VLSI Design I; A. Milenkovic 1

Similar documents
CPE/EE 427, CPE 527 VLSI Design I L07: CMOS Logic Gates, Pass Transistor Logic. Review: CMOS Circuit Styles

CPE/EE 427, CPE 527 VLSI Design I Pass Transistor Logic. Review: CMOS Circuit Styles

VLSI Design I; A. Milenkovic 1

VLSI Design I; A. Milenkovic 1

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic

VLSI Design I; A. Milenkovic 1

CPE/EE 427, CPE 527 VLSI Design I L18: Circuit Families. Outline

VLSI Design I; A. Milenkovic 1

CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.

B.Supmonchai August 1st, q In-depth discussion of CMOS logic families. q Optimizing gate metrics. q High Performance circuit-design techniques

Digital Integrated Circuits A Design Perspective

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville

Coarse-Grain MTCMOS Sleep

Estimating Delays. Gate Delay Model. Gate Delay. Effort Delay. Computing Logical Effort. Logical Effort

VLSI Design I; A. Milenkovic 1

Unit 1. Current and Voltage U 1 VOLTAGE AND CURRENT. Circuit Basics KVL, KCL, Ohm's Law LED Outputs Buttons/Switch Inputs. Current / Voltage Analogy

Pass-Transistor Logic

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C13 MOSFET operation

Logic effort and gate sizing

Based on slides/material by. Topic 3-4. Combinational Logic. Outline. The CMOS Inverter: A First Glance

COMBINATIONAL LOGIC. Combinational Logic

EE C245 ME C218 Introduction to MEMS Design

VLSI Design I; A. Milenkovic 1

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

Wp/Lmin. Wn/Lmin 2.5V

Properties of CMOS Gates Snapshot

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

CMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering

1.4 Small-signal models of BJT

EE141. Administrative Stuff

Transfer Characteristic

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d)

Key component in Operational Amplifiers

Chapter 2 Problem Solutions 2.1 R v = Peak diode current i d (max) = R 1 K 0.6 I 0 I 0

EE115C Digital Electronic Circuits Homework #6

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

Effective Power Optimization combining Placement, Sizing, and Multi-Vt techniques

( ) = ( ) + ( 0) ) ( )

Copyright 2004 by Oxford University Press, Inc.

Digital Integrated Circuits A Design Perspective

Week 11: Differential Amplifiers

CMOS Digital Integrated Circuits Lec 10 Combinational CMOS Logic Circuits

E40M Device Models, Resistors, Voltage and Current Sources, Diodes, Solar Cells. M. Horowitz, J. Plummer, R. Howe 1

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

POWER AND PERFORMANCE OPTIMIZATION OF STATIC CMOS CIRCUITS WITH PROCESS VARIATION

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance

Lecture 4: Adders. Computer Systems Laboratory Stanford University

ECE321 Electronics I

Homework #2 10/6/2016. C int = C g, where 1 t p = t p0 (1 + C ext / C g ) = t p0 (1 + f/ ) f = C ext /C g is the effective fanout

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol:

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

ECE 342 Electronic Circuits. Lecture 34 CMOS Logic

Reliable Power Delivery for 3D ICs

Digital Integrated Circuits A Design Perspective

FEEDBACK AMPLIFIERS. v i or v s v 0

PHYSICS - CLUTCH 1E CH 28: INDUCTION AND INDUCTANCE.

Prof. Paolo Colantonio a.a

Static CMOS Circuits

PHYSICS - CLUTCH CH 28: INDUCTION AND INDUCTANCE.

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

Hashing. Alexandra Stefan

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

Digital EE141 Integrated Circuits 2nd Combinational Circuits

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

Interconnect Optimization for Deep-Submicron and Giga-Hertz ICs

COMP 103. Lecture 16. Dynamic Logic

Utilization of Regeneration Energy in Industrial Robots System

Physics 1202: Lecture 11 Today s Agenda

COMBINATIONAL CIRCUITS

55:041 Electronic Circuits

CMOS Inverter (static view)

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

ENGR-4300 Electronic Instrumentation Quiz 4 Fall 2010 Name Section. Question Value Grade I 20 II 20 III 20 IV 20 V 20. Total (100 points)

Topics. Dynamic CMOS Sequential Design Memory and Control. John A. Chandy Dept. of Electrical and Computer Engineering University of Connecticut

Lecture 7: Multistage Logic Networks. Best Number of Stages

MAE140 - Linear Circuits - Winter 16 Final, March 16, 2016

Energy-Delay Space Exploration of Clocked Storage Elements Using Circuit Sizing

EE105 - Fall 2006 Microelectronic Devices and Circuits

9/18/2008 GMU, ECE 680 Physical VLSI Design

MOS Transistor Theory

EE141Microelettronica. CMOS Logic

Lecture 27 Bipolar Junction Transistors

2D Critical path = 6. Retiming moving delays. Retiming - Pipelining. Delays can be moved from ALL inputs to ALL outputs

Digital Integrated Circuits A Design Perspective

Physics 114 Exam 2 Spring Name:

FTCS Solution to the Heat Equation

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V

( ) ( ) ( ) ( ) ( ) 1 2. ELEC 201 Electric Circuit Analysis I Lecture 8(a) RL and RC Circuits: Single Switch 11/9/2017. Driven RL Circuit: Equation

Airflow and Contaminant Simulation with CONTAM

Physics 114 Exam 2 Fall 2014 Solutions. Name:

Digital Integrated Circuits A Design Perspective

Physics Courseware Electronics

Clock-Gating and Its Application to Low Power Design of Sequential Circuits

9 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

Transcription:

ourse dmnstraton PE/EE 47, PE 57 VLI esgn I L8: Pass Transstor Logc epartment of Electrcal and omputer Engneerng Unversty of labama n Huntsvlle leksandar Mlenkovc ( www. ece.uah.edu/~mlenka ) www. ece.uah.edu/~mlenka/cpe57- [dapted from Rabaey s gtal Integrated rcuts,, J. Rabaey et al. and Mary Jane Irwn ( www. cse. psu.edu/~m ) ] Instructor: leksandar Mlenkovc mlenka@ece.uah.edu www.ece.uah.edu/~mlenka Offce Hrs: MW 7:-8:, E7-L T: athma Tareen tareenf @eng.uah.edu Offce Hrs: rday : : M, E46 URL: http://www.ece.uah.edu/~mlenka/cpe57- Text: gtal Integrated rcuts, nd Edton Rabaey et. al., (October) Lab: eptember 5 (posted), ue: October Hw: eptember 5 (posted), ue eptember 9 Proect: efault proect # posted! 9// VLI esgn I;. Mlenkovc ombnatonal Logc ells (cont d) OI The OI famly of cells wth ndex numbers or less = {OI, OI, O, O}; a,b,c={,} Vdd ell Type a a ab ab abc Total ells,,,,,,,,, Number of Unque ells 4 4 E E Z 9// VLI esgn I;. Mlenkovc 9// VLI esgn I;. Mlenkovc 4 tandard ell Layout Methodology OI Logc Graph Routng channel PUN sgnals =!( ( + )) What logc functon s ths? PN 9// VLI esgn I;. Mlenkovc 5 9// VLI esgn I;. Mlenkovc 6 VLI esgn I;. Mlenkovc

Two tck Layouts of!( ( + )) onsstent Euler Path n unnterrupted dffuson strp s possble only f there exsts a Euler path n the logc graph Euler path: a path through all nodes n the graph such that each edge s vsted once and only once. unnterrupted dffuson strp 9// VLI esgn I;. Mlenkovc 7 or a sngle poly strp for every nput sgnal, the Euler paths n the PUN and PN must be consstent (the same) 9// VLI esgn I;. Mlenkovc 8 onsstent Euler Path OI Logc Graph n unnterrupted dffuson strp s possble only f there exsts a Euler path n the logc graph Euler path: a path through all nodes n the graph such that each edge s vsted once and only once. =!((+) (+)) PUN or a sngle poly strp for every nput sgnal, the Euler paths n the PUN and PN must be consstent (the same) PN 9// VLI esgn I;. Mlenkovc 9 9// VLI esgn I;. Mlenkovc OI Layout VT s ata-ependent M M 4.5µ/.5 µ NMO.75 µ /.5 µ PMO ome functons have no consstent Euler path lke x =!(a + bc + de) (but x =!(bc + a + de) does!) 9// VLI esgn I;. Mlenkovc,: -> = =, : -> weaker =, :-> M PUN V G = V V nt M V G = V The threshold voltage of M s hgher than M due to the body effect (γ) V Tn = V Tn V Tn = V Tn + γ( ( φ + V nt ) - φ ) snce V of M s not zero (when V = ) due to the presence of nt 9// VLI esgn I;. Mlenkovc VLI esgn I;. Mlenkovc

tatc MO ull dder rcut! out =! n & (!!) (! &!) tatc MO ull dder rcut!um= out & (!!! n ) (! &! &! n ) n n n! out n!um n n! out n!um n n n out = n & ( ) ( & ) um=! out & ( n ) ( & & n ) 9// VLI esgn I;. Mlenkovc 9// VLI esgn I;. Mlenkovc 4 NMO Transstors n eres/parallel Prmary nputs drve both gate and source/dran termnals NMO swtch closes when the gate nput s hgh Y = Y f and PMO Transstors n eres/parallel Prmary nputs drve both gate and source/dran termnals PMO swtch closes when the gate nput s low Y = Y f and = + Y = Y f or Y = Y f or = Remember NMO transstors pass a strong but a weak Remember PMO transstors pass a strong but a weak 9// VLI esgn I;. Mlenkovc 5 9// VLI esgn I;. Mlenkovc 6 Pass Transstor (PT) Logc = Gate s statc a low-mpedance path exsts to both supply rals under all crcumstances N transstors nstead of N No statc power consumpton Ratoless drectonal (versus undrectonal) 9// VLI esgn I;. Mlenkovc 7 =.5/.5.5/.5.5/.5.5/.5 VT of PT N Gate = V out, V =, = V n, V =, = == Pure PT logc s not regeneratve- the sgnal gradually degrades after passng through a number of PTs (can fx wth statc MO nverter nserton) 9// VLI esgn I;. Mlenkovc 8 VLI esgn I;. Mlenkovc

fferental PT Logc (PL) PL Propertes N/NN = = PT Network Inverse PT Network OR/NOR =+ =+ = = OR/NOR fferental so complementary data nputs and outputs are always avalable (so don t need extra nverters) tll statc, snce the output defnng nodes are always ted to or through a low resstance path esgn s modular; all gates use the same topology, only the nputs are permuted. mple OR makes t attractve for structures lke adders ast (assumng number of transstors n seres s small) ddtonal routng overhead for complementary sgnals tll have statc power dsspaton problems 9// VLI esgn I;. Mlenkovc 9 9// VLI esgn I;. Mlenkovc PL ull dder PL ull dder n n n n!um!um um um n n n n! out! out n n out out n n 9// VLI esgn I;. Mlenkovc 9// VLI esgn I;. Mlenkovc NMO Only PT rvng an Inverter In = V V x = G = -V Tn V x does not pull up to, but V Tn Threshold voltage drop causes statc power consumpton (M may be weakly conductng formng a path from to ) Notce V Tn ncreases of pass transstor due to body effect (V ) 9// VLI esgn I;. Mlenkovc M M Voltage wng of PT rvng an Inverter In =.5/.5 x.5/.5.5/.5 ody effect large V at x - when pullng hgh ( s ted to and charged up close to ) o the voltage drop s even worse V x = - (V Tn + γ( ( φ f + V x ) - φ f )) Voltage, V 9// VLI esgn I;. Mlenkovc 4 In x =.8V.5.5 Tme, ns VLI esgn I;. Mlenkovc 4

ascaded NMO Only PTs oluton : Level Restorer = = G M = x = - V Tn G y M = = = x y M M Level Restorer on M r off = M x = = = M n = M wng on y = - V Tn - V Tn wng on y = - V Tn Pass transstor gates should never be cascaded as on the left Logc on the rght suffers from statc power dsspaton and reduced nose margns 9// VLI esgn I;. Mlenkovc 5 ull swng on x (due to Level Restorer) so no statc power consumpton by nverter No statc backward current path through Level Restorer and PT snce Restorer s only actve when s hgh or correct operaton M r must be szed correctly (ratoed) 9// VLI esgn I;. Mlenkovc 6 Voltage, V Transent Level Restorer rcut Response W/L =.5/.5 W/L n =.5/.5 W/L =.5/.5 W/L r =.75/.5 W/L r =.5/.5 W/L r =.5/.5 W/L r =./.5 4 5 Tme, ps node x never goes below V M of nverter so output never swtches Restorer has speed and power mpacts: ncreases the capactance at x, slowng down the gate; ncreases t r (but decreases t f ) 9// VLI esgn I;. Mlenkovc 7 oluton : Multple V T Transstors Technology soluton: Use (near) zero V T devces for the NMO PTs to elmnate most of the threshold drop (body effect stll n force preventng full swng to ) In = V In =.5V =.5V on sneak path off but leakng = V low V T transstors Impacts statc power consumpton due to subthreshold currents flowng through the PTs (even f V G s below V T ) 9// VLI esgn I;. Mlenkovc 8 oluton : Transmsson Gates (TGs ) Most wdely used soluton oluton : Transmsson Gates (TGs ) Most wdely used soluton = = = = = = = = = = ull swng bdrectonal swtch controlled by the gate sgnal, = f = 9// VLI esgn I;. Mlenkovc 9 = = ull swng bdrectonal swtch controlled by the gate sgnal, = f = 9// VLI esgn I;. Mlenkovc VLI esgn I;. Mlenkovc 5

Resstance of TG TG Multplexer 5 W/L p =.5/.5 V R n R p.5v V out In Resstance, kω 5 5 R p R n.5v R eq W/L n =.5/.5 In V out, V =!(In + In ) In In 9// VLI esgn I;. Mlenkovc 9// VLI esgn I;. Mlenkovc Transmsson Gate OR Transmsson Gate OR weak f! off on off on!! weak f an nverter 9// VLI esgn I;. Mlenkovc 9// VLI esgn I;. Mlenkovc 4 TG ull dder fferental TG Logc (PL) n = = um = = out N/NN OR/NOR 9// VLI esgn I;. Mlenkovc 5 9// VLI esgn I;. Mlenkovc 6 VLI esgn I;. Mlenkovc 6