoppered axle

Supporting Information

Supporting Information

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Supporting Information

Recyclable Enamine Catalysts for Asymmetric Direct Cross-Aldol

Supporting Information

Water-Compatible Highly Active Reusable PEG-Coated Mesoporous Silica. Supported Palladium Complex and Its Application in Organic Synthesis

Supporting Information for. An Approach to Tetraphenylenes via Pd-Catalyzed C H Functionalization

Brønsted Base-Catalyzed Reductive Cyclization of Alkynyl. α-iminoesters through Auto-Tandem Catalysis

Visible-light-initiated Difluoromethylation of Arenediazonium Tetrafluoroborates

SUPPLEMENTARY INFORMATION

An unexpected highly selective mononuclear zinc complex for adenosine diphosphate (ADP)

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry Supplementary data

Sequential dynamic structuralisation by in situ production of

Synthesis of fluorophosphonylated acyclic nucleotide analogues via Copper (I)- catalyzed Huisgen 1-3 dipolar cycloaddition

Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3

*Corresponding author. Tel.: , ; fax: ; Materials and Method 2. Preparation of GO nanosheets 3

Supporting Information

C(sp)-C(sp 3 ) Bond Formation through Cu-Catalyzed Cross-Coupling of N-Tosylhydrazones and Trialkylsilylethyne

Supporting Information

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12

N-Hydroxyphthalimide: a new photoredox catalyst for [4+1] radical cyclization of N-methylanilines with isocyanides

Supporting Information. (1S,8aS)-octahydroindolizidin-1-ol.

Supporting Information

Transcription:

Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is the Partner Organisations 2015 Supporting Information Sandmeyer Cyanation of Arenediazonium Tetrafluoroborate Using Acetonitrile as Cyanide Source Wenbin Xu a,qinghui Xu a, Jizhen Li a, *, Zhenfa Zhang b, * a Department of Organic Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun, 130023, China b Department of Environmental science and Engineering, School of Public Health, University of North Carolina at Chapel Hill, 135Dauer Drive, Chapel Hill, NC 27599-7431 * Corresponding author: ljz@jlu.edu.cn, zhenfaz@email.unc.edu Contents General...S2 Experimental procedures.. S3 S8 Spectroscopic data... S9 S43 References-------------------------------------------------------------------------------------S44 S1

General: All reagents were purchased from commercial sources and used without treatment, unless otherwise indicated. Acetonitrile was dried and newly distilled. NMR spectra were obtained on a Bruker AMX 400 system using chloroform-d as deuterated solvents, with proton and carbon resonances at 400 MHz and MHz, respectively. Mass spectra were measured on an Agilent1290-micrOTOF Q II system spectrometer. IR (KBr pellets) spectra were recorded in the 400-4000 cm -1 range on a Nicolet360 spectrophotometer. S2

General synthesis of arenediazonium tetrafluoroborates In an Erlenmeyer flask, the aniline (10 mmol) was dissolved in an aqueous solution of HBF 4 (50%, 5.0 ml, 40 mmol) and a saturated solution of sodium nitrite (760 mg, 11 mmol) was added dropwise at 0 C. The excess of oxidant was removed by the addition of urea. Then, the precipitated diazonium salt was filtered off and dissolved in the less amount of acetone. Diethyl ether was added to the clear solution, causing the precipitation of the arenediazonium tetrafluoroborate that was filtered off and washed with diethyl ether (3 10 ml). The arenediazonium tetrafluoroborate was dried in vacuo (10-3 mbar) for 10 minutes and then directly used without further purification. General synthesis of aryl nitriles from the corresponding arenediazonium salts. To a solution of arenediazonium tetrafluoroborate (0.5 mmol) in MeCN (3.0 ml) was added PdCl 2 (8.8mg, 0.05mmol) and Ag 2 O (116 mg, 0.5 mmol). The mixture was stirred at 55 for 24 h under air. Then the reaction mixture was cooled to room temperature and filtered through a pad of celite (1.0 g) and rinsed with CH 2 Cl 2 (10 ml). The resulting organic solution was concentrated under reduced pressure and further purified by flash chromatography (SiO 2, petroleum ether/ethyl acetate gradient), yielding the corresponding aryl nitriles 2a-2r. The byproducts 3a-3r and 4a-4r sometimes were also isolated depending on the substrates. R N 2 + BF 4 - R R R CN + NHCOCH 3 + R 1a-1r 2a-2r 3a-3r 4a-4r Scheme 1 Scope of the Sandmeyer reaction using CH 3 CN as cyanide source. S3

R = EtO MeO n-buo a Cl b OMe c MeO MeO MeO MeO d e f Br Cl Br g h i Br j O 2 N k O EtO l O m n o p q r Scheme 2. Scope of the Sandmeyer reaction using CH 3 CN as cyanide source Table 1 Pd-Catalyzed Sandmeyer cyanation of aryldiazonium tetrafluoroborate in acetonitrile: products distribution a, b. R N 2 + BF 4 - R R R CN + NHCOCH 3 + R 1a-1r 2a-2r 3a-3r 4a-4r 1 Yield (%) 2 Yield (%) 3 Yield (%) 4 (1) Yield (%) 2 Yield (%) 3 Yield (%) 4 a 64 nd 24 j 30 nd 28 b 61 nd 12 k 38 nd trace c 61 nd 26 l 32 nd 16 d 50 nd 20 m 35 nd trace e 62 nd trace n nd 83 nd f 55 nd 18 o nd 92 nd g 35 nd 12 p nd 92 nd h 31 nd 15 q nd 85 nd i 45 nd 13 r nd 87 nd a isolated yields. b under the optimized conditions. nd: not detected. 4-Ethoxybenzonitrile (2a). Yield: 64%; White solid; m.p. 55-57 ºC; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 1.47 (t, J = 7.2 Hz, 3H), 4.01-4.14 (m, 2H), 6.95 (d, J = 8.0 Hz, 2H), 6.60 (d, J = 8.0 Hz, 2H); 13 C NMR (CDCl 3, MHz, ppm): δ 14.6, 93.9, 103.7, 115.2, S4

119.3, 133.9, 162.3; IR (KBr, cm -1 ): = 2978, 2936, 2225, 1609, 1506, 1264, 1036, 842, 545; HRMS (ESI-TOF): calcd for C 9 H 9 NO 148.0757 (M+H) +, found 148.0759. 4-Methoxybenzonitrile (2b) 1. Yield: 61%; White solid; m.p.51-53 ºC; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 3.88 (s, 3H), 6.97 (d, J = 8.0 Hz, 2H), 7.61 (d, J = 8.0 Hz, 2H); 13 C NMR (CDCl 3, MHz, ppm): δ 55.6, 103.9, 114.8, 119.2, 113.9, 162.9; IR (KBr, cm - 1 ): = 2919, 2844, 2216, 1603, 1506, 1260, 1027, 825, 549. 4-Butoxybenzonitrile(2c) 2.Yield: 61%;Yellow liquid; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 0.98 (t, J=7.2, 3H), 1.44-1.51(m, 2H), 1.74-1.82 (m, 2H), 4.00 (t, J=6.4, 2H), 6.93(d, J=8.0,2H), 7.56 (d, J=8.0, 2H); 13 C NMR (CDCl 3, MHz, ppm): δ 13.7, 19.1, 31.0, 68.1, 103.7, 115.2, 119.3, 133.9, 162.5; IR (KBr, cm -1 ): =2960, 2226, 1609, 1504, 1255, 1169, 833. 3-Chloride- 4-Methoxybenzonitrile (2d). Yield: 50%; Yellow solid; m.p. 108-110 ºC; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 4.00 (s, 3H), 6.99-7.02 (m, 1H), 7.57-7.60 (m, 1H), 7.68-7.69 (m, 1H). 13 C NMR (CDCl 3, MHz, ppm): δ 56.6, 104.7, 112.3, 117.9, 123.5, 132.5, 133.5, 158.6; IR (KBr, cm -1 ): = 2854, 2232, 1596, 1499, 1298, 1063, 814, 717, 594; HRMS (ESI-TOF): calcd for C 8 H 6 NClO 168.0211 (M+H) +, found 168.0223. 2, 4-Dimethoxybenzonitrile (2e) 3. Yield: 62%; Yellow solid; m.p. 92-94 ºC; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 3.88 (s, 3H), 3.92 (s, 3H), 6.48 (s, 1H), 6.52-6.55 (m, 1H), 7.50 (d, J = 8.0, 1H); 13 C NMR (CDCl 3, MHz, ppm): δ 55.7, 56.0, 93.9, 98.5, 105.8, 117.0, 134.9, 162.9, 164.7; IR (KBr, cm -1 ): = 2923, 2847, 2225, 1602, 1506, 1215, 1022, 842, 517. 3, 4-Dimethoxybenzonitrile (2f) 4. Yield: 55%; White solid; m.p. 56-58 ºC; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 3.92 (s, 3H), 3.95 (s, 3H), 6.92 (d, J = 8.0 Hz, 1H), 7.09-7.10 (m, 1H), 7.29-7.32 (m, 1H); 13 C NMR (CDCl 3, MHz, ppm): δ 56.1, 56.2, 103.9, 111.3, 113.9, 119.2, 126.5, 149.2, 152.9; IR (KBr, cm -1 ): = 2936, 2840, 2218, 1596, 1513, 1271, 1139, 1022, 759, 614. 3-Methyl-4-Bromide benzonitrile (2g).Yield: 35%; Brown solid; m.p. 47-49 ºC; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 2.46 (s, 3H), 7.34-7.37 (m, 1H), 7.54 (s, 1H), 7.67 (d, J = 8.0 Hz, 1H). 13 C NMR (CDCl 3, MHz, ppm): δ 22.9, 111.4, 118.2, 130.5, 130.6, 133,4, 133.8, 139.7; IR (KBr, cm -1 ): = 2232, 1589, 1471, 1029, 822, 586. S5

4-Chloride benzonitrile (2h) 3.Yield: 31%; Yellow solid; m.p. 84-86 ºC; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 7.49 (d, J = 8.0 Hz, 2H), 8.06 (d, J = 8.0 Hz, 2H); 13 C NMR (CDCl 3, MHz, ppm): δ 110.8, 117.9, 129.7, 113.4, 139.6; IR (KBr, cm -1 ): = 3089, 3033, 2923, 2225, 1596, 1485, 1091, 828, 538. 2, 6-Dimethyl-4-Bromide benzonitrile (2i) 5. Yield: 45%; Yellow solid; m.p. 133-136 ºC; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 2.53 (s, 6H), 7.33 (s, 2H); 13 C NMR (CDCl 3, MHz, ppm): δ 20.6, 112.4, 116.6, 127.1, 130.6, 143.8; IR (KBr, cm -1 ): = 2916, 2854, 2218, 1581, 1464, 1257, 1174, 856, 738, 5. 4-Bromide benzonitrile (2j) 1. Yield: 30%; Yellow solid; m.p. 106-108 ºC; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 7.55 (d, J = 8.0 Hz, 2H), 7.66 (d, J = 8.0 Hz, 2H); 13 C NMR (CDCl 3, MHz, ppm): δ 111.3, 118.1, 128.0, 132.7, 133.4; IR (KBr, cm -1 ): = 2923, 2847, 2218, 1581, 1478, 1063, 821, 538. 4-Nitro benzonitrile (2k) 1. Yield: 38%; Yellow solid; m.p. 133-135 ºC; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 7.91 (d,j = 8.0 Hz, 2H), 8.38 (d, J = 8.0 Hz, 2H); 13 C NMR, (CDCl 3, MHz, ppm): δ 116.8, 118.4, 124.3, 133.5, 150.1; IR (KBr, cm -1 ): = 3109, 2234, 1602, 1527, 1347, 863, 746, 684, 538. Ethyl 4-cyanobenzoateate (2l) 6. Yield: 32%; Yellow solid; m.p. 48-50 ºC; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 1.43 (t, J=7.2 Hz, 3H), 4.41-4.46 (m, 2H), 7.76 (d, J = 8.0 Hz, 2H), 8.16 (d, J=8.0 Hz, 2H); 13 C NMR, (CDCl 3, MHz, ppm): δ 14.2, 61.8, 116.3, 118.0, 130.1, 132.2, 134.3, 164.9; IR (KBr, cm -1 ): =3096, 2958, 2902, 2225, 1727, 1277, 1105, 870, 766, 690, 545. 4-Acetylbenzonitrile (2m) 3. Yield: 35%; White solid; m.p. 49-51 ºC; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 2.67 (s, 3H), 7. (d, J = 8.0 Hz, 2H),8.06 (d, J = 8.0 Hz, 2H); 13 C NMR (CDCl 3, MHz, ppm): δ 26.8, 116.4, 117.9, 128.7, 132.5, 139.9, 196.5; IR (KBr, cm -1 ): = 2923, 2232, 1685, 1402, 1246, 828, 594, 538. NHCOCH 3 NHCOCH 3 NHCOCH 3 3n, 83% 3o, 92% 3p, 92% NHCOCH 3 NHCOCH 3 3q, 85% 3r, 87% S6

Scheme 3. Unexpected byproducts of substrates under the standard conditions Acetanilide (3n) 7. Yield: 83%; Yellow solid; m.p. 110-112 ºC; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 2.20 (s, 3H), 7.11-7.15 (m, 1H), 7.25 (s, 1H), 7.73-7.36 (m, 2H), 7.51-7.53 (m, 2H); IR (KBr, cm -1 ): = 3289, 1665, 1430, 1430, 1319, 745, 690, 510. 4-Methylacetanilide (3o) 8. Yield: 92%; White solid; M.P. 145-147 ºC; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 2.18 (s, 3H), 2.33 (s, 3H), 7.14 (d, J = 8.0 Hz, 2H), 7.23 (s, 1H), 7.39 (d, J = 8.0 Hz, 2H); IR (KBr, cm -1 ): = 3289, 3117, 2943, 1665, 1506, 1319, 821, 510. 2-Methylacetanilide (3p) 9. Yield: 92%; White solid; m.p. 104-106 ºC; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 2.24 (s, 3H), 2.29 (s, 3H), 6.96 (s, 1H), 7.09-7.13 (m, 1H), 7.20-7.26 (m, 1H), 7. (d, J = 8.0 Hz, 1H); IR (KBr, cm -1 ): = 3283, 3033, 1658, 1527, 1458, 1271, 752. 3-Methylacetanilide (3q) 10. Yield: 85%; White solid; m.p. 235-237 ºC; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 2.13 (s, 3H), 2.16 (s, 3H), 6.93 (d, J = 8.0 Hz, 1H), 7.17-7.21 (m, 1H), 7.29-7.32 (m, 1H), 7.38 (s, 1H), 7.89 (s, 1H); IR (KBr, cm -1 ): = 3289, 2916, 1665, 1547, 1492, 1367, 7, 690. N-Acetyl-2-aminonaphthalene (3r) 11. Yield: 87%; White solid; m.p. 127-129 ºC; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 2.26 (s, 3H), 7.41-7.48 (m, 4H), 7.81 (d, J = 8.0 Hz, 3H), 8.20 (s, 1H); IR (KBr, cm -1 ): = 3283, 1671, 1561, 1277, 814, 745, 476. EtO OEt MeO OMe n-buo OBu-n 4a, 24% 4b, 12% 4c, 26% Cl MeO OMe MeO OCH 3 MeO OMe Br Br Cl 4d, 20% 4f, 18% 4g, 12% Cl Cl Br Br 4h,15% 4j,28% Scheme 4. Biaryls products 4, 4 -Diethoxybiphenyl (4a) 12. Yield: 24%; white solid; 1 H NMR (CDCl 3, 400 MHz, S7

ppm): δ 1.55-1.59 (t, J=7.2Hz, 6H), 4.17-4.23 (m, 4H), 7.06-7.09 (d, J=8.0Hz, 4H), 7.58-7.61 (d, J=8.0Hz, 4H);IR (KBr, cm -1 ): = 2976, 2928, 1604, 1500, 1272, 1252, 1051, 817, 796, 590, 521. 4, 4 -Dimethoxybiphenyl (4b) 13. Yield: 12%; white solid; 1 H NMR (CDCl 3, 400 MHz, ppm): δ3.87 (s, 6H), 6.97-7.01 (d, J=8.Hz, 4H), 7.49-7.52 (d, J=8.0Hz, 4H); IR (KBr, cm - 1 ): =2960, 2834, 1605, 1504, 1277, 1251, 1182, 1037, 823, 810, 514. 4, 4 -Dibutoxybiphenyl (4c) 14. Yield: 26%; white solid; 1 H NMR (CDCl 3, 400 MHz, ppm): δ0.96-1.01 (t, J=7.2Hz, 6H), 1.48-1.52 (m, 4H), 1.71-1.84 (m, 4H), 3.97-4.02 (t, J=6.8Hz, 4H), 6.93-6.96 (d, J=8.0Hz, 4H), 7.44-7.47 (d, J=8.0Hz, 4H); IR (KBr, cm - 1 ): = 2955, 2929, 1617, 1498, 1277, 1251, 1037, 817, 4. 3, 3 -Dichloro-4, 4 -Dimethoxybiphenyl (4d). Yield: 20%; white solid; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 3.94 (s, 6H), 6.96-6.99 (d, J=8.0Hz, 2H), 7.36-7.39 (d, J=8.0Hz, 2H), 7.54 (s, 2H), IR (KBr, cm -1 ): = 2923, 1561, 1491, 1251, 1069, 1019, 873, 811, 728. 3, 3-4, 4 -Tetramethoxybiphenyl (4f) 14. Yield: 18%; white solid; 1 H NMR (CDCl 3, 400 MHz, ppm): δ3.85 (s, 6H), 3.86 (s, 6H), 6.76-6. (m, 2H), 6.-6,93(m, 4H); IR (KBr, cm -1 ): = 2929, 2828, 1511, 1460, 1258, 1220, 1119, 1025, 956, 741. 3, 3 -Dimethyl-4, 4 -Dibromobiphenyl (4g). Yield: 12%, white solid; 1 H NMR (CDCl 3, 400MHz, ppm): δ 2.46 (s, 6H), 7.20-7.26 (m, 2H), 7.45 (s, 2H), 7.56-7.59 (d, J=8.0Hz, 2H); IR (KBr, cm -1 ): = 2918, 2855, 1557, 1469, 1025, 4. 4, 4 -Dichlorobiphenyl (4h) 15.Yield:15%, white solid; 1 H NMR (CDCl 3, 400 MHz, ppm): δ7.39-7.42 (d, J=8.0Hz, 4H), 7.46-7.49 (d, J=8.0Hz, 4H); IR (KBr, cm -1 ): = 1564, 1095, 0, 817, 506. S8

4, 4 -Dibromobiphenyl (4j) 16. Yield: 28%, white solid; 1 H NMR (CDCl 3, 400 MHz, ppm): δ 7.42-7.45 (d, J=8.0Hz, 4H), 7.57-7.60 (d, J=8.0Hz, 4H); IR (KBr, cm -1 ): = 1664, 1627, 1475, 13, 1101, 0, 4, 538, 500. Spectroscopic data Compound 2a 1 H NMR(400MHz,CDCl 3 ) Compound 2a 13 C NMR(MHz,CDCl 3 ) S9

Compound 2a IR (KBr, cm -1 ) 2936 T/% 60 2978 2225 40 20 545 1506 EtO CN 1264 1609 1036 842 3500 3000 2500 2000 1500 0 500 0 σ/cm -1 Compound 2a HRMS S10

Compound 2b 1 H NMR(400MHz,CDCl 3 ) S11

Compound 2b 13 C NMR(MHz,CDCl 3 ) Compound 2b IR (KBr, cm -1 ) T/% 60 2919 2844 683 40 549 MeO 2216 CN 825 1027 20 1506 1603 1260 0 3500 3000 2500 2000 1500 0 500 0 σ/cm -1 Compound 2c 1 H NMR(400MHz,CDCl 3 ) S12

n-buo CN Compound 2c 13 C NMR(MHz,CDCl 3 ) S13

n-buo CN Compound 2c IR (KBr, cm -1 ) 99.83387 98.26028 (99.6797) n-buo 2960 CN 2226 1609 1504 1169 833 1255 3500 3000 2500 2000 1500 0 500 399.2123 (401.1409) S14

Compound 2d 1 H NMR(400MHz,CDCl 3 ) Compound 2d 13 C NMR(MHz,CDCl 3 ) S15

Compound 2d IR (KBr, cm -1 ) 2854 T/% 60 1596 717 594 Cl 2232 1063 814 40 MeO CN 1298 20 3500 3000 2500 2000 1500 0 500 0 σ/cm -1 1499 Compound 2d HRMS S16

Compound 2e 1 H NMR(400MHz,CDCl 3 ) Compound 2e 13 C NMR(MHz,CDCl 3 ) S17

Compound 2e IR (KBr, cm -1 ) 2847 2923 T/% 517 OMe 2225 1506 1022 842 60 MeO CN 1602 1215 3500 3000 2500 2000 1500 0 500 0 σ/cm -1 Compound 2f 1 H NMR(400MHz,CDCl 3 ) S18

Compound 2f 13 C NMR(MHz,CDCl 3 ) Compound 2f IR (KBr, cm -1 ) 2840 2936 759 614 T/% MeO 2218 1596 1022 1139 60 MeO CN 1513 1271 3500 3000 2500 2000 1500 0 500 0 σ/cm -1 S19

Compound 2g 1 H NMR(400MHz,CDCl 3 ) Compound 2g 13 C NMR(MHz,CDCl 3 ) S20

Compound 2g IR (KBr, cm -1 ) 586 T/% 1589 822 Br CN 2232 1471 3500 3000 2500 2000 1500 0 500 0 σ/cm -1 1029 Compound 2h 1 H NMR(400MHz,CDCl 3 ) S21

Compound 2h 13 C NMR(MHz,CDCl 3 ) Compound 2h IR (KBr, cm -1 ) 2923 3033 3089 T/% 60 2225 1596 1395 40 Cl CN 1485 1091 20 828 538 3500 3000 2500 2000 1500 0 500 0 σ/cm -1 S22

Compound 2i 1 H NMR(400MHz,CDCl 3 ) Compound 2i 13 C NMR(MHz,CDCl 3 ) S23

Compound 2i IR (KBr, cm -1 ) 0.12 0.10 0.08 T/% 0.06 0.04 2916 2854 2218 1464 1257 1174 5 0.02 Br CN 1581 738 0.00 856 3500 3000 2500 2000 1500 0 500 0 σ/cm -1 Compound 2j 1 H NMR(400MHz,CDCl 3 ) S24

Compound 2j 13 C NMR(MHz,CDCl 3 ) Compound 2j IR (KBr, cm -1 ) 2847 2923 2218 T/% 1581 1063 538 Br CN 1478 821 3500 3000 2500 2000 1500 0 500 0 σ/cm -1 S25

Compound 2k 1 H NMR(400MHz,CDCl 3 ) Compound 2k 13 C NMR(MHz,CDCl 3 ) S26

Compound 2k IR (KBr, cm -1 ) 3109 T/% 60 2234 1602 684 538 746 40 O 2 N CN 1527 1347 863 20 3500 3000 2500 2000 1500 0 500 0 σ/cm -1 Compound 2l 1 H NMR(400MHz,CDCl 3 ) S27

Compound 2l 13 C NMR(MHz,CDCl 3 ) Compound 2l IR (KBr, cm -1 ) 3096 2902 2985 T/% 2225 1105 690 870 545 EtOOC CN 1277 766 1727 60 3500 3000 2500 2000 1500 0 500 0 σ/cm -1 S28

Compound 2m 1 H NMR(400MHz,CDCl 3 ) Compound 2m 13 C NMR(MHz,CDCl 3 ) S29

Compound 2m IR (KBr, cm -1 ) 2923 T/% 2232 60 O CN 1685 1402 1257 594 835 538 40 3500 3000 2500 2000 1500 0 500 0 σ/cm -1 Compound 3n 1 H NMR(400MHz,CDCl 3 ) S30

Compound 3n IR (KBr, cm -1 ) 1319 T/% 3289 1430 510 1665 690 NHCOCH 3 745 3500 3000 2500 2000 1500 0 500 0 σ/cm -1 Compound 3o 1 H NMR(400MHz,CDCl 3 ) S31

Compound 3o IR (KBr, cm -1 ) 2943 3117 T/% 3289 510 NHCOCH 3 1506 1319 821 1665 3500 3000 2500 2000 1500 0 500 0 σ/cm -1 Compound 3p 1 H NMR(400MHz,CDCl 3 ) S32

Compound 3p IR (KBr, cm -1 ) 3033 T/% 3289 1271 752 1458 NHCOCH 3 1658 1527 3500 3000 2500 2000 1500 0 500 0 σ/cm -1 Compound 3q 1 H NMR(400MHz,CDCl 3 ) S33

Compound 3q IR (KBr, cm -1 ) T/% 60 3289 2916 1367 7 690 1492 40 NHCOCH 3 1547 1665 3500 3000 2500 2000 1500 0 500 0 σ/cm -1 S34

Compound 3r 1 H NMR(400MHz,CDCl 3 ) Compound 3r IR (KBr, cm -1 ) 3283 476 T/% 1277 814 745 NHCOCH 3 1671 1561 60 3500 3000 2500 2000 1500 0 500 0 σ/cm -1 S35

Compound 4a 1 H NMR(400MHz,CDCl 3 ) EtO OEt Compound 4a IR (KBr, cm -1 ) S36

99.32533 98.28787 (98.96395) 60 EtO 2976 2928 OEt 1604 590 1500 1272 796 1252 1051 817 521 40 3500 3000 2500 2000 1500 0 500 0 399.2123 (401.1409) Compound 4b 1 H NMR(400MHz,CDCl 3 ) H 3 CO OCH 3 Compound 4b IR (KBr, cm -1 ) S37

94.77666 95.18626 (94.53796) 60 2960 2834 1605 H 3 CO OCH 3 1504 1182 1277 1251 1037 810 514 40 3000 2500 2000 1500 0 500 0 399.2123 (401.1409) 823 Compound 4c 1 H NMR(400MHz,CDCl 3 ) n-buo OBu-n Compound 4c IR (KBr, cm -1 ) S38

99.63146 n-buo OBu-n (99.83599) 2929 2955 1498 1617 1277 1251 1037 4 817 3000 2500 2000 1500 0 500 0 399.2123 (401.1409) Compound 4d 1 H NMR(400MHz,CDCl 3 ) S39

Compound 4d IR (KBr, cm -1 ) 87.85948 87.61448 (87.84789) 2923 Cl Cl 1561 1491 1251 1019728 873 811 1069 MeO OMe 3000 2500 2000 1500 0 500 0 399.2123 (401.1409) Compound 4e 1 H NMR(400MHz,CDCl 3 ) H 3 CO OCH 3 H 3 CO OCH 3 Compound 4e IR (KBr, cm -1 ) S40

94.45323 H 3 CO OCH 3 H 3 CO OCH 3 93.94647 (93.92982) 2828 2929 956 1460 741 1119 1025 1258 1220 1511 3000 2500 2000 1500 0 500 0 399.2123 (401.1409) Compound 4h 1 H NMR(400MHz,CDCl 3 ) Cl Cl S41

Compound 4h IR (KBr, cm -1 ) 85.6786 Cl Cl 85.836 (85.2578) 1564 0 1095 506 817 3000 2500 2000 1500 0 500 0 399.2123 (401.1409) Compound 4j 1 H NMR(400MHz,CDCl 3 ) Br Br Compound 4j IR (KBr, cm -1 ) S42

97.93554 (98.57657) 1664 1475 1101 1627 13 0 538 500 60 Br Br 40 3000 2500 2000 1500 0 500 0 399.2123 (401.1409) 4 Compound 4g 1 H NMR(400MHz,CDCl 3 ) Compound 4g IR (KBr, cm -1 ) S43

94.38457 Br Br 91.42554 (92.84297) 2855 2918 1557 1469 4 1025 3000 2500 2000 1500 0 500 0 399.2123 (401.1409) S44

Reference 1. Org. Lett.2013,15(8), 1850-1853 2. Eur. J. Org. Chem.2013, 19, 4032-4036 3. Syn. Lett. 2012,23(17), 2491-2496 4. JACS. 2012, 134(5),2528-2531 5. Chem. Eur. J. 2010, 16(9), 2830-2842 6. JACS. 2011, 133(28), 10999-15 7. Chem. Eur. J. 2011, 17(19), 2763-2768 8. Eur. J. Org. Chem. 2012, 31, 6127-6131 9. Tetrahedton. 2010, 66(37), 7418-7422 10. Tetra. Lett. 2011, 52, 4681-4685 11. J. Org. Chem. 2008, 73, 2894-2897 12. Synthesis. 2013, 45(4), 518-526 13. Tetrahedron. 2013, 69(44), 9237-9244 14. Eur. J. Org. Chem. 2011, 13, 2519-2523 15. Chem. Cat. Chem. 2014, 6, 745-748 16. Adv. Syn&Cat. 2012, 354, 2777-2778 S45