Planar maps and continued fractions

Similar documents
La fonction à deux points et à trois points des quadrangulations et cartes. Éric Fusy (CNRS/LIX) Travaux avec Jérémie Bouttier et Emmanuel Guitter

Statistical Mechanics and Combinatorics : Lecture III

More metrics on cartesian products

= z 20 z n. (k 20) + 4 z k = 4

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Randić Energy and Randić Estrada Index of a Graph

Ballot Paths Avoiding Depth Zero Patterns

APPENDIX A Some Linear Algebra

2.3 Nilpotent endomorphisms

Formulas for the Determinant

1 Generating functions, continued

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 8 Luca Trevisan February 17, 2016

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Lecture Notes Introduction to Cluster Algebra

Problem Set 9 Solutions

A summation on Bernoulli numbers

Dirichlet s Theorem In Arithmetic Progressions

Limit Laws of Planar Maps with Prescribed Vertex Degrees

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

PHYS 705: Classical Mechanics. Canonical Transformation II

Inductance Calculation for Conductors of Arbitrary Shape

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

1 Generating functions, continued

A First Order q-difference System for the BC 1 -Type Jackson Integral and Its Applications

Maximizing the number of nonnegative subsets

Bernoulli Numbers and Polynomials

Lecture 12: Discrete Laplacian

THE CHINESE REMAINDER THEOREM. We should thank the Chinese for their wonderful remainder theorem. Glenn Stevens

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41,

NUMERICAL DIFFERENTIATION

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

Edge Isoperimetric Inequalities

Asymptotics of the Solution of a Boundary Value. Problem for One-Characteristic Differential. Equation Degenerating into a Parabolic Equation

Difference Equations

Goncarov-Type Polynomials and Applications in Combinatorics

Spectral Graph Theory and its Applications September 16, Lecture 5

p 1 c 2 + p 2 c 2 + p 3 c p m c 2

Affine transformations and convexity

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model

(c) (cos θ + i sin θ) 5 = cos 5 θ + 5 cos 4 θ (i sin θ) + 10 cos 3 θ(i sin θ) cos 2 θ(i sin θ) 3 + 5cos θ (i sin θ) 4 + (i sin θ) 5 (A1)

Finding Dense Subgraphs in G(n, 1/2)

Hidden Markov Models & The Multivariate Gaussian (10/26/04)

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Convexity preserving interpolation by splines of arbitrary degree

Math1110 (Spring 2009) Prelim 3 - Solutions

Curvature and isoperimetric inequality

MATH 5707 HOMEWORK 4 SOLUTIONS 2. 2 i 2p i E(X i ) + E(Xi 2 ) ä i=1. i=1

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

Lecture 5 Decoding Binary BCH Codes

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

Supplementary Notes for Chapter 9 Mixture Thermodynamics

Bezier curves. Michael S. Floater. August 25, These notes provide an introduction to Bezier curves. i=0

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

The exponential map of GL(N)

Poisson brackets and canonical transformations

Complete subgraphs in multipartite graphs

One-sided finite-difference approximations suitable for use with Richardson extrapolation

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Complex Numbers Alpha, Round 1 Test #123

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

LECTURE 9 CANONICAL CORRELATION ANALYSIS

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Digital Signal Processing

Linear Approximation with Regularization and Moving Least Squares

THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY. William A. Pearlman. References: S. Arimoto - IEEE Trans. Inform. Thy., Jan.

GELFAND-TSETLIN BASIS FOR THE REPRESENTATIONS OF gl n

Canonical transformations

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

1 Matrix representations of canonical matrices

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Random Matrices and topological strings

Min Cut, Fast Cut, Polynomial Identities

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2.

Lecture 21: Numerical methods for pricing American type derivatives

1 (1 + ( )) = 1 8 ( ) = (c) Carrying out the Taylor expansion, in this case, the series truncates at second order:

From Biot-Savart Law to Divergence of B (1)

Limited Dependent Variables

A Hölder-type inequality on a regular rooted tree

Assortment Optimization under MNL

Lecture 2: Numerical Methods for Differentiations and Integrations

where I = (n x n) diagonal identity matrix with diagonal elements = 1 and off-diagonal elements = 0; and σ 2 e = variance of (Y X).

Change. Flamenco Chuck Keyser. Updates 11/26/2017, 11/28/2017, 11/29/2017, 12/05/2017. Most Recent Update 12/22/2017

Short running title: A generating function approach A GENERATING FUNCTION APPROACH TO COUNTING THEOREMS FOR SQUARE-FREE POLYNOMIALS AND MAXIMAL TORI

A Witt type formula. G.A.T.F.da Costa 1 Departamento de Matemática Universidade Federal de Santa Catarina Florianópolis-SC-Brasil.

Lecture 20: Lift and Project, SDP Duality. Today we will study the Lift and Project method. Then we will prove the SDP duality theorem.

V.C The Niemeijer van Leeuwen Cumulant Approximation

Estimation of the composition of the liquid and vapor streams exiting a flash unit with a supercritical component

Gouy-Chapman model (1910) The double layer is not as compact as in Helmholtz rigid layer.

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q

Dynamic Programming. Preview. Dynamic Programming. Dynamic Programming. Dynamic Programming (Example: Fibonacci Sequence)

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE

Yong Joon Ryang. 1. Introduction Consider the multicommodity transportation problem with convex quadratic cost function. 1 2 (x x0 ) T Q(x x 0 )

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Economics 101. Lecture 4 - Equilibrium and Efficiency

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)?

Transcription:

Batz 2010 p. 1/4 Planar maps and contnued fractons n collaboraton wth Jéréme Boutter 1 3 3 2 0 3 1

maps and dstances: generaltes Batz 2010 p. 2/4

Batz 2010 p. 3/4

degree of a face = number of ncdent edge sdes (= 3 here) Batz 2010 p. 4/4

enumerate maps wth a control of the face degrees Batz 2010 p. 4/4

Batz 2010 p. 4/4 compute the generatng functon of maps wth a weght g k per face of degree k g 1 g 2 g 3 g 4 g 10 n practce, consder bounded degrees (fnte number of non-zero g k s)

Batz 2010 p. 5/4 dstance n maps dstance d between two vertces on the maps

Batz 2010 p. 5/4 dstance n maps dstance d between two vertces on the maps = mnmal number of edges to connect them (d = 3 here)

Batz 2010 p. 6/4 d dstance-dependent two-pont functon = g.f. of maps wth two marked vertces at dstance d

Batz 2010 p. 6/4 d d dstance-dependent two-pont functon = g.f. of maps wth a marked vertex and a marked orented edge at dstance d.e: of type (d,d): t d ({g k }) (d 0)

Batz 2010 p. 6/4 d 1 d dstance-dependent two-pont functon = g.f. of maps wth a marked vertex and a marked orented edge at dstance d.e: of type (d 1,d): r d ({g k }) (d 1)

Batz 2010 p. 7/4 more convenent to demand that the dstance be less than a gven value,.e. consder the g.f. and so that S = R = d=1 ( d=0 r d ( 1) t d ) 1/2 r d = R d R d 1, ( 0) t d = S 2 d S2 d 1

Batz 2010 p. 8/4 the BDG bjecton start wth a planar map wth a marked vertex

Batz 2010 p. 8/4 the BDG bjecton start wth a planar map wth a marked vertex 0 2 1 1 2 2 1 2 2 1

Batz 2010 p. 8/4 the BDG bjecton start wth a planar map wth a marked vertex 0 1 2 1 2 2 1 1 2 2 1

Batz 2010 p. 8/4 the BDG bjecton start wth a planar map wth a marked vertex 0 1 2 1 2 2 1 1 1 1 2 2 2 2 1 1

Batz 2010 p. 8/4 the BDG bjecton start wth a planar map wth a marked vertex 0 2 1 1 1 2 2 1 1 2 2 2 2 1 1 end up wth a moble tree wth nteger labels

Batz 2010 p. 9/4 R and S may be nterpreted as moble g.f. R = and S = recurson relatons for R and S

Batz 2010 p. 10/4 examples trangulatons g k = g 3 δ k,3

Batz 2010 p. 10/4 examples trangulatons g k = g 3 δ k,3 R = 1 + g 3 R (S + S 1 ), S = g 3 (S 2 + R + R +1 ) (R 0 = 0)

Batz 2010 p. 10/4 examples trangulatons g k = g 3 δ k,3 R = 1 + g 3 R (S + S 1 ), S = g 3 (S 2 + R + R +1 ) (R 0 = 0) quadrangulatons g k = g 4 δ k,4 R = 1 + g 4 R (R 1 + R + R +1 ), S = 0 (R 0 = 0)

Batz 2010 p. 10/4 examples trangulatons g k = g 3 δ k,3 R = 1 + g 3 R (S + S 1 ), S = g 3 (S 2 + R + R +1 ) (R 0 = 0) R = R (1 y )(1 y +2 ) (1 y +1 ) 2, S = S g 3 R 2 y (1 y)(1 y 2 ) (1 y +1 )(1 y +2 ) R = 1 + 2g 3 RS, S = g 3 (S 2 + 2R) y + 1 y + 2 = 1 g 2 3 R3 quadrangulatons g k = g 4 δ k,4 R = 1 + g 4 R (R 1 + R + R +1 ), S = 0 (R 0 = 0)

Batz 2010 p. 10/4 examples trangulatons g k = g 3 δ k,3 R = 1 + g 3 R (S + S 1 ), S = g 3 (S 2 + R + R +1 ) (R 0 = 0) R = R (1 y )(1 y +2 ) (1 y +1 ) 2, S = S g 3 R 2 y (1 y)(1 y 2 ) (1 y +1 )(1 y +2 ) R = 1 + 2g 3 RS, S = g 3 (S 2 + 2R) y + 1 y + 2 = 1 g 2 3 R3 quadrangulatons g k = g 4 δ k,4 R = 1 + g 4 R (R 1 + R + R +1 ), S = 0 (R 0 = 0) R = R (1 y )(1 y +3 ) (1 y +1 )(1 y +2 ), R = 1+3g 4R 2, y+ 1 y +1 = 1 g 4 R 2

Batz 2010 p. 11/4 so far the soluton was guessed for - trangulatons - bpartte maps.e. wth faces of even degrees only (g 2k+1 = 0 k)

Batz 2010 p. 11/4 so far the soluton was proved for - trangulatons - bpartte maps wth small degrees 4,6,8

Batz 2010 p. 11/4 so far the soluton was proved for - trangulatons - bpartte maps wth small degrees 4,6,8 can we get a general expresson for R and S for arbtrary maps? can we get t n a constructve way (not a smple guess)? can we explan the partcular form observed so far (nvolvng (b-)ratos)?

Batz 2010 p. 12/4 an unexpected connecton wth a much smpler problem

rooted map wth a marked orented edge Batz 2010 p. 13/4

Batz 2010 p. 13/4 control the degree n of the root face (on the rght of the edge) n =10

Batz 2010 p. 13/4 choose the root face as external face n the plane maps wth a boundary" of length n n =10

Batz 2010 p. 14/4 F n ({g k }) n =10 by conventon, no weght for the external face and F 0 = 1 - global quantty (no dstance nvolved) - satsfes Tutte s equatons ( matrx model loop equatons) - well understood snce Tutte s work (60 s)

Batz 2010 p. 15/4 consder the (well-understood) resolvent" F(z) n 0 F n z n

Batz 2010 p. 15/4 consder the (well-understood) resolvent" F(z) n 0 F n z n we have the remarkable property F(z) = 1 S 0 z 1 R 1 z 2 1 S 1 z R 2z 2 1.e. the dstance-dependent two-pont generatng functons S and R are gven by the contnued fracton expanson of the resolvent

Batz 2010 p. 16/4 Σ n F n z n F(z) =

Batz 2010 p. 16/4 F(z) = 1 1 zs0 z 2 R1 1 zs1 z 2 R2 1 zs... 2

Batz 2010 p. 17/4 contnued fractons and Motzkn paths t s a classcal result of combnatorcs (Flajolet) that 1 S 0 z 1 R 1 z 2 1 S 1 z R 2z 2 1 = n 0 Z + 0,0 (n)zn where Z 0,0 + (n) s the generatng functon for weghted Motzkn paths of length n:

Batz 2010 p. 17/4 contnued fractons and Motzkn paths t s a classcal result of combnatorcs (Flajolet) that 1 S 0 z 1 R 1 z 2 1 S 1 z R 2z 2 1 = n 0 Z + 0,0 (n)zn + Z 0,0 Z ( n) = + 0,0 ( n): Z Σ paths n + 0,0 4 3 2 1 ( n) Π R 1 Π S 0 0 n

Batz 2010 p. 18/4 we have the remarkable property F n = Z + 0,0(n) where Z 0,0 + (n) enumerates Motzkn paths weghted by the dstance-dependent two-pont functons R and S

Batz 2010 p. 19/4 proof 0 d closest vertex at dstance d maps wth a boundary of length n, a marked vertex and a marked orented edge on the boundary whose orgn s at dstance d and s a closest vertex" ( closest to the marked vertex among those vertces lyng on the boundary) f n;d

Batz 2010 p. 19/4 proof 0 closest vertex at dstance 0 we have F n = f n;0

Batz 2010 p. 19/4 proof 0 d closest vertex at dstance d d d n

Batz 2010 p. 19/4 proof 0 1 draw the leftmost geodesc path from each boundary vertex to the marked vertex

Batz 2010 p. 19/4 proof 0 ~ S 1 1 ~ R decomposton nto two types of slces assocated resp. to down- ( 1) and level-steps ( )

Batz 2010 p. 20/4 ~ + Z ( n) = d,d Σ paths n + Z ( n) d,d Π ~ R 1 Π ~ S + Z ( n): d,d d d n

Batz 2010 p. 21/4 ~ S 0 1 1 ~ R

Batz 2010 p. 21/4 d d d 1 Z+ 0 d,d (n) = and n partcular d =0 Z+ 0,0 (n) = F n f n;d

Batz 2010 p. 22/4 t remans to show that R = R and S = S 1 d 1 d ~ R ~ S = Σ d= 1 ~ = Σs d= 0 ~ ~ r r d d d ~ s d d 0 0 d

Batz 2010 p. 23/4 showng R = R showng r d = r d ~ r d 1 d d 0 d 1 0 d leftmost geodesc r d

Batz 2010 p. 23/4 showng S 2 = S2 = d=0 t d showng d,d 0 max(d,d )=d s d s d = t d ~ s d s ~ d 0 d d d d d= max( d, d ) leftmost geodesc d d 0 leftmost geodesc 0 t d

Batz 2010 p. 24/4 consequence classcal result about contnued fractons: the coeffcents S and R can be n expressed n terms of the coeffcents F n of the assocated seres expanson va Hankel determnants, namely: R = H H 2 H 2 1, H = det 0 m,n F m+n S = H H H 1 H 1, H = det 0 m,n F m+n+δ n, wth the conventon H 1 = 1 and H 1 = 0

Batz 2010 p. 25/4 our strategy: 1 take a nce expresson for F n 2 compute the Hankel determnants H and H 3 deduce explct expressons for R and S (and eventually for r d and t d )

1 a nce expresson for F n Batz 2010 p. 26/4

Batz 2010 p. 27/4 consder R = lm R, S = lm S

Batz 2010 p. 27/4 consder R = lm R, S = lm S and ntroduce the unformly weghted path g.f. ζ + 0 ( n) = Z Σ paths n + 0 ( n) Π R Π S Z + 0 ( n): 0 0 n

consder R = lm R, S = lm S and ntroduce the unformly weghted path g.f. ζ 0 Σ ( n) = paths n Z ( n) 0 Π R Π S Z 0 ( n): 0 0 n Batz 2010 p. 27/4

consder R = lm R, S = lm S and ntroduce the unformly weghted path g.f. ζ l Σ ( n) = paths n Z ( n) l Π R Π S l Z ( n): 0 l n Batz 2010 p. 27/4

Batz 2010 p. 28/4 R and S are determned by the relatons R = 1 + k 2 g k ζ 1 (k 1) S = k 1 g k ζ 0 (k 1)

Batz 2010 p. 28/4 R and S are determned by the relatons R = 1 + k 2 g k ζ 1 (k 1) S = k 1 g k ζ 0 (k 1) whle F n has the nce expresson: A q = R F n = A q ζ 0 + (n + q) q 0 δ q,0 g k ζ 0 (k q 2) k=q+2.e. F n s a lnear combnaton of g.f. for Motzkn paths of ncreasng lengths n,n+1,,n+q max wth q max = k max 2

Batz 2010 p. 28/4 R and S are determned by the relatons R = 1 + k 2 g k ζ 1 (k 1) S = k 1 g k ζ 0 (k 1) whle F n has the nce expresson: F n = q 0 A q ζ + 0 (n + q) example: trangulatons R = 1 + 2g 3 R S = g 3 (S 2 + 2R) F n = ζ + 0 (n)(1 + g 3RS) ζ + 0 (n + 1)g 3R

Batz 2010 p. 29/4 2 after smple row and column manpulatons H = R (+1) 2 det 0 l,l (B l l B l+l +2), B l = R l 2 q=0 A q ζ l (q) = B l

Batz 2010 p. 29/4 2 after smple row and column manpulatons H = R (+1) 2 det 0 l,l (B l l B l+l +2), B l = R l 2 q=0 A q ζ l (q) = B l F m+n = Σ q A q ζ + 0 ( m+n+q ) ζ l l l+l +2 ( q) ζ ( q ) ζ + 0 ( ) : m+n+q l l m q n

Batz 2010 p. 29/4 2 after smple row and column manpulatons H = R (+1) 2 det 0 l,l (B l l B l+l +2), B l = R l 2 q=0 A q ζ l (q) = B l H = ( + 1)SH + R 2 ++1 2 det 0 l,l (B l l δ l, B l+l +δ l, +2)

Batz 2010 p. 29/4 2 after smple row and column manpulatons H = R (+1) 2 det 0 l,l (B l l B l+l +2), B l = R l 2 q=0 A q ζ l (q) = B l settng p = k max 2, we have B n = 0 for n > p denote x = (x 1, 1/x 1,x 2, 1/x 2,...,x p, 1/x p ) the solutons of p B n x n = 0 n= p

Batz 2010 p. 29/4 2 after smple row and column manpulatons H = R (+1) 2 det 0 l,l (B l l B l+l +2), B l = R l 2 q=0 A q ζ l (q) = B l settng p = k max 2, we have B n = 0 for n > p denote x = (x 1, 1/x 1,x 2, 1/x 2,...,x p, 1/x p ) the solutons of p B n x n = 0 n= p det 0 l,l (e p+l l (x) e p+l+l +2(x)) n terms of elementary symmetrc functons e j (x)

Batz 2010 p. 30/4 then H and H are dentfed as symplectc Schur functons H =( 1) p(+1) B +1 p R (+1) 2 sp 2p (λ p,+1,x) H ( + 1)S H =( 1) p(+1)+1 B +1 p for the parttons λ p,+1 : +1 R 2 ++1 2 sp 2p ( λ p,+1,x) p +1 λ p,+1 : p

Batz 2010 p. 30/4 then H and H are dentfed as symplectc Schur functons H =( 1) p(+1) B +1 p R (+1) 2 sp 2p (λ p,+1,x) H ( + 1)S H =( 1) p(+1)+1 B +1 p R 2 ++1 2 sp 2p ( λ p,+1,x) 3 R = R sp 2p(λ p,+1,x) sp 2p (λ p, 1,x) sp 2p (λ p,,x) 2 S = S R ( sp2p ( λ p,+1,x) sp 2p (λ p,+1,x) sp ) 2p( λ p,,x) sp 2p (λ p,,x)

Batz 2010 p. 31/4 fnal formula the symplectc Schur functons may be expressed as determnants of fxed sze p R = R det 1 m,n p (x+1+n m ( x 1 n m ) det det 1 m,n p (x+n m 1 m,n p (x 1+n m ) 2 x n m ) x +1 n m ) S = S R det 1 m,n p (x+1+n δ n,1 m ) m x 1 n+δ n,1 det 1 m,n p (x+1+n m x 1 n m ) det 1 m,n p (x+n δ n,1 m x n+δ n,1 det 1 m,n p (x+n m m ) x n m )

Batz 2010 p. 32/4 trangulatons and hard dmers F n = ζ + 0 (n)(1 + g 3RS) ζ + 0 (n + 1)g 3R A 0 = 1 + g 3 RS, A 1 = g 3 R B 0 = A 0 + SA 1 = 1, B 1 = R 1 2 A1 = g 3 R 3 2 x + 1 x = 1 g 3 R 3 2 settng y = x 2 y + 1 y + 2 = 1 g 2 3 R3 R = R (1 y )(1 y +2 ) (1 y +1 ) 2, S = S g 3 R 2 y (1 y)(1 y 2 ) (1 y +1 )(1 y +2 )

Batz 2010 p. 32/4 trangulatons and hard dmers F n = ζ + 0 (n)(1 + g 3RS) ζ + 0 (n + 1)g 3R A 0 = 1 + g 3 RS, A 1 = g 3 R B 0 = A 0 + SA 1 = 1, B 1 = R 1 2 A1 = g 3 R 3 2 F m+n g 3 R 3/2 g 3 R 3/2 1 S 1/2 R R 1/2 m 2 1 0 1 2 3 n+1

Batz 2010 p. 33/4 from the LGV lemma: det confgs of avodng paths g 2 R 3 3 ( +1) 2 R n... 2 1 0 1 2 3... +1 confgs of hard dmers on a segment H Zhard dmers on [0,] = snh( + 2)θ (2 cosh θ) +1 snh θ g 2 3R 3 = 1 4 cosh 2 θ

Batz 2010 p. 33/4 from the LGV lemma: det confgs of avodng paths g 2 R 3 3 ( +1) 2 R n... 2 1 0 1 2 3... +1 confgs of hard dmers on a segment H Zhard dmers on [0,] = x +2 x 2 (x + x 1 ) +1 (x x 1 ) g 2 3R 3 = 1 (x + x 1 ) 2

Batz 2010 p. 34/4 concluson the dstance-dependent two-pont functons R and S are coded n the contnued fracton expanson of the resolvent F(z) = 1 1 zs0 z 2 R1 1 zs1 z 2 R2 1 zs... 2

Batz 2010 p. 34/4 concluson the dstance-dependent two-pont functons R and S are coded n the contnued fracton expanson of the resolvent ths leads to explct expressons of R and S as (b-)ratos of symplectc Schur functons R = R sp 2p(λ p,+1,x) sp 2p (λ p, 1,x) sp 2p (λ p,,x) 2 S = S R ( sp2p ( λ p,+1,x) sp 2p (λ p,+1,x) sp ) 2p( λ p,,x) sp 2p (λ p,,x)

Batz 2010 p. 34/4 concluson the dstance-dependent two-pont functons R and S are coded n the contnued fracton expanson of the resolvent ths leads to explct expressons of R and S as (b-)ratos of symplectc Schur functons what about unbounded degrees?

Batz 2010 p. 34/4 concluson the dstance-dependent two-pont functons R and S are coded n the contnued fracton expanson of the resolvent ths leads to explct expressons of R and S as (b-)ratos of symplectc Schur functons what about unbounded degrees? what about hgher genus maps?

Batz 2010 p. 35/4 + Z d,d+j ( n) = Z Σ paths n + d,d+j ( n) Π R 1 Π S + Z ( n): d,d+j d d+j n

Batz 2010 p. 35/4 Z d,d+j Σ ( n) = paths n Z ( n ) d,d+j Π R 1 Π S Z ( n): d,d+j d d+j n

Batz 2010 p. 36/4 send d : Z + d,d+j Σ ( n) ζ ( n) = Π R Π j + Z paths n + j ( n) S Z + j ( n): j n

Batz 2010 p. 36/4 send d : Z d,d+j ( n) ζ j ( n) = Z j Σ paths n ( n) Π R Π S Z j ( n): j n

Batz 2010 p. 37/4 recurson relatons d d degree d k d S : 0 d < 0 d < k 1 S = k 1 g k Z, (k 1)

Batz 2010 p. 37/4 recurson relatons d d degree d k d S : 0 d < 0 d < k 1 S = k 1 g k Z, (k 1) S = k 1 g k ζ 0 (k 1)

Batz 2010 p. 38/4 recurson relatons d d 1 degree 1 d k d R : 0 d < 0 d < k 1 1 R = 1 + k 2 g k Z, 1 (k 1)

Batz 2010 p. 38/4 recurson relatons d d 1 degree 1 d k d R : 0 d < 0 d < k 1 1 R = 1 + k 2 g k Z, 1 (k 1) R = 1 + k 2 g k ζ 1 (k 1)

Batz 2010 p. 39/4 expresson for F n F n = f n;0 = d d =0 f n;d d d =1 f n;d

Batz 2010 p. 39/4 expresson for F n F n = f n;0 = d d =0 f n;d d d =1 f n;d 0 d d d d <d n Z + d,d (n)

Batz 2010 p. 39/4 expresson for F n F n = f n;0 = d d =0 f n;d d d =1 f n;d d 0 g k d d d 1 1 1

Batz 2010 p. 39/4 expresson for F n F n = f n;0 = d d =0 f n;d d d =1 f n;d d +j d 1 d d <d k 3 0 g k j 1 d d+j d 1 n k 1 Z + d,d+j (n)z d+j,d 1(k 1)

Batz 2010 p. 40/4 F n = Z + d,d (n) k 3 g k j 1 Z + d,d+j (n)z d+j,d 1(k 1) vald for any d 0 ( conserved quantty)

Batz 2010 p. 40/4 F n = Z + d,d (n) k 3 send d : g k j 1 Z + d,d+j (n)z d+j,d 1(k 1) F n = ζ + 0 (n) k 3 g k j 1 ζ + j (n)ζ j 1(k 1) n terms of paths weghted by R and S only

Batz 2010 p. 41/4 R = 1 + k 2 g k ζ 1 (k 1) S = k 1 g k ζ 0 (k 1) F n = ζ + 0 (n) k 3 g k j 1 ζ + j (n)ζ j 1(k 1)

Batz 2010 p. 41/4 R = 1 + k 2 g k ζ 1 (k 1) S = k 1 g k ζ 0 (k 1) F n = ζ + 0 (n) k 3 g k j 1 ζ + j (n)ζ j 1(k 1) example: trangulatons R = 1 + 2g 3 R S = g 3 (S 2 + 2R) F n = ζ + 0 (n) g 3R 2 ζ + 1 (n) usng ζ + 0 (n + 1) = S ζ+ 0 (n) + R ζ+ 1 (n), we end up wth F n = ζ + 0 (n)(1 + g 3RS) ζ + 0 (n + 1)g 3R

Batz 2010 p. 41/4 R = 1 + k 2 g k ζ 1 (k 1) S = k 1 g k ζ 0 (k 1) F n = ζ + 0 (n) k 3 g k j 1 ζ + j (n)ζ j 1(k 1) n all generalty A q = R F n = A q ζ 0 + (n + q) q 0 δ q,0 g k ζ 0 (k q 2) k=q+2.e. F n s a lnear combnaton of g.f. for Motzkn paths of ncreasng lengths n,n+1,,n+q max wth q max = k max 2