F.Y. Diploma : Sem. II [CE/CR/CS] Applied Mathematics

Similar documents
F.Y. Diploma : Sem. II [AE/CH/FG/ME/PT/PG] Applied Mathematics

HOMEWORK 6 - INTEGRATION. READING: Read the following parts from the Calculus Biographies that I have given (online supplement of our textbook):

S.E. Sem. III [EXTC] Applied Mathematics - III

Vidyalankar. 1. (a) Y = a cos dy d = a 3 cos2 ( sin ) x = a sin dx d = a 3 sin2 cos slope = dy dx. dx = y. cos. sin. 3a sin cos = cot at = 4 = 1

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead)

LOCUS 1. Definite Integration CONCEPT NOTES. 01. Basic Properties. 02. More Properties. 03. Integration as Limit of a Sum

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3

Suggested Solution for Pure Mathematics 2011 By Y.K. Ng (last update: 8/4/2011) Paper I. (b) (c)

Functions, Limit, And Continuity

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

Transient Solution of the M/M/C 1 Queue with Additional C 2 Servers for Longer Queues and Balking

Special Functions. Leon M. Hall. Professor of Mathematics University of Missouri-Rolla. Copyright c 1995 by Leon M. Hall. All rights reserved.

Integration and Differentiation

1. Six acceleration vectors are shown for the car whose velocity vector is directed forward. For each acceleration vector describe in words the

Review Answers for E&CE 700T02

N! AND THE GAMMA FUNCTION

CITY UNIVERSITY LONDON

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of

Department of Mathematical and Statistical Sciences University of Alberta

Moment Generating Function

Chapter 5: The pn Junction

NOTES ON BERNOULLI NUMBERS AND EULER S SUMMATION FORMULA. B r = [m = 0] r

Calculus BC 2015 Scoring Guidelines

BINOMIAL THEOREM OBJECTIVE PROBLEMS in the expansion of ( 3 +kx ) are equal. Then k =

Reinforcement Learning

Linear System Theory

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

ECE-314 Fall 2012 Review Questions

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

12 th Mathematics Objective Test Solutions

Class 36. Thin-film interference. Thin Film Interference. Thin Film Interference. Thin-film interference

Section 8 Convolution and Deconvolution

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

EXERCISE - 01 CHECK YOUR GRASP

Math 2414 Homework Set 7 Solutions 10 Points

Boundary Value Problems of Conformable. Fractional Differential Equation with Impulses

S n. = n. Sum of first n terms of an A. P is

Pure Math 30: Explained!

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

Fourier transform. Continuous-time Fourier transform (CTFT) ω ω

ECE 636: Systems identification

National Quali cations SPECIMEN ONLY

Review for the Midterm Exam.

1 Notes on Little s Law (l = λw)

Solutions to selected problems from the midterm exam Math 222 Winter 2015

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

Clock Skew and Signal Representation

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

A new approach to Kudryashov s method for solving some nonlinear physical models

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

1973 AP Calculus BC: Section I

Approximations of Definite Integrals

SUMMATION OF INFINITE SERIES REVISITED

The Eigen Function of Linear Systems

ECE 350 Matlab-Based Project #3

( ) ( ) ( ) ( ) (b) (a) sin. (c) sin sin 0. 2 π = + (d) k l k l (e) if x = 3 is a solution of the equation x 5x+ 12=

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

Another Approach to Solution. of Fuzzy Differential Equations

K3 p K2 p Kp 0 p 2 p 3 p

ON SOME FRACTIONAL PARABOLIC EQUATIONS DRIVEN BY FRACTIONAL GAUSSIAN NOISE

ON BILATERAL GENERATING FUNCTIONS INVOLVING MODIFIED JACOBI POLYNOMIALS

Physics 232 Exam I Feb. 13, 2006

INVESTMENT PROJECT EFFICIENCY EVALUATION

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

Physics 232 Exam I Feb. 14, 2005

TEST-12 TOPIC : SHM and WAVES

Chemical Engineering 374

Limit of a function:

Forced Oscillation of Nonlinear Impulsive Hyperbolic Partial Differential Equation with Several Delays

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

MTH 146 Class 11 Notes

DYNAMIC ELECTROMECHANIC CHARACTERISTIC OF DC ELECTROMAGNETS WITH NON-NULL STARTING FLUX

EXERCISE a a a 5. + a 15 NEETIIT.COM

Notes 03 largely plagiarized by %khc

Add Maths Formulae List: Form 4 (Update 18/9/08)

Math1242 Project I (TI 84) Name:

F D D D D F. smoothed value of the data including Y t the most recent data.

14.02 Principles of Macroeconomics Fall 2005

Problems and Solutions for Section 3.2 (3.15 through 3.25)

Harmonic excitation (damped)

L-functions and Class Numbers

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

Horizontal product differentiation: Consumers have different preferences along one dimension of a good.

CONTROL SYSTEMS. Chapter 3 : Time Response Analysis

Comparison between Fourier and Corrected Fourier Series Methods

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

Graphing Review Part 3: Polynomials

King Fahd University of Petroleum & Minerals Computer Engineering g Dept

STK4080/9080 Survival and event history analysis

EE757 Numerical Techniques in Electromagnetics Lecture 9

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

6.003: Signals and Systems Lecture 20 April 22, 2010

Multiplicative Versions of Infinitesimal Calculus

Transcription:

F.Y. Diplom : Sem. II [CE/CR/CS] Applied Mhemics Prelim Quesio Pper Soluio Q. Aemp y FIVE of he followig : [0] Q. () Defie Eve d odd fucios. [] As.: A fucio f() is sid o e eve fucio if f() f() A fucio f() is sid o e odd fucio if f() f() Q. () If f() + 5, fid f(o) + f() [] As.: Give f() + 5 f(0) (0) (0) + 5 5 f() () () + 5 5 f(0) + f() 5 + 5 0 f(0) + f() 0 Q. (c) Fid if y e [] As.: y e Diff wr e d ( ) + d () [use produc rule] e + () e + Q. (d) Evlue si [] As.: si si si d () (cos ) (cos ). cos + cos cos + si + c Q. (e) Evlue [] +cos As.: cos cos sec + c Q. (f) Fid he re ouded y he curve y, is d he ordies, [] As.: A y - -

Vilkr : F.Y. Diplom Applied Mhemics 8 80 0 sq. uis Q. (g) Se rpezoidl rule of umericl iegrio. [] As.: Trpezoidl rule [ mrks] The rpezoidl rule is umericl mehod h pproimes he vlue of defiie iegrl. We cosider he defiie iegrl. f We ssume h f() is coiuous o (, ) d we divide [, ] io suiervls of equl legh. usig he + pois 0, +, +,..., + We c compue he vlue of f() hese pois. y 0 f( 0 ), y f( ), y f( ),. y f( ) rpezoidl rule formul f y y y... y y 0 Q. Aemp y THREE of he followig : [] Q.() Fid if + y y + 5y 6 0 (, ) [] As.: Fid if + y y + 5y 6 0 (, ) Give y y + 5y 6 0 Diff w.r.. + y y() + 5 0 0 + y y + 5 0 (y + 5) y + y y5 A (, ) () () () () 5 (,) 8 (,) Q. () If cos, y si, fid π As.: cos y si diff. w.r.. diff. w.r.. d d d ( cos ) d d d ( si ) [] - -

Prelim Quesio Pper Soluio d d (cos ) d d (si ) [ + mrk] (cos ) (si ) (si ) (cos ) (Chi Rule) (Chi Rule) (cos ) si (si ) cos By prmeric fucio / d / d (si ) cos (cos ) si si cos si cos ( / ) ( / ) Q. (c) If I d I e he curres d R d R e wo resisces i prllel o he ol curre I I + I which is cos. The he he developed i circui is give y H IR + IR. Show h he developed i circui is J miimum if I R I R where R, R,, J re coss. [] As.: Give H (I R I R ) J H I R (I I ) R J ( I I + I Diff. w.r.. I dh di J (I R + (I I ) () R ) I I I ) J ( I R IR + I R ) Diff. w.r.. I dh di J (R + R ) Pu dh di 0 J (I R IR + I R ) 0 I R IR + I R 0 I R + I R IR I R IR I R (I I ) R I R I R dh Pu I R I R i : di J (R + R ) > 0 He is miimum if I R I R Q. (d) A em is e i he form of he curve y si si. fid he rdius of [] curvure of π As.: y si si cos cos si si - -

Vilkr : F.Y. Diplom Applied Mhemics Pu cos cos 0 () si si Rdius of curvure / () / 5 5 5 5 uis Q. Aemp y THREE of he followig : [] Q.() Fid he equio of ge & orml o he curve + y + y 5 (, ) [] As.: + y + y 5 + y, + + y 0 + y + y 0 + y y ( + y) y y y A d y m slope () () () () Equio of ge is y y m( ) y ( ) y + + y 0 Equio of orml is y y m ( ) 5 5 y ( ) y y y 0 Q. () If e y y prove h log y log y -. [] As.: Give : e y y Tkig logrihm y log y () Diff. w.r.. + log y () y - -

Prelim Quesio Pper Soluio y y y y y + log y log y log y log y log y y y From () y log y log y logy logy logy log y (log y) (logy) logy Q. (c) Fid if y si + ( ) [] As.: Le u si, v ( ) y u + v () Diff. w.r.. du + dv () u si Tkig logrihm log u si log Diff. w.r.. du u si + (log ) (cos ) du u si log cos du si si log cos () v ( ) kig logrihm log v log ( ) diff. w.r.. dv V sec + log ( ) () dv v sec log( ) dv sec ( ) log ( ) () From (), (), () si si (log ) (cos ) + ( ) sec log ( ) - 5 -

Vilkr : F.Y. Diplom Applied Mhemics - ( ) Q. (d) Evlue : I + [] ( ) As.: I Pu I + c ( ) + c Q. Aemp y THREE of he followig : [] e ( + ) Q.() Evlue : I cos ( e ) [] e ( ) As.: I cos (e ) Pu e e + e (e + e ) e ( + ) I cos sec + c (e ) + c Q. () Evlue : 5+cos [] As.: Pu cos I 5 55 9 + c + c - 6 -

Prelim Quesio Pper Soluio - Q. (c) Evlue :. [] As.: Le I Iegrig y Prs I (u) I d ( A (v) ) + c ( + ) + c I ( + ) + c cos Q. (d) ( + si ) ( + si ) [] As.: Pu si cos cos ( ) ( ) ( ) ( ) A + B A ( + ) + B ( + ) Pu A() A Pu B() B log ( + ) log ( + ) + c log ( + si ) log ( + si ) + c Q. (e) Evlue: As.: Le I π/ π/6 + co / /6 co / 6 cos si [] - 7 -

Vilkr : F.Y. Diplom Applied Mhemics I Usig propery I I / si /6 si cos () f() / /6 f( ) si ( / ) si ( / ) cos( / ) / cos /6 cos si () Addig () d () I / si cos cos si /6 I / /6 / /6 I I 6 6 Q.5 Aemp y TWO of he followig : [] Q.5() Fid he re ewee he prol y d y [] As.: y y Pu y i y 6 ( 6) 0 0 or y Y y y A (y y ) 0 / / 0 0 0 6 sq. uis. - 8 -

Prelim Quesio Pper Soluio Q.5 () (i) Form Differeil Equio for y A si m + B cos m [] Y A si m + B cos m diff wr As.: y A si m + B cos m diff. w.r.. A cos m m + B ( si m) m Diff w.r.. A si m m + B(cos m) m m (A si m + B com ) m y + m y 0 Q.5 () (ii) Solve + y si As.: Comprig wih py Q p, Q si Boh re fucios oly. Give D.E. is Lier D.E. I.F. p e e p e log Soluio is Y (I.F.) Q (IF) + c y (). si + c y ( cos ) () (cos ) + c y cos + si + c Q.5 (c) The quiy of chrge of couloms psses hrough coducig wire durig smll iervl of me sec is give y dq i, where i is curre i mpere. If i 0 si 00 d h q 0, 0. Fid he chrge ime As.: dq i dq 0 si 00 dg 0 si 00 Iegrig dg 0 si 00 q 0 ( cos00) 00 q cos00 + c 0 whe q 0, 0 [] [6] + c - 9 -

Vilkr : F.Y. Diplom Applied Mhemics 0 cos 0 + c 0 0 0 + c 0 + c 0 c 0 cos00 q + 0 0 q ( cos 00 ) 0 couloms Q.6 Aemp y TWO of he followig : [] Q.6() (i) Usig Trpezoidl rulepproime vlue of give y, clcule he [] 0 0 y 0..7 As.: Usig Trpezoidl Rule Y h/ (y 0 + (y + y + y ) + y ) Y / (0 + ( +. +.7) + ) Y / (0 + (.6) + ) Y 5.6 Soluio By Trpezoidl Rule is 5.6 5 Q.6 () (ii) Usig Simpso s oehird rule evlue y usig he followig le. 5 y 0 50 70 80 00 As.: 5 y 0 50 70 80 00 Usig Simpsos Rule Y h/ (y 0 + (y + y ) + (y ) + y ) Y / (0 + (50 + 80) + (70) + 00) Y / (0 + (0) + (70) + 00) Y 56.6667 Soluio By Simpso s / Rule is 56.6667 [] Q.6 () Usig Simpso s rd rule fid he re uder he curve y si from 0 o [6] kig π 6 s he commo wih of he srip. Compre he resul wih he ec re. As.: f () 0 0.0000 0.5000 6 0.8660.0000 0.8660 5 0.5000 6 0.0000 [ mrks] - 0 -

Prelim Quesio Pper Soluio Usig Simpsos / Rule Y h/ (y 0 + (y + y + y 5 ) + (y + y ) + y 6 ) Y 0.56/ (0 + (0.5 + + 0.5) + (0.8666 + 0.866) + 0) Y 0.56/ (0 + () + (.7) + 0) Y.00085 Soluio By Simpso s / Rule is.00085 By cul iegrio : 0 0 si cos (cos cos 0) (cos 0 cos ) () Boh vlues re sme upo hree deciml plces. Q.6 (c) Usig Simpso s 8 h rule o fid As.: f () 0.0000 0. 0.99 0. 0.9608 0. 0.99 0. 0.85 0.5 0.7788 0.6 0.6977 0.6 0 - e y kig seve ordies. [6] Usig Simpso s 8 Rule h/8 (y 0 + (y ) + (y + y + y + y 5 ) + y 6 ) 0./8 ( + (0.99 + 0.9608 + 0.85 + 0.7788) + 0.6977) 0./8 ( + (0.99) + (.587) + 0.6977) 0.555 Soluio By Simpso s /8 Rule is 0.555 - -