Dynamic Response of Heterogeneity and Reinforcement on the Propagation of Torsional Surface Waves

Similar documents
ISSN: X (p); (e)

Available online at ScienceDirect. Procedia Engineering 144 (2016 )

Available online at ScienceDirect. Procedia Engineering 144 (2016 )

Dispersion of Love Wave in a Fiber-Reinforced Medium Lying Over a Heterogeneous Half-Space with Rectangular Irregularity

Influence of Irregularity and Rigidity on the Propagation of Torsional Wave

Research Article Dispersion of Love Waves in a Composite Layer Resting on Monoclinic Half-Space

Reflection of quasi-p and quasi-sv waves at the free and rigid boundaries of a fibre-reinforced medium

Propagation and Reflection of Plane Waves in a Rotating Magneto Elastic Fibre Reinforced Semi Space with Surface Stress

PROPAGATION OF WAVES AT AN IMPERFECTLY

Effect of Rotation and Initial Magnetic Field in Fibre-Reinforced Anisotropic Elastic Media

The effect of rigidity on torsional vibrations in a two layered poroelastic cylinder

Reflection of SV- Waves from the Free Surface of a. Magneto-Thermoelastic Isotropic Elastic. Half-Space under Initial Stress

International Journal of Pure and Applied Sciences and Technology

The Rotating Inhomogeneous Elastic Cylinders of. Variable-Thickness and Density

An Analytical Solution for Effect of Rotation and Magnetic Field on the Composite Infinite Cylinder in Non-Homogeneity Viscoelastic Media.

Journal of Theoretical and Applied Mechanics, Sofia, 2013, vol. 43, No. 1, pp

DISPLACEMENTS AND STRESSES IN AN ANISOTROPIC MEDIUM DUE TO NON-UNIFORM SLIP ALONG A VERY LONG STRIKE-SLIP FAULT

THE REFLECTION PHENOMENA OF SV-WAVES IN A GENERALIZED THERMOELASTIC MEDIUM

EFFECT OF INITIAL STRESS ON THE REFECTION OF MAGNETO-ELECTRO-THERMO-ELASTIC WAVES FROM AN ISOTROPIC ELASTIC HALF-SPACE

16.20 HANDOUT #2 Fall, 2002 Review of General Elasticity

Mode-I crack in a two-dimensional fibre-reinforced generalized thermoelastic problem

EFFECT OF COUPLE-STRESS ON THE REFLECTION AND TRANSMISSION OF PLANE WAVES AT AN INTERFACE

Effects of initial stresses on guided waves in unidirectional plates

Module 7: Micromechanics Lecture 34: Self Consistent, Mori -Tanaka and Halpin -Tsai Models. Introduction. The Lecture Contains. Self Consistent Method

Effect of elastic foundations on vibrations of thickwalled hollow poroelastic cylinders

Reflection of plane micropolar viscoelastic waves at a loosely bonded solid solid interface

Modeling of Axisymmetric Waves in a Piezoelectric Circular Fiber Coated with Thin Film

Distributed: Wednesday, March 17, 2004

Stoneley Waves at the Boundary Surface of Modified Couple Stress Generalized Thermoelastic with Mass Diffusion

Mechanics of Materials and Structures

On propagation of Love waves in an infinite transversely isotropic poroelastic layer

Chapter I. Introduction

Dr. Parveen Lata Department of Basic and Applied Sciences, Punjabi University, Patiala, Punjab, India.

Point Load Generated Surface Waves in a Transversely Isotropic Half-Space using Elastodynamic Reciprocity

PEAT SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity

Mathematical modelling of Stoneley wave in a transversely isotropic thermoelastic media

Thermal Effects on Propagation of Transverse Waves in Anisotropic Incompressible Dissipative Pre-Stressed Plate

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

Rocking behaviour of a rigid foundation with an arbitrary embedment

Effect of Thermal Stress and Magnetic Field on Propagation of Transverse Wave in an Anisotropic Incompressible Dissipative Initially Stressed Plate

A note on finite elastic deformations of fibre-reinforced non-linearly elastic tubes

A simple plane-strain solution for functionally graded multilayered isotropic cylinders

Shear Stresses and Displacement for Strike-slip Dislocation in an Orthotropic Elastic Half-space with Rigid Surface

Bending of Simply Supported Isotropic and Composite Laminate Plates

Time Harmonic Inclined Load in Micropolar Thermoelastic Medium Possesing Cubic Symmetry with One Relaxation Time

The Basic Properties of Surface Waves

Internal Heat Source in Temperature Rate Dependent Thermoelastic Medium with Hydrostatic Initial Stress

EFFECT OF DISTINCT CONDUCTIVE AND THERMODYNAMIC TEMPERATURES ON THE REFLECTION OF PLANE WAVES IN MICROPOLAR ELASTIC HALF-SPACE

where d is the vibration direction of the displacement and c is the wave velocity. For a fixed time t,

Iranian Journal of Mathematical Sciences and Informatics Vol.2, No.2 (2007), pp 1-16

DAMPING OF GENERALIZED THERMO ELASTIC WAVES IN A HOMOGENEOUS ISOTROPIC PLATE

Introduction to Seismology Spring 2008

Table of Contents. Preface... 13

On the study of elastic wave scattering and Rayleigh wave velocity measurement of concrete with steel bar

LASER GENERATED THERMOELASTIC WAVES IN AN ANISOTROPIC INFINITE PLATE

Module 7: Micromechanics Lecture 29: Background of Concentric Cylinder Assemblage Model. Introduction. The Lecture Contains

Laminated Composite Plates and Shells

7.2.1 Seismic waves. Waves in a mass- spring system

Deformation of a layered half-space due to a very long tensile fault

INTERFACE WAVES ALONG FRACTURES IN TRANSVERSELY ISOTROPIC MEDIA

Mechanical Design in Optical Engineering

Reflection of Plane Waves from a Rotating Magneto Thermoelastic Medium with Two Temperature and Initial Srtress Under Three Theories

Exercise: concepts from chapter 8

Computational Analysis for Composites

Thermoelastic Interactions without Energy Dissipation Due to Inclined Load

Linearized theory of elasticity

3 2 6 Solve the initial value problem u ( t) 3. a- If A has eigenvalues λ =, λ = 1 and corresponding eigenvectors 1

Semi-Membrane and Effective Length Theory of Hybrid Anisotropic Materials

Dynamic Analysis of Laminated Composite Plate Structure with Square Cut-Out under Hygrothermal Load

Higher Order Beam Equations

Lecture 8. Stress Strain in Multi-dimension

Three-dimensional thermoelastic deformations of a functionally graded elliptic plate

MATERIAL PROPERTIES. Material Properties Must Be Evaluated By Laboratory or Field Tests 1.1 INTRODUCTION 1.2 ANISOTROPIC MATERIALS

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

COPYRIGHTED MATERIAL. Index

Stress analysis of functionally graded discs under mechanical and thermal loads

Figure 2-1: Stresses under axisymmetric circular loading

A parametric study on the elastic-plastic deformation of a centrally heated two-layered composite cylinder with free ends

Reflection and refraction of thermoelastic plane waves at an interface between two thermoelastic media without energy dissipation

Ring-shaped crack propagation in a cylinder under nonsteady cooling

Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, Japan.

Asish Karmakar 1, Sanjay Sen 2 1 (Corresponding author, Assistant Teacher, Udairampur Pallisree Sikshayatan (H.S.), Udairampur, P.O.

Waves propagation in an arbitrary direction in heat conducting orthotropic elastic composites

Static Deformation Due To Long Tensile Fault Embedded in an Isotropic Half-Space in Welded Contact with an Orthotropic Half-Space

Homework Problems. ( σ 11 + σ 22 ) 2. cos (θ /2), ( σ θθ σ rr ) 2. ( σ 22 σ 11 ) 2

STRESSES WITHIN CURVED LAMINATED BEAMS OF DOUGLAS-FIR

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

Analytical Strip Method for Thin Isotropic Cylindrical Shells

Codal Provisions IS 1893 (Part 1) 2002

Application of fractional order theory of thermoelasticity to a 1D problem for a cylindrical cavity

Receiver. Johana Brokešová Charles University in Prague

RA YLEIGH AND LOVE WA VES IN CLADDED ANISOTROPIC MEDIUM

Modeling of Variable Lamé s Modulii for a FGM Generalized Thermoelastic Half Space

Basic Equations of Elasticity

INITIAL STRESS AT THE EARTH S CORE-MANTLE BOUNDARY

Prediction of Elastic Constants on 3D Four-directional Braided

Cellular solid structures with unbounded thermal expansion. Roderic Lakes. Journal of Materials Science Letters, 15, (1996).

Seismic Waves and Earthquakes A Mathematical Overview

COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction

Numerical Modeling for Different Types of Fractures

Transcription:

TECHNISCHE MECHANIK, 37,, 07), 69 8 submitted: May 7, 07 Dynamic Response of Heterogeneity and Reinforcement on the Propagation of Torsional Surface Waves Brijendra Paswan, Sanjeev A. Sahu, Pradeep K. Saroj This paper aims to investigate the effect of reinforcement and heterogeneity on the propagation of torsional surface waves. Geometry of the problem is consists of heterogeneous fibre-reinforced layer lying over a heterogeneous isotropic half-space. Heterogeneity in the layer is caused due to exponential variation of elastic parameters whereas quadratic variation in elastic parameters is considered for half-space. Dispersion relation for torsional surface waves has been obtained and matched with classical Love wave equation by taking an isotropic homogeneous layer lying over an isotropic homogeneous half-space. Some existing results have been deduced as particular case of the present study. Velocity profile of surface waves is compared for both, reinforced and reinforced free cases. Numerical examples have been discussed by taking steel fibre-reinforced material. Graphical representation has been made to exhibit the findings. Nomenclature τ ij, Components of stress; δ ij, Kronecker delta; e ij, Components of strain; α, Γ, λ, Elastic constants for fibre-reinforced material; μ L, Shear modulus in longitudinal direction; μ T, Shear modulus in transverse direction; ξ, ζ, Heterogeneity parameters for the layer; b, d, Heterogeneity parameters for the half-space; v, v, Displacement of the wave; Phase velocity of the wave in fibre-reinforced layer; c β Introduction The study of mechanical behavior of a self-reinforced material has great importance in geomechanics. Many elastic fibre-reinforced composite materials are strongly anisotropic in behavior. It is desirable to study the surface wave propagation in anisotropic media, as the propagation of elastic waves in anisotropic media is fundamentally different from their propagation in isotropic media. As the Earth s crust and mantle are not homogeneous, it is also interesting to know the propagation pattern of surface waves in heterogeneous medium. As a result of stress, developed within the earth crust, deformation takes place along with fracture. These fracture release large amount of energy which gives rise to elastic waves travelling through the materials beneath the earth surface and finally reaches to the surface. During the progress of the waves, different layers of different materials come in the way and characteristics of different wave fields are influenced by the elastic properties of the media through which they travel Achenbach 984)). The Earth s crust contains some hard and soft rocks or materials that may exhibit selfreinforcement property, and inhomogeneity is trivial characteristic of the Earth. These facts motivate us towards this study. The idea of introducing a continuous reinforcement at every point of an elastic solid was given by Belfield et al. 983). Later, Verma and Rana 983) applied this model to the rotation of tube, illustrating its utility in strengthening the lateral surface of the tube. Verma 986) also discussed the propagation of magneto-elastic shear waves in self-reinforced bodies. The problem of magneto-elastic transverse surface waves in self-reinforced elastic solids was studied by Verma et al. 988). Chattopadhyay and Chaudhury 990) studied the propagation, reflection and 69

transmission of magneto-elastic shear waves in a self-reinforced elastic medium. Chattopadhyay and Chaudhury 995) studied the propagation of magneto-elastic shear waves in an infinite self-reinforced plate. The materials, such as resin reinforced by strong aligned fibres), exhibit highly anisotropic behavior in certain cases is discussed by Spencer 974). Crampin 987) proposed the theory of earthquake prediction using shear wave splitting measurements. Some notable efforts have been made to discuss the propagation of surface waves in elastic medium with or without heterogeneity. The propagation of torsional surface waves in heterogeneous elastic media has been discussed by Vardoulakis 984). Sengupta and Nath 00) studied the propagation of surface waves in fibre-reinforced anisotropic elastic solid media leading to particular cases such as Rayleigh waves, Love waves and Stoneley waves. Some possible applications of surface wave theory have made the study useful to geoscientists and geophysicists is discussed by Chammas et al. 003). Due to such applications the study of seismic wave behavior in reinforced medium has got remarkable attention in recent past by Chattopadhyay et al. 009), Kumar and Gupta 00), Sethi et al. 0), Chattopadhyay et al. 0), Abd-Alla et al. 03), Chattopadhyay et al. 04), and Kundu et al. 04a,b). Because of heterogeneous layered nature of Earth, it can be regarded as composed of different heterogeneous layers with certain variation in rigidity and density. In all technological applications, the problem on heterogeneity can be considered in unbounded space with variation in rigidity and density below the crust area can be approximated linearly Meissner 00), pp 33) with certain discontinuous jump. This is due not only to relatively small dimensions of the heterogeneity but also to the fact that the knowledge of the stress-strain state near the edge of the heterogeneity which is a stress concentrator) is of special interest. But this situation is often seriously changed in Earth sciences: heterogeneity in the Earth crust may be rather close to the surface so that it is impossible to neglect the influence of the surface. Moreover, in many cases, the medium behavior just on the surface and at large distances at dozens of the specific dimensions of the heterogeneity) is of special importance. For this reason, the problem on heterogeneity in a layered media over a half-space is also of interest in applications. It is the purpose of this contribution to discuss the qualitative features of the more generalized problem, together with some numerical results for dispersion of torsional wave under the assumed medium. The study of surface wave in a half-space has their possible application in geophysical prospecting and in understanding the cause and estimation of damage due to earthquake. The present analytical study aims to investigate the effect of reinforcement and heterogeneity on the propagation of torsional surface waves. Solution part of the problem includes the use of Whittaker s function and the method of separation of variables. It is found that heterogeneity and reinforcement of the medium have significant influence on phase velocity of torsional surface waves. Definition of the Problem When the wave propagate through the Earth s interior different types of layers comes in the way of wave motion. The heterogeneity present in these layers affects the wave motion. Heterogeneity and reinforcement are one of the most important factors which influence the wave propagation. So the study of wave propagation through a heterogeneous layer got a remarkable attention. The procedure to study the wave propagation through a heterogeneous fiber-reinforced layer lying over a heterogeneous half-space is explained as follows. i. The stresses present in the heterogeneous fiber-reinforced layer are calculated using the constitutive equations given by Belfield et al. 983). Using variable separable method and stress equations, we obtain the displacement due to torsional surface waves in a fiber-reinforced heterogeneous layer. ii. The displacement due to torsional wave in heterogeneous elastic half-space is obtained in terms of Whittaker and Bessel functions. iii. Using the boundary conditions, we obtain the dispersion relation in closed form. iv. Numerical examples are considered to compute the effect of heterogeneity and reinforcement on the propagation of torsional surface wave. Three different types of fiber-reinforced elastic materials are chosen to compare the effect of heterogeneity and reinforcement on torsional wave propagation. 70

3 Formulation and Solution for the Layer We consider the cylindrical co-ordinate system, in which the origin is taken at the initial point of the interface between layer and half-space. The direction of wave propagation is along the r axis. The z axis is taken as positive downwards. The constitutive equation for self-reinforced linear elastic material with direction a is given by Belfield et al. 983). Figure : Geometry of the problem τ ij = λe kk δ ij + μ T e ij + αa k a m e km δ ij + e kk a i a j ) +μ L μ T )a i a k e kj + a j a k e ki ) + Γa k a m e km a i a j, ) where τ ij are the components of stress, δ ij are correlated to the Kronecker delta and e ij are the components of infinitesimal strain. a i defines the components of a in different direction whereas the indices take the values,, 3 and summation convention is employed. α, Γ, λ, μ L, μ T are elastic constants. μ T is assumed to be the shear modulus in transverse direction and μ L the shear modulus in longitudinal direction. Different homogenization methods may also be used to determine the elastic coefficients in different fibre-reinforced materials. The asymptotic homogenization method to determine the analytical formulas for the elastic effective coefficients of a two phase fibrous composite material and the full-wave homogenization method for the calculation of the effective permittivity of steel fibre-reinforced concrete are given by Diaz et al. 00) and Damme and Franchois 006), respectively. In Eq.) the unit vector a = a, a, a 3 ) gives the orientation of the family of fibres in axial z), azimuthal θ) and radial r) directions, respectively. Choosing the component a = 0 gives the orientation of our choice. The fibres initially lie in the surface for some constant value of θ and are inclined at an angle ϕ to the r axis. so the components of a in cylindrical polar co-ordinate system are a = sin ϕ, 0, cos ϕ). Now, for the propagation of torsional waves in radial direction and causing displacement in azimuthal direction only, we have the following displacement components which gives u r = 0, u z = 0, u θ = v r, z, t) ) e rr = 0, e θθ = 0, e zz = 0, e zr = 0, e θz = v z, e rθ = v r v r. 3) 7

By using Eqs.) and 3) in Eq.), we have the following stress components and τ θz = R v z + Q v r v ), 4) r τ rθ = P v r v r ) + Q v z, 5) where P = μ T 0 e ζz + μ L0 e ξz μ T 0 e ζz )a, Q = μ L0 e ξz μ T 0 e ζz )a a 3, R = μ T 0 e ζz + μ L0 e ξz μ T 0 e ζz )a 3. where μ L0 and μ T 0 are shear modulus in longitudinal and transverse direction, respectively. The governing equation of motion is given by τ ij,j = ρ u i t. 6) By the characteristic of torsional surface waves, we have the only non vanishing equation of motion as r τ rθ + z τ θz + r τ rθ = ρ v t. 7) Eqs.4),5) and 7) gives where P v r + Q v r z + R v z + P v r r + Q v r +Ṙ v z + Q Ṙ = R z = ζμ T 0 e ζz + ξμ L0 e ξz ζμ T0 e ζz )a 3, Q = Q z = ξμ L 0 e ξz ζμ T0 e ζz )a a 3. A harmonic wave in radial direction can be written in the form z P r v v r v r ) = ρ v t 8) v z) = V z)j kr)e iωt 9) where k, c, ω= kc) and J are wave number, wave velocity, circular frequency and Bessel s function of first order and first kind, respectively. Using Eq.9) in Eq.8), we have d V dz + LdV dz + MV = 0 0) where the expressions for L and M are given as L = QkJ kr) RJ kr) + Q Rr + Ṙ R, M = P k J kr) + P kj kr) RJ kr) RrJ kr) + ρω R P Rr + QkJ kr) RJ kr) Q Rr, J = J r, J = J r. 7

The solution of Eq.0) is V z) = e Lz c sin Nz + c cos Nz), ) Hence the solution for the layer can be written as v z) = e Lz c sin Nz + c cos Nz)J kr)e iωt, ) where N = M L 4 and L, M, c, c are constants. 4 Formulation and Solution for Half-Space The heterogeneity has been considered in both density and shear moduli in the following manner μ = μ 0 + b z) ρ = ρ 0 + d z) 3) 4) where μ and ρ are the shear moduli and density for half-space, respectively; b and d are the constants having dimension inverse of the length. We have the relationship between stress and shear moduli for an elastic medium as and τ rθ = μ z) v r v r ) 5) τ zθ = μ z) v z ) 6) which gives the non vanishing equation of motion for half-space as μ z) r + r r r )v + z μ z) v z ) = ρ z) v t. 7) Now again consider the solution of Eq.7) in the form v z) = V z)j kr)e iωt 8) where V z) is the solution to with χ = μ ρ. Now putting V z) = with χ = μ0 ρ 0. V z) + μ z) μ z) V z) k c χ )V z) = 0 9) uz) +b z) in Eq.9), we get u z) + [ k c + d z) ] χ + b z) ) uz) = 0. 0) Using the dimensionless quantities γ = c d and η = γk+b z) χ b b in Eq.0), we have [ G u η) + η 4 + 4 m η ] uη) = 0, ) 73

where m = 4 ω d b ) and G = ω b d ) χ b4 kχ b3 γ. Solution of Eq.) satisfying the condition lim z V z) 0 i.e. lim η uη) 0 may be written as uη) = AW G,m η) ) where W G,m is the Whittaker function Whittaker and Watson 97)). Thus the displacement component in heterogeneous half-space is given by v z) = AW G,m γk+b z) + b z b ) J kr)e iωt. 3) 5 Boundary Conditions The boundary conditions are the continuities of the displacement components and stress at z = 0 and also stress vanishes at z = H. Mathematically, these conditions can be written as. Continuity of displacement components and stress at z = 0 provide v = v 4) and R v z + Q v r v ) v = μ r z. 5). Stress will vanish at z = H.i.e. R v z + Q v r v ) = 0. 6) r Taking the expansion of Whittaker function upto the linear term and substituting in Eqs.5) and 6), we get c = A γk ) +m e γk b + γk s) 7) b b and c N L c γk = μ A b ) R + Q c kj kr) J kr) r ) +m e k γ b b + b m γk ) ) + s k γ b ) 8) where s = +m G m+, P, Q, R, L, M and N are the values of P, Q, R, L, M and N at z = 0, respectively. Similarly, from Eq.7), we have the following condition [ N R c cos N H + c sin N H) L c cos N H c sin ] N H) +Q [ c cos N H c sin N H) kj kr) J kr) r c cos N H c sin N H) where P, Q, R, L, M and N are the values of P, Q, R, L, M and N at z = H, respectively. Eliminating c, c and A from Eqs.7), 8) and 9), we have the dispersion relation as ] = 0 9) tankht ) = S + S X + X 30) 74

where the expressions for S, S, X and X are given in Appendix and T is the value of T at z = H. Eq.30) is the dispersion relation for torsional surface waves in a heterogeneous self-reinforced layer lying over a heterogeneous half-space. Furthermore, we shall use this relation to obtain the variation of phase velocity of torsional waves with respect to the wave number. 6 Special Cases The previous article which have already been done by various authors will be discussed as particular case of the present study. Case): when the upper layer is isotropic homogeneous i.e. ξ = 0, ζ = 0 and μ L = μ T = μ then Eq.30) becomes [ c tan kh β ) ] = μ μ B + B m γ ) ) c β with B = b k and β = μ ρ. This is the dispersion equation of torsional waves in homogeneous isotropic layer over a heterogeneous half-space. 3) Case): when half space is of constant density i.e. d = 0, then Eq.30) becomes where tankht ) = S + S X + X 3) C = kj kr) J kr) ) Q a a 3 + kj kr) + ) ) b Q + μ r J kr) r + b m k. Eq.3) is the dispersion relation of torsional waves propagating in heterogeneous fibre-reinforced medium lying over a half-space of constant density. Case3): when ξ = 0, ζ = 0, μ L = μ T = μ and the variation in half space is taken as μ = μ 0 + b z), ρ = ρ 0 + d z) then Eq.30) becomes [ c tan kh β ) ] = μ γ μ s ) + γks b c ) β. 33) Eq.33) is the dispersion relation for torsional waves propagating in a homogeneous isotropic substratum over a heterogeneous half-space Dey et al. 996)). Case4): when ξ = 0, ζ = 0, μ = μ 0 + b z), ρ = ρ 0 + d z), then dispersion relation becomes tankht ) = [ μ γkr s + γks b [ ) 3Q R krt μ bγkrs b +γks γkr ] + 3Q ] + R krt. 34) This is the dispersion relation for torsional surface waves propagating in a self reinforced layer lying over a half-space with linearly varying rigidity and density Chattopadhyay et al. 0)). 75

Case5): when the variation of half-space is taken as μ = μ + b z) and ρ = ρ 0 i.e. d = 0) then the dispersion relation 30) reduces to tankht ) = [ μ kr s + ks b [ ) 3Q R krt μ bkrs b +ks kr ] + 3Q ] + R krt. 35) which is the dispersion relation of torsional surface waves in heterogeneous fibre-reinforced medium lying over a Gibson half-space. Case6): when the layer and half-space both are isotropic homogeneous i.e. a = 0, b = 0, μ L = μ T = μ, b = 0, d = 0, then Eq.30) reduces to [ c tan kh β ) ] = μ μ c χ c β ) ). 36) This is the classical Love wave equation for propagation of surface wave in homogeneous isotropic layer over a homogeneous isotropic half-space. 7 Numerical Examples and Discussions Since the dispersion relation is obtained in closed form. All the quantities presented in this relation are in implicit form. So in order to discuss the effect of different parameters present in the study, numerical examples are required. Here we have considered three different types of fiber-reinforced elastic materials to discuss the effect of parameters on the propagation of torsional waves present in the study. The data for three different materials are as follows.. For heterogeneous steel fiber-reinforced layer Hool et al. 944)). μ L = 7.07 0 9 N/m, μ T = 3.5 0 9 N/m, ρ =, 600 Kg/m 3. where μ L and μ T are the shear moduli in longitudinal and transverse direction, respectively.. For heterogeneous half-space Gubbins 990)). μ = 6.34 0 0 N/m, ρ = 3, 364 Kg/m 3. where μ and ρ are the shear modulus and density for the half-space. Also, we have used the following data: a = 0.866, a 3 = 0.5, kr = 5.4, ϕ = 60. 76

.4 3. a 0.866, a3 0.5, H.03. a 0.866, a3 0.5, H.08 3. a 0.866, a3 0.5, H.3.3 3 dimensionless phase velocity c...0 4. a a3 0, H.03 5. a a3 0, H.08 6. a a3 0, H.3.9 4 5.8 6.0..4.6.8 3.0 3. 3.4 dimensionless wave number kh Figure : Variation of phase velocity c/β ) against wave number kh for different values of heterogeneity parameter ξh). 77

.4. a 0.866, a3 0.5, H.08. a 0.866, a3 0.5, H.0 3. a 0.866, a3 0.5, H.35.3 dimensionless phase velocity c...0 4 5 6 3 4. a 0, a3 0, H.08 5. a 0, a3 0, H.0 6. a 0, a3 0, H.35.9.8.0..4.6.8 3.0 3. 3.4 dimensionless wave number kh Figure 3: Variation of phase velocity c/β ) against wave number kh for different values of heterogeneity parameter ζh). 78

Figs.) and 3) represents the variation of phase velocity c β against wave number kh for different values of heterogeneity parameters ξh and ζh. In both the figs.) and 3), curves, and 3 are in presence of reinforcement whereas the curves 4, 5 and 6 are in absence of reinforcement for steel material. In figs. ) and 3), it is clear that the phase velocity of the torsional surface waves decreases as the wave number increases. Fig.) shows that the phase velocity of the wave decreases as the values of heterogeneity parameters ξh increases in both reinforced and reinforced free cases but the decrement in phase velocity is more in reinforced free case than presence of reinforcement. In a similar manner the effect of heterogeneity parameter ζh has been shown in fig.3) and again the decrement in phase velocity is more in case of reinforced free case than presence of reinforcement. 8 Conclusions The effect of heterogeneity and reinforcement on propagation of torsional surface waves has been investigated. Dispersion relation is obtained in closed form and matched with classical Love wave equation. Also, some existing results have been deduced as particular case of the present study. Numerical results have been shown for steel fibre-reinforced materials. Some salient outcomes of the present study may be listed as. Heterogeneity and reinforcement of the medium are found to have significant effect on velocity profile of torsional surface waves.. Reinforced and reinforced free cases are compared for steel materials and it is found that the presence of reinforcement increases the phase velocity of torsional waves. 3. Heterogeneity of the layer is found to have reverse effect on phase velocity of surface waves i.e. phase velocity decreases for increasing values of heterogeneity parameters). 4. Dispersion relation for propagation of torsional surface waves in heterogeneous reinforced layer over a Gibson half-space has been obtained. Acknowledgements We are indebted to University Grant Commission UGC), New Delhi-India, for providing the financial support to Brijendra Paswan under Basic Scientific Research scheme with Ref. No. F.7-79/007BSR). We are also grateful to Indian Institute of Technology Indian School of Mines) Dhanbad-India for providing best research facility. References Abd-Alla, A.; Nofal, T.; Abo-Dahab, S.; Al-Mullise, A.: Surface waves propagation in fibre-reinforced anisotropic elastic media subjected to gravity field. International Journal of Physical Sciences, 8, 4, 03), 574 584. Achenbach, J.: Wave Propagation in Elastic Solids. Elsevier Science 984). Belfield, A. J.; Rogers, T. G.; Spencer, A. J. M.: Stress in elastic plates reinforced by fibres lying in concentric circles. Journal of Mechanics Physics of Solids, 3, 983), 5 54. Chammas, R.; Abraham, O.; Cote, P.; Pedersen, H.; Semblat, J.: Characterization of heterogeneous soils using surface waves: Homogenization and numerical modeling. International Journal of Geomechanics, 3, 003), 55 63. Chattopadhyay, A.; Chaudhury, S.: Propagation, reflection and transmission of magnetoelastic shear waves in a self reinforced medium,. International Journal of Engineering Science, 8, 6, 990), 485 495. Chattopadhyay, A.; Chaudhury, S.: Magnetoelastic shear waves in an infinite self-reinforced plate. International Journal of Numerical and Analytical Methods in Geomechanics,, 9, 4, 995), 89 304. Chattopadhyay, A.; Gupta, S.; Sahu, S.; Singh, A.: Torsional surface waves in a self-reinforced medium over a heterogeneous half space. International Journal of Geomechanics,, 0), 93 97. 79

Chattopadhyay, A.; Gupta, S.; Samal, S.; Sharma, V.: Torsional waves in self-reinforced medium. International Journal of Geomechanics, 9, 009), 9 3. Chattopadhyay, A.; Singh, A.; Dhua, S.: Effect of heterogeneity and reinforcement on propagation of a crack due to shear waves. International Journal of Geomechanics, 4, 04), 040403. Crampin, S.: The basis for earthquake prediction. Geophys. J. R. astr. Soc, 9, 987), 33 347. Damme, S. V..; Franchois, A.: A full-wave homogenization technique for steel fiber reinforced concrete. Electromagnetics, 6, 006), 30 34. Dey, S.; Gupta, A. K.; Gupta, S.: Propagation of torsional surface waves in a homogeneous substratum over a heterogeneous half-space. International Journal for Numerical and Analytical Methods in Geomechanics, 0, 4, 996), 87 94. Diaz, R.; J.Bravo-Castillero; R.Rodriguez-Ramos; R.Martinez-Rosado; F.Serrania; M.Navarrete: Modeling of elastic transversely isotropic composite using the asymptotic homogenization method. some comparisons with other models. Materials Letters, 56, 00), 889 894. Gubbins, D.: Seismology and Plate Tectonics. Cambridge University Press 990). Hool, G.; Kinne, W.; Zipprodt, R.: Reinforced concrete and masonry structures. McGraw-Hill Book Company, inc. 944). Kumar, R.; Gupta, R.: Study of wave motion in an anisotropic fiber-reinforced thermoelastic solid. Int. J. Solid Mech,, 00), 9 00. Kundu, S.; Gupta, S.; Manna, S.: Sh-type waves dispersion in an isotropic medium sandwiched between an initially stressed orthotropic and heterogeneous semi-infinite media. Meccanica, 49, 3, 04a), 749 758. Kundu, S.; Gupta, S.; Manna, S.; Dolai, P.: Propagation of love wave in fiber-reinforced medium over a nonhomogeneous half-space. International Journal of Applied Mechanics, 06, 05, 04b), 450050. Meissner, R.: The little book of planet Earth. Springer-Verlag: New York 00). Sengupta, P.; Nath, S.: Surface waves in fibre-reinforced anisotropic elastic media. Sadhana, 6, 4, 00), 363 370. Sethi, M.; Gupta, M.; Gupta, K.; Saroa, M.; Gupta, D.: Surface waves in fibre-reinforced anisotropic solid elastic media under the influence of gravity. J Mech Behav Mater, 04-6), 0), 8 85. Spencer, A.: Boundary layers in highly anisotropic plane elasticity. International Journal of Solids and Structures, 0, 974), 03 3. Vardoulakis, I.: Torsional surface waves in inhomogeneous elastic media. International Journal for Numerical and Analytical Methods in Geomechanics, 8, 984), 87 96. Verma, P.: Magnetoelastic shear waves in self-reinforced bodies. International Journal of Engineering Science, 4, 7, 986), 067 073. Verma, P.; Rana, O.: Rotation of a circular cylindrical tube reinforced by fibres lying along helices. Mechanics of Materials,, 4, 983), 353 359. Verma, P.; Rana, O.; Verma, M.: Magnetoelastic transverse surface waves in self-reinforced elastic bodies. Indian Journal of Pure and Applied Mathematics, 9, 7, 988), 73 76. Whittaker, E.; Watson, G.: A Course of Modern Analysis. Cambridge University Press 97). 80

Appendix T = [ P J kr) RJ kr) + 4 QJ kr) RJ kr) + P J kr) RkrJ kr) Q Rkr + P Rk r + ρc R + Ṙ kr ) S = Q kr Q kj kr), J kr) S = Q J kr) R J kr) + Q R kr CR T, Q J X = C kr) R J kr) + Q ), R kr Q X = C kr Q J kr) ) + R T, J kr) kj C = kr) J kr) ) Q a a 3 + kj kr) r J kr), + r QJ kr) krj kr) Q ) k Rr ) b Q + μ + b m ) γk. Address: Brijendra Paswan Department of Applied Mathematics Indian Institute of Technology Indian School of Mines) Dhanbad-India Pin Code-86007 Mob.No-+9-8877080 email: brijendrapaswan@gmail.com Sanjeev A. Sahu Department of Applied Mathematics Indian Institute of Technology Indian School of Mines) Dhanbad-India Pin Code-86007 Mob.No-+9-9708607865 email: ism.sanjeev@gmail.com Pradeep K. Saroj Department of Mathematics National Institute of Technology, Calicut-India Pin Code-67360 Mob. No-+9-953405358 email:pksaroj.ism@gmail.com 8