Thermal Dark Matter Below an MeV

Similar documents
Cosmological Production of Dark Matter

Scalar field dark matter and the Higgs field

Making Dark Matter. Manuel Drees. Bonn University & Bethe Center for Theoretical Physics. Making Dark Matter p. 1/35

Dark Matter in Particle Physics

Dark Matter from Non-Standard Cosmology

Particle Cosmology. V.A. Rubakov. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow and Moscow State University

Particles in the Early Universe

sub-gev Dark Matter Theory Tien-Tien Yu (University of Oregon)

The Four Basic Ways of Creating Dark Matter Through a Portal

Dark Radiation from Particle Decay

Dark Matter and Dark Energy components chapter 7

The Linear Collider and the Preposterous Universe

Calculation of Momentum Distribution Function of a Non-Thermal Fermionic Dark Matter

Cosmology. Thermal history of the universe Primordial nucleosynthesis WIMPs as dark matter Recombination Horizon problem Flatness problem Inflation

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

Lecture 19 Nuclear Astrophysics. Baryons, Dark Matter, Dark Energy. Experimental Nuclear Physics PHYS 741

Superheavy Thermal Dark Matter

Beyond the WIMP Alternative dark matter candidates. Riccardo Catena. Chalmers University

7 Relic particles from the early universe

Possible sources of very energetic neutrinos. Active Galactic Nuclei

A Minimal Supersymmetric Cosmological Model

Cosmological Signatures of a Mirror Twin Higgs

Making Light from the Dark Universe

Introduction: Cosmic Neutrinos Dark Radiation and the QGP Era Darkness Production: Universe Laboratory

Dark Matter II. Marco Cirelli. (CNRS IPhT Saclay) December th TRR Winter School - Passo del Tonale. Reviews on Dark Matter: NewDark

Brief Introduction to Cosmology

4. Nucleosynthesis. I. Aretxaga

Dark matter and entropy dilution

Chern-Simons portal Dark Matter

ASTROPHYSICAL PROPERTIES OF MIRROR DARK MATTER

Big Bang Nucleosynthesis and Particle Physics

Neutrino mass and neutrino dark matter. Do non-relativistic neutrinos constitute the dark matter? Europhysics Letters 86 (2009) 59001

Non-detection of the 3.55 kev line from M31/ Galactic center/limiting Window with Chandra

Decaying Dark Matter, Bulk Viscosity, and Dark Energy

CMB & Light Degrees of Freedom

Down-to-earth searches for cosmological dark matter

Direct Detection of the Dark Mediated DM

Sterile Neutrinos as Dark Matter. Manfred Lindner

Axion in Large Extra Dimensions

Gravitino LSP as Dark Matter in the Constrained MSSM

Learning from WIMPs. Manuel Drees. Bonn University. Learning from WIMPs p. 1/29

The Dark Matter Problem

LATE DECAYING TWO-COMPONENT DARK MATTER (LD2DM) CAN EXPLAIN THE AMS-02 POSITRON EXCESS

Gauged U(1) clockwork

On Symmetric/Asymmetric Light Dark Matter

Dark matter: evidence and candidates

The Story of Wino Dark matter

Astronomy 182: Origin and Evolution of the Universe

MICROPHYSICS AND THE DARK UNIVERSE

Primordial (Big Bang) Nucleosynthesis

Chiral Dark Sector. Keisuke Harigaya (UC Berkeley, LBNL) KH, Yasunori Nomura Raymond Co, KH, Yasunori Nomura 1610.

INTRODUCTION TO DARK MATTER

Invisible Sterile Neutrinos

Week 3: Thermal History of the Universe

Overview of Dark Matter models. Kai Schmidt-Hoberg

Neutrino bounds on dark matter. Alejandro Ibarra Technische Universität München

Implications of cosmological observables for particle physics: an overview

Prospects for the Direct Detection of the Cosmic Neutrino Background

Week 3 - Part 2 Recombination and Dark Matter. Joel Primack

Lecture 3: Big Bang Nucleosynthesis

3.5 kev X-ray line and Supersymmetry

Feebly coupled hidden sectors. Kimmo Tuominen University of Helsinki

Thermalisation of Sterile Neutrinos. Thomas Tram LPPC/ITP EPFL

CMB constraints on dark matter annihilation

Lecture 12. Dark Matter. Part II What it could be and what it could do

Thermalization of axion dark matter

New experiment for axion dark matter

Baryogenesis in Higher Dimension Operators. Koji Ishiwata

The Influence of DE on the Expansion Rate of the Universe and its Effects on DM Relic Abundance

Probing the nature of Dark matter with radio astronomy. Céline Boehm

Triple unification of inflation, dark matter and dark energy

Lecture 3: Big Bang Nucleosynthesis The First Three Minutes

Theory Group. Masahiro Kawasaki

Dark Matter Models. Stephen West. and. Fellow\Lecturer. RHUL and RAL

Marco Drewes, Université catholique de Louvain. The Other Neutrinos IAP Meeting. Université libre de Bruxelles

Concordance Cosmology and Particle Physics. Richard Easther (Yale University)

Nuclear Astrophysics - I

THERMAL HISTORY OF THE UNIVERSE

Saturday Morning Physics (2007) Prof. Bhaskar Dutta and Prof. Teruki Kamon. Department of Physics Texas A&M University. Question

Dark Puzzles of the Universe

components Particle Astrophysics, chapter 7

Cosmology II: The thermal history of the Universe

Direct Search for Dark Matter

Nucleosíntesis primordial

Leptogenesis via the Relaxation of Higgs and other Scalar Fields

Cosmological constraints on (elastic) Dark Matter self-interactions

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Dark Matter and Dark Energy components chapter 7

Feebly Interacting Massive Particles and their signatures

Dark Sectors at the Fermilab SeaQuest Experiment

Signatures of clumpy dark matter in the global 21 cm background signal D.T. Cumberland, M. Lattanzi, and J.Silk arxiv:

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

Astroparticle Physics at Colliders

Cosmology Neutrinos Connect to QGP Dark Radiation and the QGP Era Darkness Production: Universe Laboratory

Standard Model Thermodynamics: Effect on Gravitational Wave and Dark Matter

Towards micromegas 5: Freeze-in

Testing a DM explanation of the positron excess with the Inverse Compton scattering

Dark Radiation and Inflationary Freedom

Transcription:

Thermal Dark Matter Below an MeV ASHER BERLIN TeVPA, Ohio State University August 9, 2017 Collaboration with Nikita Blinov, arxiv: 1706.07046

Dark Matter Mass dwarf galaxies MACHO 10-31 GeV 10 58 GeV

Dark Matter Mass dwarf galaxies QCD axion WIMP MACHO 10-31 GeV 100 GeV 10 58 GeV

Dark Matter Mass dwarf galaxies QCD axion WIMP MACHO 10-31 GeV 100 GeV 10 58 GeV

Dark Matter Mass dwarf galaxies QCD axion? WIMP MACHO 10-31 GeV 100 GeV 10 58 GeV

Dark Matter Mass dwarf galaxies QCD axion WIMP MACHO 10-31 GeV 100 GeV 10 58 GeV Thermal Contact

Dark Matter Mass dwarf galaxies QCD axion WIMP MACHO 10-31 GeV 100 GeV 10 58 GeV Thermal Contact BBN Light DM WIMPs Ω > 1 10-3 GeV 10 GeV 10 5 GeV

Dark Matter Mass dwarf galaxies QCD axion WIMP MACHO 10-31 GeV 100 GeV 10 58 GeV Thermal Contact BBN Light DM WIMPs Ω > 1 10-3 GeV 10 GeV 10 5 GeV

thermal dark matter noun Definition of THERMAL DARK MATTER : dark matter that acquired its cosmological abundance through thermal contact with the Standard Model bath at large temperatures. First Known Use: 1970s

Neff

Neff (standard assumption) DM-SM Equilibration > MeV Neutrino-Photon Decoupling ~ MeV T ~ mχ

Neff (standard assumption) DM-SM Equilibration > MeV Neutrino-Photon Decoupling ~ MeV T ~ mχ DM-Neutrino Equilibration N e ' 3 1+ 4 4/3 21 g & 3.78 &.

Sub-MeV: BBN + CMB

Sub-MeV: BBN + CMB. N e (BBN) ' 2.85 ± 0.28 ' ± K. Nollett, G. Steigman, arxiv:1411.6005

inos at T & 2 MeV and T. 2 MeV N e ' 3 1+ 4 (7) /41/3 21 g & 3.18 N e ' 3 1+ 4 / 41/3 21 g & 3.18 (8) L ' 2 + 2 L ' Sub-MeV: 2 + 2 BBN + CMB (9) m. m m. m N e (BBN) (10) ' 2.85 ± 0.28 N e (BBN) ' 2.85 ± 0.28 N e (CMB) (11) ' 3.15 ± 0.23 N e (CMB) ' 3.15 ± 0.23 N e (CMB-S4) (12) ' ±0.027 N e (CMB-S4) ' ±0.027 (13) K. Nollett, G. Steigman, arxiv:1411.6005 Z. Hou, et al., arxiv:1104.2333

inos at T & 2 MeV and T. 2 MeV N e ' 3 1+ 4 (7) /41/3 21 g & 3.18 N e ' 3 1+ 4 / 41/3 21 g & 3.18 (8) L ' 2 + 2 L ' Sub-MeV: 2 + 2 BBN + CMB (9) m. m m. m N e (BBN) (10) ' 2.85 ± 0.28 N e (BBN) ' 2.85 ± 0.28 N e (CMB) (11) ' 3.15 ± 0.23 N e (CMB) ' 3.15 ± 0.23 N e (CMB-S4) (12) ' ±0.027 N e (CMB-S4) ' ±0.027 (13) Thermal DM should be heavier than an MeV K. Nollett, G. Steigman, arxiv:1411.6005 Z. Hou, et al., arxiv:1104.2333

How ubiquitous is DM-SM Equilibration Before Neutrino-Photon Decoupling?

How ubiquitous is DM-SM Equilibration Before Neutrino-Photon Decoupling? DM-Neutrino Equilibration N e ' 3 1+ 4 4/3 21 g & 3.78 &.

Dark Matter Mass Lee-Weinberg MeV GeV TeV χ SM Z m & m 2 Z GeV (T eq m pl ) 1/2 χ SM Sub-GeV thermal DM requires light mediators: m ' m B. Lee and S. Weinberg, Phys.Rev.Lett. 39 (1977) 165-168

Equilibration Light Mediator T,m 2 '/T Expansion H T 2 Heavy Mediator T ~ m j Heavy Mediator ' T 3 / 2 G H Light Mediator G = H ~ 1 ê T Æ

Equilibration Light Mediator T,m 2 '/T Expansion H T 2 Heavy Mediator T ~ m j Heavy Mediator ' T 3 / 2 G H Light Mediator G = H ~ 1 ê T Æ Light thermal DM naturally enters equilibrium (for high enough TRH)

Neff Neutrino-Photon Decoupling ~ MeV DM-SM Equilibration < MeV T ~ mχ DM-Neutrino & Equilibration. N e ' 3 1+ 4 / 41/3 21 g & 3.18 L

Neff Neutrino-Photon Decoupling ~ MeV DM-SM Equilibration < MeV T ~ mχ DM-Neutrino & Equilibration. N e ' 3 1+ 4 / 41/3 21 g & 3.18 L ' ± g. few

Neff i = Ti/T 1.0 0.9 0.8 0.7 0.6 equil./e ± SM freeze-out 0.5 10 0 10 1 10 2 10 3 T [MeV] ' decay 10 4 10 5

Thermal History Y DM WIMP ~ 1 ê T

Thermal History Light ''WIMP'' Y DM WIMP ~ 1 ê T

Thermal History Light ''WIMP'' Y DM Freeze-In WIMP ~ 1 ê T

A Toy Model ' L ' 2 + 2 m. m χ ϕ ν ϕ ν χ ϕ (Freeze-Out) (Equilibration and Decay)

A Toy Model ' L ' 2 + 2 10 2 Thermal Dark Matter Clusters l n = 10-8 mc ê m j 10 1 Ly-a l n = 10-9 Neff l n = 10-10 10 10 2 10 3 m c @kevd

Summary Sub-MeV DM that freezes-out thermally with the SM is possible. Equilibration predicts a limited range for DM-SM coupling. CMB-S4 and 21 cm observations will be sensitive to the entire parameter space.

Back Up Slides

Neff DM-SM Equilibration? Neutrino-Photon Decoupling ~ MeV End of BBN ~ 100 kev T Recombination ~ ev

Neff DM-SM Equilibration? Neutrino-Photon Decoupling ~ MeV End of BBN ~ 100 kev T Recombination ~ ev

Neff γ ν γ γ ν DM ν DM ν DM DM N e ' 3 1+ 4 4/3 21 g & 3.78 &.

Neff γ ν γ γ DM ν ν DM ν DM DM &. N e ' 3 1+ 4 / 41/3 21 g L & 3.18

Neff γ ν γ γ DM ν ν DM ν DM DM &. N e ' 3 1+ 4 / 41/3 21 g L & 3.18 (~ cyclic, but ds > 0)

Neff 5.5 Ne 5.0 4.5 4.0 T eq >T dec 3.5 b 3.0 T eq <T dec a 10 0 10 1 10 2 10 3 T [MeV] 10 4 10 5