Solutions to Selected Exercises

Similar documents
Solutions to Selected Exercises

Solutions to Selected Exercises

Chapter 5. Section 5.1. Section ( x ) ( y ) 7. ( x ) ( y ) (0, 3 + 5) and (0, 3 5)

For all questions, answer choice E) NOTA" means none of the above answers is correct.

Math1110 (Spring 2009) Prelim 3 - Solutions

Section 8.1 Exercises

The Fundamental Theorem of Algebra. Objective To use the Fundamental Theorem of Algebra to solve polynomial equations with complex solutions

ACTM State Calculus Competition Saturday April 30, 2011

Unit 5: Quadratic Equations & Functions

Physics 2A Chapter 3 HW Solutions

Supplemental Instruction sessions next week

Chapter 3 Describing Data Using Numerical Measures

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

Physics 4B. Question and 3 tie (clockwise), then 2 and 5 tie (zero), then 4 and 6 tie (counterclockwise) B i. ( T / s) = 1.74 V.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 3. r r. Position, Velocity, and Acceleration Revisited

Four Bar Linkages in Two Dimensions. A link has fixed length and is joined to other links and also possibly to a fixed point.

Physics 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn in the following problems from Chapter 4 Knight

Statistics MINITAB - Lab 2

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

Solutions to Homework 7, Mathematics 1. 1 x. (arccos x) (arccos x) 1

e i is a random error

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE

EN40: Dynamics and Vibrations. Homework 4: Work, Energy and Linear Momentum Due Friday March 1 st

Section 8.3 Polar Form of Complex Numbers

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

PHYSICS 203-NYA-05 MECHANICS

Section 3.6 Complex Zeros

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Error Bars in both X and Y

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15

Chapter 8: Further Applications of Trigonometry

11. Dynamics in Rotating Frames of Reference

Correlation and Regression. Correlation 9.1. Correlation. Chapter 9

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8: Potential Energy and The Conservation of Total Energy

Modeling curves. Graphs: y = ax+b, y = sin(x) Implicit ax + by + c = 0, x 2 +y 2 =r 2 Parametric:

Name: PHYS 110 Dr. McGovern Spring 2018 Exam 1. Multiple Choice: Circle the answer that best evaluates the statement or completes the statement.

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2.

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

Mathematics Intersection of Lines

CHAPTER 10 ROTATIONAL MOTION

Statistics for Business and Economics

How Differential Equations Arise. Newton s Second Law of Motion

Complex Numbers, Signals, and Circuits

MTH 263 Practice Test #1 Spring 1999

= 1.23 m/s 2 [W] Required: t. Solution:!t = = 17 m/s [W]! m/s [W] (two extra digits carried) = 2.1 m/s [W]

Notes prepared by Prof Mrs) M.J. Gholba Class M.Sc Part(I) Information Technology

Chapter 3 and Chapter 4

Advanced Circuits Topics - Part 1 by Dr. Colton (Fall 2017)

Chapter 9: Statistical Inference and the Relationship between Two Variables

THE CURRENT BALANCE Physics 258/259

JEE ADVANCE : 2015 P1 PHASE TEST 4 ( )

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

Logistic Regression Maximum Likelihood Estimation

GEO-SLOPE International Ltd, Calgary, Alberta, Canada Vibrating Beam

Week 9 Chapter 10 Section 1-5

Lecture 12: Discrete Laplacian

PHYS 450 Spring semester Lecture 02: Dealing with Experimental Uncertainties. Ron Reifenberger Birck Nanotechnology Center Purdue University

Digital Signal Processing

Anglo-Chinese Junior College H2 Mathematics JC 2 PRELIM PAPER 1 Solutions

Complex Numbers Alpha, Round 1 Test #123

Please initial the statement below to show that you have read it

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

PreCalculus Final Exam Review Revised Spring 2014

UNIVERSITY OF TORONTO Faculty of Arts and Science. December 2005 Examinations STA437H1F/STA1005HF. Duration - 3 hours

where v means the change in velocity, and t is the

Physics 141. Lecture 14. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 14, Page 1

Physics 111: Mechanics Lecture 11

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis

find (x): given element x, return the canonical element of the set containing x;

So far: simple (planar) geometries

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Physics 207 Lecture 6

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Scatter Plot x

PreCalculus Second Semester Review Ch. P to Ch. 3 (1st Semester) ~ No Calculator

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Chapter 11 Angular Momentum

Statistics for Economics & Business

Dummy variables in multiple variable regression model

UNCORRECTED PAGE PROOFS

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) ±

Physics 207: Lecture 27. Announcements

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

Important Dates: Post Test: Dec during recitations. If you have taken the post test, don t come to recitation!

Numerical Methods. ME Mechanical Lab I. Mechanical Engineering ME Lab I

1. Evaluate the function at each specified value of the independent variable and simplify. f 2a.)

Important Instructions to the Examiners:

Formulas for the Determinant

Maximal Margin Classifier

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Final Jeopardy! Appendix Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5

SIMPLE LINEAR REGRESSION

Homework 2: Kinematics and Dynamics of Particles Due Friday Feb 7, 2014 Max Score 45 Points + 8 Extra Credit

Pre-Calculus Summer Assignment

Transcription:

6 Solutons to Selected Eercses Chapter Secton.. a. f ( 0) b. Tons of garbage per week s produced by a cty wth a populaton of,000.. a. In 99 there are 0 ducks n the lake b. In 000 there are 0 ducks n the late. a,b, d, e 7. a, b 9. a, b, d f, f. b. b, c, e, f. ( ) ( ) 7. g ( ), g ( ) 9. f ( ), f ( ) f ( ) f ( ) f ( 0) f ( ) f ( ). 8 6 0. 9 8. - 0-7...7.6 9. - -6-6 - 0. DNE - - -/. / /. a. -6 b.-6 7. a. b. 9. a. b. v c. I d. e. v f. v g. v h. v. a. v b. c. v d. I e. v f.. ( ) ( y 9) 6. (a) (b) (c) heght heght of head postage age tme weght 7a. t b. a c. r d. L: (c, t) and K: (a, p)

6 Secton.. D: [-, ) R: [0,]. D: t 8 < R: g ( t ) 6 < 8. D: [0,] R: [-, 0] 7. [, ) 9. (,] (. (, ),,, (, ),,.,6) ( 6, ). [ ) ( ) 7. ( ) ( ) f ( ) f ( 0) f ( ) f ( ) 9. - 6 0. - - 7. - 6. f ( ) f < 7. f ( ) 9. f ( ) f f f f 6 < < 0 0 f 0 f > 0... Secton.. a) 6 mllon dollars per year b) mllon dollars per year.. 6

6 7. 7 9. 7. b.. 7. 9 9h h h 69 9. h.,,.,. Increasng: ( ). Decreasng: ( ) ( ). Increasng: (, ) (,). Decreasng: (,) (, ). Increasng, concave up 7. Decreasng, concave down 9. Decreasng, concave up. Increasng, concave down. Concave up (,). Concave down (, ). Concave down (, ) (, ) 7. Local mnmum at (, -). Inflecton ponts at (0,) and (, -)., Increasng on (, ) Concave up ( 0) (, ) 9. Local mnmum at (-, -), Decreasng ( ) Increasng (, ) Concave up (, ). Decreasng ( ),. Concave down ( 0,). Inflecton pont at (, ). Local mnmums at (-., -7.66) and (.0, -.0) Local mamum at (-0.89,.979) Inflecton ponts at (-, -) and (, -)., 0.89.0, Increasng ( ) ( ) Decreasng (,.) ( 0.89,.0) Concave up (, ) (, ) Concave down (,)

6 Secton.. f ( g(0)) 6. g ( f (0)) 7. f ( g(0)). g ( f (0)). 7. 9 9.. 7. 0. 7. 9. ( ) 7. f g ( ) ( ) ( ) 7 6 g f. f ( g( ) ) ( ). ( ) ( ) f g 7. ( ) ( ) ( ( )) ( ) f g h 6 6 ( ) g f ( ) g f ( ) 9. b a. r V ( t) ( t) 0 0 b..609n. ( 0, ).,, (, ) 7. [,) (, ) 9. g ( ), f ( ). ( ) ( ) π f, g. f ( ), g ( ), or f ( ), g( ) a. ( ) ( ) ( ) ( ) ( ) f f a a b b a ab b b. g ( ) 6 or g ( ) 8 6 8 6 6 ( ) 7a. C f ( s) s 70 60 s 0 60 ( ) b. C g ( h) ( h) ( h) 70 60 0 60 ( ) c. v C ( m) 80 70m 600 0 m

6 Secton.. Horzontal shft rght 9 unts. Horzontal shft left unts. Vertcal shft up unts 7. Vertcal shft down unts 9. Horzontal shft rght unts, Vertcal shft up unts. f ( ). f ( ). g ( ) f ( ) h( ) f ( ), 7. 9.... y 7. y 9. y. a. f ( ) 6 b. f ( ). y ( ) 6 7. y 9a. Even b. Nether c. Odd

66. Reflect f() about the -as. Vertcally stretch y values by. Horzontally compress values by / 7. Horzontally stretch values by 9. Reflect f() about the y-as and vertcally stretch y values by. ( ) f. f ( ) ( ). f ( ( ) ) ( ( ) ) 7. Horzontal shft left unt, vertcal stretch y values by, vertcal shft down unts becomes 9. Horzontal shft rght unts, vertcal stretch y values by, reflect over as, vertcally shft up unts. becomes 6. Vertcally compress y values by ½

67 becomes 6. Horzontally stretch values by, vertcal shft down unts becomes 6. Reflected over the y as, horzontally shft rght unts a ( ) ( ) becomes 67. Ths functon s ncreasng on (, ) and decreasng on (, ) 69. Ths functon s decreasng on (,) 7. Ths functon s concave down on (, ) and concave up on (, ) 7. Ths functon s concave up everywhere 7. f ( ) 77. f ( ) 79. f ( ) 8. f 8. f ( ) 8. f ( ) 87. ( ) y 89. ( ) y 9. y ( )

68 9. y ( ) 9. y 97. y ( ) ( ) f 99. f ( ) f > f < 0. f ( ) ( ) f f > 0a. Doman :. 6 d. Range : 9 y 7 Secton.6. 6. -. ½ 7a. b. c. d. 9a. 0 b. 7 c. d.. 7 6 f ( ) 6 9. f ( ). f ( ) 7. f ( ) 9. Restrcted doman ( ) 7, f 7. Restrcted doman ( ) a. ( ) ( ) ( ) 0, f b. g ( f ( ) ) f g c. Ths means that they are nverse functons (of each other) 7

69 Chapter Secton.. P ( t ) 700t 000. D ( t) 0 t. M ( n) 0 n 7. Increasng 9. Decreasng. Decreasng. Increasng. Decreasng 7. 9.... - 0.0 mph (or 0.0 mles per hour toward her home) 7. Populaton s decreasng by 00 people per year 9. Monthly charge n dollars has an ntal base charge of $, and ncreases by $0.0 for each mnute talked. Terry started at an elevaton of,000 ft and s descendng by 70ft per second.. y. y 7. y 9. y.. y. y. P ( n) 0.00n 7. The st, rd & th tables are lnear: respectvely. g ( ). f ( ). k ( ) 60 9a. C F b. 9 9 9 F C c. 9. F Secton.. E. D. B 7. 9...

60. 7. 9... a. g ( ) ( ) b. ¾ c. -/. y 7. Vertcal Intercept Horzontal Intercept 9. (0,) (,0). (0,-) (/, 0). (0,) (-0,0). Lne : m 0 Lne : m 0 Parallel 7. Lne : m Lne : m Nether 9. Lne : m Lne : m Perpendcular. y. y t. (-,) 7. (., 0) 9. Plan B saves money f the mles are > 9. f ( ) f f f < < Secton. a. 696 people b. years c. 7 people per year d. 0 people e. P ( t) 0 7 t f. 9 people.

6 a. C ( ) 0. 0 b. The flat monthly fee s $0 and there s an addtonal $0. fee for each addtonal mnute used c. $.0 a. P ( t) 90t 70 b. 660 moose 7a. R ( t ) 6. t b.. bllon cubc feet c. Durng the year 07 9. More than mnutes. More than $,87. worth of jewelry. 0.0 square unts. 6 square unts b 7. A m 9a. Hawa b. $80,60 c. Durng the year 9. 6. mles Secton.. 60 0 0 0 0 0 0 0 0 0 0 0 0 60. y.97.9, r 0.967. y 0.90 6.0, r 0.968 7. 7.8 7 stups 9. D. A. Yes, trend appears lnear because r 0.99 and wll eceed % near the end of the year 09. Secton.. y. y. 7. 9.

6 9. or. or. or Horzontal Intercepts Vertcal Intercept 7. (-6, 0 ) and (, 0) (0, -8) 9. none (0, -7). < < or (, )., or (, ] [, ). < < or (, ) Chapter Secton.. As, f ( ) As, f ( ). As, f ( ) As, f ( ). As, f ( ) As, f ( ) 7. As, f ( ) As, f ( ) 9. 7 th Degree, Leadng coeffcent. nd Degree, Leadng coeffcent -. th Degree, Leadng coeffcent -. rd Degree, Leadng coeffcent 6 7. As, f ( ) As, f ( ) 9. As, f ( ) As, f ( ). ntercepts:, turnng ponts:.. 7. 9.. Horzontal Intercepts (,0), (-, 0), (, 0) Vertcal Intercept (0, ). Horzontal Intercepts (/, 0) (-/, 0) Vertcal Intercept (0, ) Secton. f. f ( ) ( ). f ( ) ( ) 7. ( ) ( ) Verte Vertcal Intercept Horzontal Intercepts., 0. (0,) (-, 0) (-, 0) 7. ( ) 9. (., 8.) (0,) (0.8, 0) (.6,0). ( 0.7,. ) (0,-) (0.9, 0) (.09, 0)

6. f ( ) ( 6). ( ) ( ) 8 f 7. b and c -9 f 7a. m b. 909.6 ft c. 7.7 seconds 9a. ft b. ft c. 7.97 ft..9 n by.9 n f 9 9. f ( ) ( )( ). f ( ) ( )( ). ( ) ( ). ( ) ( ). ft by..6 cm 7. $0.70 8 ft Secton. C(t) C, t, ntercepts ntercepts. (0,8) (,0), (-,0), (6,0). (0,0) (0,0), (,0), (-,0). (0,0) (0,0), (,0), (,0) 7. (-.66, 0) (.66, 0) (,0) t, h t t, h t t, p t t, p t 9. As ( ) ( ). As ( ) ( ).. 7. 9. (, ). (, ) (,)

6. [.,6]. (,] [, ) 7. [, ] [, ) 9. (, ) (, ) (, ). y ( )( )( ). y ( ) ( ) ( ) y y y y 6. y ( ) ( ) 7. ( )( )( ) 9. ( ) ( ) y. ( )( )( )( ) y 6. Base.8, Heght.6. y ( )( )( ). ( ) ( ) 7. ( )( )( ) 9. ( )( )( ) ( ) Secton.. ( )( ). ( )( 8) ( 7). 9 9 7 8 ( ) 8 7. ( ) ( )( ) 9. ( ) ( )( ). ( 8) ( )( ) 0 8 8. ( 8 ) (8 ) 0. ( ) ( ) 0 7. ( ) 9. ( 6 9) ( )( ) 0. 6 6 ( )( )( ). ( ). 6 ( )( )( ) 7. 8 6 9 ( )

6 Secton.. All of the real zeros le n the nterval [ 7,7] - Possble ratonal zeros are ±, ±, ±. All of the real zeros le n the nterval [,] - Possble ratonal zeros are ±, ±, ±, ±, ± 6, ±. All of the real zeros le n the nterval [ 8,8] - Possble ratonal zeros are ±, ± 7 7. All of the real zeros le n the nterval [,] - Possble ratonal zeros are ±, 7 ±, 7 ±, 7 9. All of the real zeros le n the nterval, - Possble ratonal zeros are.,.. 7 (mult. ) 7. ±, ±, (each has mult. ) ±,, (mult. ), (mult. ), (mult. ), ± (each has mult. ) 7 9.,. 0, 69 ± (each has mult. ) 6 6 ± (each has mult. ) 8. ± (each has mult. ). ± (each has mult. ) 7., (each has mult. ) 9., ± (each has mult. ). (mult. ), 6 (mult. ) Secton.6.. 0 ±, ±, ±, ±, ± 0 7 0 ±, ±, ±, ±, ± 0. 7. 8 9.. 8. 0 0. 0

66 7. 0 9... 8. )) ( ))( ( ( ) ( f. Zeros: ± 7. f 9 9 0 ) (. Zeros: 9 ± 9. f ) ( ) )( ( 6 6 ) ( Zeros:, ±. ( ) ) )( )( ( ) ( ) ( f. Zeros:, ±. 9 9 ) ( 9 7 ) ( f Zeros: 9, ±. ( ) ) )( ( ) ( f Zeros:, ± 7. ( ) ) )( )( )( ( 9 ) )( 8 ( 9 7 ) ( f Zeros:,, ± 9. ( ) f ) ( ) ( 8 ) ( Zeros:, ±. ( )( ) ( )( ) ) )( ( 0 9 ) ( f Zeros:, ± ± Secton.7. D. A Vertcal Asymptotes Horzontal Asymptote Vertcal y- Intercept Horzontal - ntercept

67. y (0,-/) (/, 0) 7. y 0 (0,) DNE 9. y (0, /6) (-/, 0), (,0),., hole at y (0,) (-, 0). none (0, ¼) (-, 0), (/, 0) y (oblque). 0, y 0 DNE (-, 0), (/, 0) 7., y (0, -/6) (, 0), (-, 0), (, 0). 7. 9....

68 7. 9.. 7... y y y 0( )( ) ( )( ) ( ) ( ) 7( ) ( )( ) 6( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) 7 6. y. y 9. y y. y y 7. y 9. y. y. y. a. C( n) b. C ( 0).% c. 80 ml d. as n, C 0 0 n Secton.8. Doman (, ) Inverse ( ) f. Doman (,0) Inverse ( ) f. Doman (, ) Inverse f ( ) ( ) 9 7. f ( ) 9. f ( ) 9 7. f ( ). f ( ) 9..07 mph.. feet. f ( ) 8 7. 6.7 mph

69 Chapter Secton.. Lnear. Eponental. Nether 7. P( t ),000 (.08) t 9. 76 Fo. $76.70. y 6( ). y ( ) 000 0. 7. y ( ) 9. y.9( 0.699). y ( ) 6 6 8.. mg..9%; $,68.09 7. $,8. 9. Annual $7.8 Quarterly $7, 69.6 Monthly $7, 96.7 Contnuously $7,0...0%. 7. years a. w( t ) (.)(.06) t b. $. c. Below what the model predcts $.70 Secton.. B. A. E 7. D 9. C... 7. y 9.. As f ( ). As f ( ) As f ( ). As f ( ) 7. As f ( ) As f ( ) y. y 9. y (). y () y. y. ( ) 7 Secton.. m q. 7. e n c a w 9. log ( y) a ln h. log( b). ( ) b.0 t v. log ( k) d k 7. 9 9. /8. 000. e. 7. - 9. ½ c

660.. -. - log( ) 7. -.98 9..708..697 log( ) log( 8) log. ln.9. ( 7) log( ) 0.67 7..078 log 7 9.. ( ) 8 log log ( ).9 log (.0). log(.0) log 8 0.678 log 8. 6. f ( t ) 0(.068) t 6. ( ) ( ). ln. 0. 0.09t 7. f ( t) 00e 0.09 9. f ( t) 0e f t 0 0.98807 t 6. Durng the year 0 67. Durng the year 07 69. hours 7.. years t Secton.. log ( ). log ( 7). log ( ) 7. ( ) ln. log ( ) 7. ( ) ( ) 9 log 7 9. log( 6 ). z log y ln a ln b ln c 7. log ( ) log ( y) 9 log ( z) 9. ( ) ( ) ( ). log ( ) log( y ). ln ( y) ( ln ( y) ln ( y) ) 8. log( ) log( y) 7. 0.77 9. 6. 9. t 7.9. 7. 0. 7..6 9. 0.8..889.. 6.87or 0. 87..09 7. 0 Secton.. Doman: : > V. A. @. Doman: < V.A. @. Doman: > V.A. @

66 7. Doman: < 0 V.A. @ 0 9.... 7. y log( ( ) ) log 9. ( ). y log ( ). log ( ) y log log ( ) ( ) ( ) y log log ( ( )) Secton.6. f ( t ) ( 0.99) t. mg wll reman after.098 mnutes. f ( t ) 00( 0.9996) t. ( ) f 000 9. mg. r -0.068. Intal mass: 9.908 mg. After days: 0.068 mg 7. f ( t ) 0( 0.9909) t. Half-lfe 7.86 mnutes 9. f ( t) a( ) 0.999879 t. 60% (0.60a) would reman after.8 years. P( t ) 00(.07) t (t n mnutes). After hours 000. After 00 mnutes 9. a) 60. (about 6) b).67 mnutes c) 0. d) 06.96 mnutes..9 years 7..9 hours T t 90 0.9966 7. a). deg b).7 mnutes 9. ( ) ( ) t

66. a) b) 00 c) 69.87 d) 7. years. log ( ) 0.. 0.6. ( ) log...6 Whsper Vacuum Jet 7. 0-0 0-9 0-8 0-7 0-6 0-0 - 0-0 - 0-9. 609.7 tmes more ntense. MMS magntude.87 0 0 0 0 0.697 0. 90. a) about 6067 b). hours c) No, because ( ).077 e d) Anja s data predcts a contnuous growth rate of 0.6, whch s much smaller than the rate 0.90 you calculated. Our model would overestmate the number of cells.. a) The curve that ncreases rapdly at frst s M(p) b) H(00) 0.977 c) Myoglobn: M(0) 0.9. Hemoglobn: H(0) 0. d) At 0 torrs: 0.68. At 0 torrs: 0.060. At 60 torrs: 0.07 7. a) C ( t ).06 t 0.066t, or C ( t ) e b) Volume of one cell: ( ) 6.9099 0 9..699 days Effcency seems to be mamzed at about 8 torr 0 0.6 0 π 7 cm, so wll need about cells for a volume of cm. ( ) 6 C t.9099 0 after 7. hours

66 Secton.7. log ( f ( ) ) log(.) log( ). log ( f ( ) ) log( 0.).. y e e e 0.68(.687) 7. y 0 0 0 0.0(0.) 9. y 776.68(.6).. Ependtures are appromately $0. y ( ) y 7.9(0.78) 7.99.06 r 0.806, y 0.9 7.89, r 0.87. Usng the better functon, we predct electrcty wll be.7 cents per kwh

66 Chapter Secton.. 0. ( ) ( y ). ( 7 ) ( y ) 9 7. ( ) ( y ) 8 0 8 8 9.. (0, ) and (0, ). (.60786, 7.6887). (-.07,.8) 7. 9.87 mles Secton. 70 0 7-00.. π. 0 7. 9.. 8 π 9 π.. mles 7. 8π cm 9..796 mles. 8.679..7 cm. 960 rad/mn 60. RPM 7..09 n/sec, π/ rad/sec,. RPM 9. 7,98. mm/mn.7 m/sec. Angular speed: π/ rad/hr. Lnear speed: 06.7 mles/hr

66 Secton.. a. III b. II.. 7. 7 9. a. reference:. Quadrant III. sn ( ). cos ( ) b. reference: 60. Quadrant IV. sn ( 00 ). cos ( 00 ) c. reference:. Quadrant II. sn ( ). cos ( ) 8 d. reference: 0. Quadrant III. sn ( 0 ). cos ( 0 ) π π. a. reference:. Quadrant III. sn. π 7π b. reference:. Quadrant III. sn. 6 6 π π c. reference:. Quadrant IV. sn. π π d. reference:. Quadrant II. sn. π. a. sn π b. sn 6 π c. sn d. sn ( ) 0 π cos π cos 6 π cos 0 cos π ( π ) π cos 7π cos 6 π cos π cos. a. π 7. a. π b. 00 c. 0 d. π b. 80 c. 0 d. π e. e. 9. (-.9, -9.6)

666 Secton.. sec( θ ), csc( θ ), tan ( θ ), ( ) cot θ. sec( θ ), csc( θ ), tan ( θ ), ( ). sec( θ ), csc( θ ), tan ( θ ), cot ( ) cot θ θ 7. a. sec( ) b. csc( 0 ) c. tan ( 60 ). d. ( ) cot 7 7 7 9. cos ( θ ), sec( θ ), csc( θ ), tan ( θ ), cot ( ) 7 7 θ 7. sn ( θ ), csc( θ ), sec( θ ), tan ( θ ), cot ( ). sn ( θ ), cos ( θ ), sec( θ ), csc( θ ), cot ( ) θ. a. sn(0.) 0.9 cos(0.) 0.9888 tan(0.) 0. b. sn() -0.768 cos() -0.66 tan().78 c. sn(70 ) 0.997 cos(70 ) 0.0 tan(70 ).77 d. sn(8 ) -0.97 cos(8 ) 0.0 tan(8 ) -. 7. sec( t ) 9. tan( t ). tan( t ). cot( ) t. ( sec( t )) θ Secton. sn ( A),cos( A), tan( A). sec ( A ),csc( A),cot( A). c, b 7, B 60. a.7, c.7, A 8 7. a 9.06, b.6, B 9..987 ft. 86.698 ft. 60.069 ft. 660. feet 7. 8.0 ft 9..07. 86.668

667 Chapter 6 Secton 6...... Amp:. Perod. Mdlne: y -. f ( t ) ( πt ) sn π cos t cos t 6. Amp:. Perod. Mdlne: y -. f ( t) sn t 7. Amp:. Perod π. Mdlne: y. f ( t) 8. Amp:. Perod π. Mdlne: y -. f ( t) ( ) 9. Amp:. Perod. Mdlne: y. f ( t) 0. Amp:. Perod. Mdlne: y -. ( ) π cos t π f t sn t π. Amp:, Perod, Shft: left, Mdlne: y. Amp:, Perod, Shft: rght, Mdlne: y 7. Amp:, Perod π, Shft: 7 rght, Mdlne: y

668. Amp:, Perod π, Shft: left, Mdlne: y -. Amp:, Perod, Shft: 6 left, Mdlne: y - 6. Amp: 8, Perod, Shft: left, Mdlne: y 6 7 π 7. f ( ) sn ( ) π 8. f ( ) sn ( ) π 9. f ( ) cos ( ) π 0. f ( ) cos ( ) π. D( t) 0 7 sn t π. D( t) 68 sn t. a. Amp:.. Mdlne: y.. Perod: 0 π b. h( t ).cos t. h meters c. ( ) 6. a. Amp: 7.. Mdlne: y 0.. Perod: 8 π b. h( t) 7.cos t 0. h meters c. ( ) 8 Secton 6.. II. I. Perod: π. Horzontal shft: 8 rght 7. Perod: 8. Horzontal shft: left 9. Perod: 6. Horzontal shft: left

669... π 7. f ( ) sec π 9. f ( ) csc. tan ( ).. ( ). csc( ) 7. csc( ) sec Secton 6. π π π... 6 7. π π π 9....98. -0.97 7..7 9. π 7.. 9. π. 6 9 0 7. 7

670 Secton 6.. π, 7 π π π., π 7π 9. π k, π k, where k s an nteger. 7 π, π π k π k, where k s an nteger 6 6. π π k, π π k, where k s an nteger 8 8. π π k, 7π π k, where k s an nteger π π 7. π k, π k, where k s an nteger 6 6 9. π π k, π π k, where k s an nteger. 8k, where k s an nteger. k, k, where k s an nteger 6 6. π 7. π π,. 0.7,.868 7..760,.66 9..,.00. 0.78,.09. 0.089, 0.7. 0.78,.6 7. 0.99,.0709 9..077,.69 Secton 6.. c 89, A 7.996, B.00. b 76, A 7.88, B 6.89 π 6sn. y ( ) ( ) π 7. D ( t ) 0 cos ( t ) π t 6 9. a. P ( t ) 9 cos. 7 degrees. 8..808697 7..0 months π 6 b. P ( t) 9 cos ( t )

67 Chapter 7 Secton 7.. 7 π, π 6 6. π π,. 8k, and 0 8k, where k s an nteger 7. π kπ and 7 π kπ, where k s an nteger 9. 0.9 0k and 8.66 0k, where k s an nteger π..8 k π and.9978 k, where k s an nteger π π.,, 0.6,.98 7.. 0.06,.,.97,.67 π π π π 7π π 0, π,, 9.,,, 6 6 6 6..8,.98,.,.00. π, 7π, π 6 6 π π. π,, 7..8,.60 9..0,.98, 0.7,.60..0, 6.0. π π π π 0,,, π,,. π π π π 7.,,, 6 6 π π., Secton 7... 6 6. 7. π π π 7π 0,,, π,, 9. 0, π,.,.0 6 6 9. sn ( ) cos ( ). cos( ) sn ( )

67. sec( t ). tan ( ) ( ) 7. 8 cos ( ) cos ( 7) 9. sn ( 8) sn ( ). cos( t ) cos ( t ). sn ( ) cos ( ). a. 7. b. π 0.7 k and 9. π k, where k s an nteger π 0.67 k, where k s an nteger π π. 7 7 k, π π 7 7 k π π, k, and π. 7 π π π π k, π k, and k π k, where k s an nteger. sn(.00) or sn( 0.988) 7. 9sn( 0.80 ) 9. 0.68,.8. 0.78,.88. tan ( 6t ), where k s an nteger Secton 7.. a. 7 b. c. 7. cos( 6 ). cos( ) 7. cos( 8 ) 9. sn ( 6 ). 0, π,.89,.86. 0.797,.9,.87,.

67. π π π π,,, 6 6 7. a. π π 8π 0π π 6π π,,,,,,0,, π 9 9 9 9 9 9 9. ( ) cos 0 8 8. cos( 6) cos( ) 6 6 6 6. cos ( ) cos ( ) cos( ) cos ( ). a. b. 7 c. 7 7 Secton 7. π sn 6. y ( ). Ampltude: 8, Perod: second, Frequency: Hz (cycles per second) π 0 P t 9 cos t t 60 6. ( ) π 6 t 7. P ( t ) cos t 900(.07) t 9. D( t) 0( 0.8) cos(6 πt). D ( t) 7( 0.9) t cos ( 8π t). a. IV b. III. y ( ) π 6 sn π 7. y sn 7 π 9. y 8 cos

67 Chapter 8 Secton 8. 60 0.6 70 0..0. 9.09 6 0. 6.9 6. 6 9.08 6.06. 7. 0 6.668.0 9. β 68, a.7, c 0.8. β 8.096, γ.90, c 6.9. Not possble.. β 6., γ 7.67, c 7.8 OR β.77, γ., c 97.8 60 0 8 76.0.898.980 7. 9. 0.0 0.60 6.870. c.066, α., β 86.. a.69, β 7.7, γ.. 77.6 7. 978. ft 9. Dstance to A: 6.8 ft. Dstance to shore:.69 ft. 9.0 m. 7.877 feet..6 km,.79 km 7. 77.96 ft 9. 7.9 mles. 6.7 cm. 7.7

67 Secton 8.. 7 7,. (, ). (, ) 7. (0,) 9.,. (.8,.78). (, 0.6 ). (,.9 ) 7. (,. ) 9. ( 69,.07 ). r sec( θ ).. r sn ( θ ) 9. 7. y y sn r cos r. y 7.. ( θ ) ( θ ) cos ( θ ) ( θ ) sn ( θ ) ( cos ) y 7. A 9. C. E. C. D 7. F 9.... 7. 9.

676 6. 6. 6. Secton 8.... 7. 8 9.. 8. 0 0. 0 7. 0 9... 8. 7. cos sn.8.78 9. ( ) ( )... 0 6e 7. π 9. e. 7.. 7 6e 0.0 e..67 e 9. π π e π. e. 0e e 6e 7π π e π.80 6.086. 0e 7. 9. 096 6. 0.788.90 6..77 0. 6..9, 0..09, 0.99 0.67, 0.99 0.67, 0.. 09 67.,,,,,

677 Secton 8..,. The vectors do not need to start at the same pont. v u 7., 9. 6.8,.. Magntude:, Drecton: 90. Magntude: 7.80, Drecton: 9.806. Magntude:.6, Drecton:. 7. Magntude:.8, Drecton: 9.80 9. Magntude: 7., Drecton: 6.0. u v,, u v, 8, u v,..6 mles, 7.76 deg N of E. 7 mles. 0.8 mles 7. F net, 9. Dstance:.868. Drecton: 86.7 North of West, or.6 West of North..9 degrees. 69 km/hr.. degrees. (0.08, 8.60) 7..80 degrees, relatve to the car s forward drecton

678 Secton 8.. 6 0 cos(7 ). 9. ( 0)( ) ()(0) 0. ( )( 0) ()() 0 7. cos 90 9. ()() ()( ) cos ( ). ()(8) ()() cos 0 8 (8)() ( )( ). 6. ( ). ( )( k ) (7)() 0, k - ( 6)() (0)( ) 7.,.6,0. 8 ( ) 9. The vectors are, and,. The acute angle between the vectors s.09.. pounds. 0 cos(0 ),0sn(0 ) 0, 0, so.796 ft-lbs. 0 0 cos( ) 0. 77 ft-lbs Secton 8.6. C. E. F 7. 9. (t) y(t)

679.. y. y y y y 7. e or y ln 9. y. y.. 9.. 7. ( ) t ( ) t t y t ( ) cos ( t) ( ) sn ( t) t y t t y t ( ) t ( ) t ( ) cos( t ) ( ) 6sn ( t) t y t. y ( ) 6 0 ( ) log ( ) ( ) t t t t 7.. y t ( t) t. y ( t) t ( t) t. y( t) t ( t) cos ( t ) 9. y ( t) sn ( t ) π ( t ) 0sn t 8sn ( πt). π y t 0 cos t 8 cos πt ( ) ( )

680 Chapter 9 Secton 9.. D. B. Vertces (0,±), mnor as endponts (±,0), major length 0, mnor length 7. Vertces (±,0), mnor as endponts (0,±), major length, mnor length 9. Vertces (±,0), mnor as endponts (0,±), major length 0, mnor length. Vertces (0,±), mnor as endponts (±,0), major length 8, mnor length 6. Vertces ( 0, ± ), mnor as endponts (,0) length ±, major length 6, mnor

68 y y y. 7. 9. 6 0 9 9. B. C. F 7. G 9. Center (,-), vertces (6,-) and (-,-), mnor as endponts (,0) and (,-), major length 0, mnor length. Center (-,), vertces (-,8) and (-,-), mnor as endponts (-,) and (-,), major length 0, mnor length. Center (-,0), vertces (-,) and (-,-), mnor as endponts (-,0) and (,0), major length 8, mnor length. Center (-,-), vertces (,-) and (-,-), mnor as endponts (-,0) and (-,-), major length 8, mnor length

68 7. Center (,-), vertces (,) and (,-7), mnor as endponts (6,-) and (-,-), major length, mnor length 8 ( ) y 9. ( ) ( ) ( y ). 6 6..08 feet. 7 feet 7. 6 feet 9. (±,0). (-6,6) and (-6,-). 6. y y. 9 6 7. y ( ) y 6. 6 8 6 y 9. 9 ( ) ( y ) 6. y 0 6 ( ) ( ) y 67. ( ) ( ) y 69. ( ) ( y ) 7. 89 0 y y 7.. feet 7. 77. 860.60 868. 9 79. The center s at (0,0). Snce a > b, the ellpse s horzontal. Let (c,0) be the focus on the postve -as. Let (c, h) be the endpont n Quadrant of the latus rectum passng through (c,0).

68 The dstance between the focus and latus rectum endpont can be found by substtutng (c,0) and (c,h) nto the dstance formula h ( ) ( y y ) ( ) ( 0) whch yelds h c c h h. So h s half the latus rectum dstance. Substtutng (c,h) nto the ellpse equaton to fnd h gves c a h. Solve for h yelds b c a c a c b b h b b b b a a a a a a b dstance of the latus rectum s h. a. so b b h a a. The Secton 9.. B. D. Vertces (±,0), transverse length, asymptotes y ±/,

68 7. Vertces (0, ±), transverse length, asymptotes y ±/, 9. Vertces (±,0), transverse length 6, asymptotes y ±/,. Vertces (0, ±), transverse length 8, asymptotes y ±/. Vertces (±,0), transverse length, asymptotes y ±, y y y. 7. 9.. 9 6 6 9 6. C. H 7. B 9. A y 6 6

68. Center (,-), vertces (6,-) and (-,-), transverse length 0, asymptotes y ±/(-)-. Center (-,), vertces (-,) and (-,-), transverse length 6, asymptotes y ±(). Center (,0), vertces (,0) and (-,0), transverse length, asymptotes y ±(-) 7. Center (-,), vertces (-,) and (-,0), transverse length, asymptotes y ±/() 9. Center (-,), vertces (0,) and (-,), transverse length, asymptotes y ±/()

686 ( ) ( ) y. ( y ) ( ). 9 6. Center (0,0), vertces (±/,0), transverse length /, asymptotes y ± 7. Center (-,), vertces (-,/) and (-,/), transverse length, asymptotes y ± / ( ) 9. Foc (0,±). Foc (,6) and (-,6). Foc (-,6) and (-,-). y 7. 6 9 y 9. y 6. 6 y 6 6 ( ) ( ) y 6. ( ) ( y ) 6. 6 9 y 69. 900 00.66 67. y 900 600

687 7. y 0 697 7. y 0 n the form can be put n the form y. y showng they are conjugate. y 0 can be put 7. 77. No matter the value of k, the foc are at ( ± 6,0) Secton 9.. C. A. Verte: (0,0). As of symmetry: y 0. Drectr: -. Focus: (,0) 7. Verte: (0,0). As of symmetry: 0. Drectr: y -/. Focus: (0,/) 9. Verte: (0,0). As of symmetry: y 0. Drectr: /6. Focus: (/6,0). Verte: (,-). As of symmetry:. Drectr: y -. Focus: (,). Verte: (-,). As of symmetry: -. Drectr: y. Focus: (-,). ( y ) ( ) 7. ( y ) ( ) 9. ( y ). At the focus, (0,).. feet above the verte.. 0. ft 7.,,,. (,8 ), (,8) 9. (, ), (, ), (, ), (, ).,,,,,,,. (-6.0766, 9.788007) (-6.0, 9.8)

688 Secton 9.. e. Drectr:. Hyperbola.. e /. Drectr: y -/. Ellpse.. e. Drectr: -/. Parabola. 7. e /7. Drectr:. Ellpse. 9. 0 r. cos( θ ) r, or sn( θ ) r sn( θ ). r sn( θ ). Hyperbola. Vertces at (-9,0) and (-,0) Center at (-6,0). a. c 6, so b 7 ( 6) y 9 7 7. Ellpse. Vertces at (0,) and (0,-6) Center at (0,-.). a., c., b 8 (.) y 8 0. 9. Parabola. Verte at (,0). p. y ( ). a) y L F d(q,f ) Q(,y) d(q,f ) (c,0) F (a,0) L p

689 b) d ( Q, L ) ( p) p, d( Q, L ) p c) d ( Q F ) ed( Q, L ) e( ). d( Q F ) ed( Q, L ) e( p ), p d) d( Q F ) d( Q, F ) e( p) e( p ) ep,,, a constant. e) At Q (a, 0), d ( Q, F ) a ( c) a c, and d( Q F ) a c d( Q F ) d( Q, F ) ( a c) ( a c) a, Combnng wth the result above, f) d( Q, F ) a c, and d( Q, L ) p a d( Q, F ) a c e, so e. d( Q, L ) p a ep a, so a c e( p a). Usng the result from (e), a a c e a e a c a ea c e a,, so a p. e

690