EarthQuakes. When the. 20 April 2012 Professional Surveyor Magazine

Similar documents
The Impact of the 2010 Darfield (Canterbury) Earthquake on the Geodetic Infrastructure in New Zealand 1

NGIAs' roles in successful disaster response

Case Study of Japan: Crustal deformation monitoring with GNSS and InSAR

How to communicate Cascadia Subduction Zone earthquake hazards

How GNSS CORS in Japan works for geodetic control and disaster mitigations

Earthquakes and Faulting

GEO-VIII November Geohazard Supersites and Natural Laboratories Progress Report. Document 9

What are the social, technical, environmental and economic benefits and opportunities of accessing and sharing geodetic data?

SCIGN science report & GPS fault slip sensors

Earthquake Hazards. Tsunami

Three Fs of earthquakes: forces, faults, and friction. Slow accumulation and rapid release of elastic energy.

Report for 15th PCGIAP Meeting at 18th UNRCC-AP Working Group 1 Regional Geodesy

Seismic Activity and Crustal Deformation after the 2011 Off the Pacific Coast of Tohoku Earthquake

ESTIMATES OF HORIZONTAL DISPLACEMENTS ASSOCIATED WITH THE 1999 TAIWAN EARTHQUAKE

Earthquake Hazards. Tsunami

I. Locations of Earthquakes. Announcements. Earthquakes Ch. 5. video Northridge, California earthquake, lecture on Chapter 5 Earthquakes!

Earthquake Hazards. Tsunami

Geodesy. orientation. shape. gravity field

Low-Latency Earthquake Displacement Fields for Tsunami Early Warning and Rapid Response Support

Earthquakes. Building Earth s Surface, Part 2. Science 330 Summer What is an earthquake?

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating.

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College

Lab 9: Satellite Geodesy (35 points)

Case study of Japan: Reference Frames in Practice

Lecture Outline Wednesday-Monday April 18 23, 2018

Seismogeodesy for rapid earthquake and tsunami characterization

A Broad View of Geospatial Technology & Systems

CORS Network and Datum Harmonisation in the Asia-Pacific Region. Richard Stanaway and Craig Roberts

Earthquakes Earth, 9th edition, Chapter 11 Key Concepts What is an earthquake? Earthquake focus and epicenter What is an earthquake?

Earthquake Investigation

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

Operational Aspects of GNSS CORS What is a GNSS CORS system used for?

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena

LOCAL TSUNAMIS: CHALLENGES FOR PREPAREDNESS AND EARLY WARNING

Earthquakes Chapter 19

Military Geographic Institute

Magnitude 6.5 OFFSHORE NORTHERN CALIFORNIA

Magnitude 7.9 SE of KODIAK, ALASKA

Title. Author(s)Heki, Kosuke. CitationScience, 332(6036): Issue Date Doc URL. Type. File Information. A Tale of Two Earthquakes

The Earthquake Cycle Chapter :: n/a

12/07/2013. Apparent sea level rise and earthquakes

TEGAM s Connection to the EarthScope Project

Tsunami Physics and Preparedness. March 6, 2005 ICTP Public Information Office 1

CEETEP Related Digital Resources

Lessons Learned from Past Tsunamis Warning and Emergency Response

Magnitude 6.9 GULF OF CALIFORNIA

GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise

Tsunami Research and Its Practical Use for Hazard Mitigation. Hiroo Kanamori Seismological Laboratory, California Institute of Technology

CHILEAN PART OF SIRGAS REFERENCE FRAME, REALIZATION, ADOPTION, MAINTENANCE AND ACTUAL STATUS. Geodesy for Planet Earth IAG 2009, Buenos Aires

What is an Earthquake?

Report of the Working Group 2 Data Sharing and Integration for Disaster Management *

Earthquakes. Photo credit: USGS

The Science and Policy of Natural Hazards

Earthquake Source. Kazuki Koketsu. Special Session: Great East Japan (Tohoku) Earthquake. Earthquake Research Institute, University of Tokyo

Report of PCGIAP to the 18 th United Nations Regional Cartographic Conference for Asia and the Pacific (UNRCC-AP) for the period

Usually, only a couple of centuries of earthquake data is available, much shorter than the complete seismic cycle for most plate motions.

Module 1, Investigation 3: Predicting Eruptions

Downtown Anchorage Seismic Risk Assessment & Land Use Regulations to Mitigate Seismic Risk

International Union of Geodesy and Geophysics. Resolutions

Country Report On Sdi Activities In Singapore ( )

Overview. Tools of the Trade. USGS Decision-Making Tools for Pre-Earthquake Mitigation and Post-Earthquake Response

Sendai Earthquake NE Japan March 11, Some explanatory slides Bob Stern, Dave Scholl, others updated March

Magnitude 7.0 N of ANCHORAGE, ALASKA

Lessons from the 2004 Sumatra earthquake and the Asian tsunami

Chapt pt 15 er EARTHQUAKES! BFRB P 215 ages -226

Agency Vision and Decision- Maker Needs: A USGS Perspective

GEORED Project: GNSS Geodesy Network for Geodynamics Research in Colombia, South America. Héctor Mora-Páez

Wainui Beach Management Strategy (WBMS) Summary of Existing Documents. GNS Tsunami Reports

Indian Ocean Tsunami Warning System: Example from the 12 th September 2007 Tsunami

ADDITIONAL RESOURCES. Duration of resource: 30 Minutes. Year of Production: Stock code: VEA Resource written by: Andrew Clarke BA Dip Tchg

Cascadia megathrust earthquakes: reducing risk through science, engineering, and planning

GEODETIC NETWORK OF SAUDI ARABIA AND FIDUCIAL STATIONS. GFN OF Saudi Arabia in Based on ITRF2000 Datum

Students will be able, using GIS, to locate the largest and most destructive earthquakes;

Earthquakes and Tsunamis

New USGS Maps Identify Potential Ground- Shaking Hazards in 2017

Running Head: JAPANESE TSUNAMI 1. Geological Perspective of the Japanese Tsunami

Building earthquake early warning for the west coast. Ken Creager Professor of Earth and Space Sciences University of Washington

This article is provided courtesy of the American Museum of Natural History.

Wireless Networks in Geophysical Monitoring

the IRIS Consortium Collaborative, Multi-user Facilities for Research and Education Briefing NSF Business Systems Review September 9, 2008

Real time Monitoring System for Earthquakes and Tsunamis (DONET)

STRESS IN THE SYSTEM? INSIGHTS INTO MODELLING IN THE WAKE OF TOHOKU

Warkworth geodetic station as a potential GGOS core site in New Zealand

Country Report on SDI Activities in Singapore *

Complete Weather Intelligence for Public Safety from DTN

Interpretive Map Series 24

Guidelines for Site-Specific Seismic Hazard Reports for Essential and Hazardous Facilities and Major and Special-Occupancy Structures in Oregon

Magnitude 7.6 SOUTH OF IQUIQUE, CHILE

Real Time Monitoring System for Megathrust Earthquakes and Tsunamis - Cabled Network System and Buoy System in Japan -

Deformation cycles of great subduction earthquakes in a viscoelastic Earth

San Andreas Movie Can It Happen?

CSU Student Research Competition Summary Submission

Strategic Framework on Geospatial Information and Services for Disasters Relevance for the Americas Region

Earthquakes. Pt Reyes Station 1906

Reference frames and positioning

Establishment and Operation of a Regional Tsunami Warning Centre

Magnitude 7.7 QUEEN CHARLOTTE ISLANDS REGION

J M MIRANDA UNIVERSITY OF LISBON THE USE OF REMOTE SENSING FOR EARTHQUAKE RISK ASSESSMENT AND MITIGATION

Taiwan, (Sathiyam.tv)

crustal structure experiment beneath Wairarapa - Wellington area: results from SAHKE

Transcription:

When the EarthQuakes Background: A UNAVCO team installs a GNSS monitoring station in Alaska. Stations operate unattended and send data to regional connection points via radio datalinks courtesy of Michael Jackson, Trimble. Inset: UNAVCO field engineer Peter Gray installs an EarthScope PBO reference station on Mt. St. Helens in Washington; Mt. Rainier is in the background courtesy of Mike Jackson. 20 April 2012 Professional Surveyor Magazine www.profsurv.com

Background: This digital point-cloud reconstruction of a tyrannosaurus rex ( Stan ) at the Manchester Museum of the University of Manchester, United Kingdom was created in LFM software. For more than two decades, GNSS has played a central role in understanding the movement of the Earth s surface. Today, GNSS helps plan, manage, and respond to seismic emergencies. By John Stenmark, LS The U.S. Geological Survey (USGS) reported that in 2011 we experienced more than 2,420 earthquakes of magnitude 5.0 or larger worldwide. That s 10% more than in 2010 and more than 30% higher than the average over the previous 10-year period. At the same time, global population has increasingly concentrated in urban centers, many of which are located in known hazard zones. Aging infrastructure in many urban centers increases the potential impact of any hazardous event. To mitigate the risk, scientists are using GNSS to develop an increased understanding of the motion of Earth s tectonic plates. This knowledge enables emergency managers to reduce damage and improve emergency response. Measuring Tectonic Motion Geophysicists describe three types of seismic motion related to the Earth s plates. Interseismic motion is the ongoing slow, elastic movement of plates that occurs between large earthquakes, without movement on the fault itself. Coseismic motion, caused by excessive stress from this movement, is visible in the shaking and rapid displacement of the surface during an earthquake and its aftershocks. Following an earthquake event, the fault experiences postseismic motion, in which the stresses around the fault are redistributed or released as a result of the changes caused by the quake. In some cases, postseismic surface motion can be more than 1 cm (0.03 ft) per day as the fault settles into its new normal state. Then the interseismic motion resumes, and the cycle repeats. A young Chilean views the damage from a 2010 earthquake to Route P-22 west of Arauco courtesy of Leonardo Perez (IGM). For decades, researchers have used seismic sensors to detect the Earth s surface motion. In concept, a seismometer consists of a housing attached to the earth. Inside the housing, a mass is suspended on a spring. When the earth moves, the housing moves with it. But the mass, isolated by the spring, tends not to move. This enables the seismometer to measure the velocity of the ground relative to the stationary mass. Different seismometers are calibrated to detect different types of motion and are especially useful at higher frequencies where the earth is shaking at 1 Hz or faster. While seismometers excel at measuring the magnitude and frequency of even tiny movements, they can t determine the overall direction or distance moved, and they tend to stop working or saturate during very large displacements. www.profsurv.com Professional Surveyor Magazine April 2012 21

That s where GNSS comes in. GNSS can measure the long, slow interseismic motion with high precision. It can also capture the rapid changes that occur during the coseismic earthquake event. According to USGS geophysicist Ken Hudnut, these GNSS capabilities make it a valuable tool in seismic studies. The biggest things we ve learned from GNSS are in the areas where there is really no other suitable sensor technology, Hudnut said. For plate tectonic movements, and for the buildup of strain before an earthquake and the postseismic movement after an earthquake occurs, GNSS is unique. Geophysicists measure with GNSS in two ways. They use campaign GNSS to periodically measure designated points over long periods. For example, a team will visit a point once per year to collect hours (or days) of static GNSS observations. With this approach, it is possible to measure interseismic motion at a relatively large number of points in a given area over a number of years. This provides a detailed picture of the surface motion near a known fault and helps scientists estimate the stresses accumulating deep underground. Immediately after an earthquake, teams attempt to recover and remeasure as many campaign points as possible. The data lets them develop an accurate picture of the coseismic motion. Timely measurement is important, as postseismic motion provides important clues about the behavior of the fault. Following an earthquake, scientists want to measure as many campaign points as possible before the coseismic motion is masked by postseismic movement. To facilitate this rapid response, UNAVCO (Boulder, Colorado), the University of Hawaii, The Ohio State University, and others have developed GNSS campaign kits designed for rapid deployment to earthquake zones. (In response to the 2010 Maule earthquake in Chile, UNAVCO supplied 25 campaign kits to research teams, and Trimble donated nine Trimble NetRS reference stations.) The campaign kits contain dual-frequency, survey-grade GNSS receivers with geodetic antennas as well as power supplies and communications equipment to support continuous, unattended operation. These systems were coupled with rapidly deployable monuments and power and communications systems developed at the University of Hawaii and Ohio State. The equipment allowed researchers from these organizations to respond to the earthquake within days. The second method used by geophysicists employs continuously operating reference stations (CORS) that capture and record GNSS data. A CORS site includes a permanently installed GNSS receiver together with power and communications equipment. Data from multiple CORS can be collected and processed to provide precise information on the continuous motion of the GNSS sensors. In some regions, scientific organizations have established CORS networks for research in geophysical, atmospheric, or other sciences. In other locales, governments or private firms install CORS to provide reference frames for positioning needs in surveying, construction, agriculture, and other commercial applications. In many areas, multiple CORS are connected into a real-time network (RTN) that receives a continuous stream of data from the individual CORS. The RTN combines the information from the multiple CORS to compute relative positions of each CORS, updating the positions as often as several times each second. This rapid update allows the RTN to capture coseismic shaking in real time. The RTN also distributes reference information that enables individual GNSS rovers to compute their own positions with high precision. The CORS stations serve two functions. For the geophysicists, they can measure all three types of seismic motion, thus providing a detailed picture of movement before, during, and after an earthquake. The second function of CORS is to provide geodetic reference points that can be used by scientists, surveyors, and emergency responders following a disaster. While these three groups have different functions and goals, they all require an accurate reference frame for their positioning operations. Complementary Approaches In New Zealand, John Beavan is a crustal dynamics geophysicist at GNS Science, a Crown Research Institute. Beavan, who has used GNSS for decades, says that the campaign and CORS approaches are complementary. In areas of low strain, campaign GNSS is sufficient to take measurements over periods of years. It s an accurate and cost-effective way to provide precise data on the 22 April 2012 Professional Surveyor Magazine www.profsurv.com

slow surface motion. Seismically active or densely populated areas benefit from CORS observations. Beavan said that Japan stands out in its GNSS monitoring; Japan s Geospatial Information Authority is considered one of the best GNSS monitoring networks in the world. Taiwan and western North America have well-developed networks as well. In China, the Crustal Movement Observation Network of China (CMONOC) has more than 260 monitoring stations in place using Trimble NetR8 GNSS reference receivers. When the magnitude 9.0 earthquake struck eastern Japan in March 2011, CMONOC receivers, as far as 600 mi (1,000 km) from the epicenter, revealed local coseismic displacements of 0.02 to 0.12 ft (5 to 36 mm). Other regions, including Indonesia and parts of South America, have nascent networks in place, including some real-time networks. But to better protect their populations and economic infrastructures, these areas need to increase the number of permanent GNSS stations. Science and the Surveyor CORS networks are often integrated with scientific and commercial applications. In Washington, the Washington State Reference Network (WSRN) Above: Kirby MacCleod of GNS Science operates a GNSS receiver during a measurement campaign in Fiordland; the data was used for measuring the coseismic deformation of the Mw 7.8 Dusky Sound earthquake in July 2009. Opposite: Vectors indicate horizontal coseismic displacements in China and Japan from the March 2011 M9.0 earthquake data for green vectors courtesy of GSI, solutions courtesy of the ARIA team at Caltech and JPL, graph courtesy of CMONOC. is a statewide cooperative made up of more than 100 GPS and GNSS reference stations. WSRN uses Trimble VRS technology to provide real-time positioning services for surveying and other highprecision positioning users. The WSRN receivers also form part of the Pacific Northwest Geodetic Array (PANGA), a network of approximately 350 CORS in the Pacific Northwest managed by the Geodesy Lab at Central Washington University. PANGA data is available to surveyors and other commercial users. Similarly, UNAVCO s Plate Boundary Observatory (PBO) operates more than 1,100 GNSS reference stations in a network concentrating on 11 western states plus Alaska and Puerto Rico. PBO provides free access to PBO data products. Back in New Zealand, John Beavan explained how GNS Science and New Zealand s Earthquake Commission established the GeoNet project to provide a modern geological hazard monitoring system. GeoNet is a network of geophysical instruments (including GNSS, seismometers, and other geophysical instruments) and specialized software to detect, analyze, and respond to seismic activity. The GNSS network is made up of more than 180 Trimble NetR9 and NetRS GNSS reference receivers. GNS Science operates GeoNet in collaboration with Land Information New Zealand (LINZ), the national department for geodetic and cadastral surveys. LINZ uses GNSS data from roughly 40 Geo- Net CORS as part of its PositioNZ control network, making the data available for post-processed and real-time positioning. Additionally, ibase, a privatelyoperated RTN, uses data from PositioNZ and Trimble VRS 3 Net App to provide real-time, centimeter-level positioning in 16 regions throughout the country. GeoNet, LINZ, and ibase cooperate to address scientific, engineering, and humanitarian needs, and GeoNet played a key role in emergency response to the 2010 and 2011 quakes. The GNSS network also helped determine the extent of horizontal ground movement, uplift, and subsidence resulting from the quakes. (For more on the New Zealand quakes, see PSM s March 2012 feature.) www.profsurv.com Professional Surveyor Magazine April 2012 23

Ken Hudnut takes photos of the fault scarp in Baja California in Aug. 2010 following the El Mayor - Cucapah earthquake courtesy of Prof. John Fletcher, CICESE. Earthquakes in California Over the past decade, the increasingly dense GNSS networks have enabled deeper understanding of seismic activity on the faults and plate boundaries. Researchers combine GNSS data with historical reports of past earthquakes to make calculations on stresses accumulating on the faults. From there, it s possible to develop estimates on the strength of future quakes. These estimates, often presented as seismic hazard maps, indicate the amount of surface shaking from an earthquake at various probability levels. But there is no way to predict when or where an earthquake will occur with any useful certainty. The best we can do is to understand the risk and be prepared for the unexpected. An agency in California is doing just that. The California Emergency Management Agency (Cal EMA) is tasked to enhance safety and preparedness against natural disasters. California faces threats from multiple natural sources including earthquakes, wildfires, landslides, and tsunamis. Cal EMA works closely with emergency managers, scientists, and engineers to understand risks and plan for emergency response. With hundreds of CORS providing real-time data, California is one of the most closely monitored locations on the planet. Cal EMA program deputy Kate Long said that the seismic research helps reduce casualties and damage from earthquakes. It s no accident that Cal EMA s Earthquake and Tsunami (ET) program office is housed at the California Institute of Technology (Caltech), alongside the USGS and other seismic experts. We need the information for planning, Long said. If the scientists are seeing areas of significant displacement, we are interested in that. Jim Goltz, who recently retired as ET program manager and still works at the Caltech facility, described how a group of nine scientists, called the California Earthquake Prediction Evaluation Council (CEPEC), uses the information. Any time there is anomalous seismic activity in the state, Cal EMA can consult with CEPEC to look at the data and consider the risks. When an earthquake does strike, Cal EMA increases its reliance on GNSS data. Long and Goltz are part of the emergency mobilization center at Caltech where they see the seismic and GNSS information as soon as it is available. Their job is to translate the science into actionable data for decision makers. The response from the geodetic network has its greatest value in the first few minutes and hours after an event, Goltz said. During an earthquake, the largest motion may not occur along the fault. Landslides, subsidence, and liquefaction can produce larger displacements than those observed along a fault line. Real-time GNSS networks can indentify the motion and deliver the data to emergency teams. That information is used to make decisions on deployment of emergency resources. For example, Cal EMA can direct reconnaissance teams to specific locations to check for damage to lifelines such as water and gas mains, roadways, and communications facilities. In the first few hours, we need to cut through the confusion, Long said. We need to establish ground truth in the affected areas. Then we can pinpoint and deploy resources to the most acute problems. A Stable Future Both Goltz and Beavan look to an increased role of GNSS in earthquake studies and mitigation. One promising application uses GNSS to issue early warnings for tsunamis. A series of GNSS sensors along a coastline can detect an earthquake offshore, even it if isn t felt by local residents. The GNSS data can let officials issue alerts quickly after a tsunami-generating quake, giving residents valuable time to move to higher ground. While the knowledge base of plate tectonics and seismic activity continues to grow, it remains impossible to predict when or where an earthquake will strike. There is no certainty, Beavan said. The best we can do is to say there is an x percent probability that a magnitude y quake will occur in a certain geographic region in the next n years. While this seems quite nebulous, it is a big improvement over years past. We can t predict earthquakes, but we can certainly be better prepared for them. See our website for a more detailed version of this article that includes information on the history of earthquake measurement and specific efforts around the globe to respond to earthquakes and other disasters using mapping and monitoring technology. JOHN STENMARK, LS, is a writer and consultant working in the AEC and technical industries. He has over 20 years experience in applying advanced technology to surveying and related disciplines. 24 April 2012 Professional Surveyor Magazine www.profsurv.com