Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Similar documents
Lecture 2: Double quantum dots

Lecture 8, April 12, 2017

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

SUPPLEMENTARY INFORMATION

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Quantum information processing in semiconductors

We study spin correlation in a double quantum dot containing a few electrons in each dot ( 10). Clear

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Qubits by electron spins in quantum dot system Basic theory

Semiconductor few-electron quantum dots as spin qubits

Quantum Dot Spin QuBits

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Spins in few-electron quantum dots

Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots

Experimental Quantum Computing: A technology overview

Electron counting with quantum dots

Supplementary Information for Pseudospin Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot. D2 V exc I

Intrinsic Charge Fluctuations and Nuclear Spin Order in GaAs Nanostructures

Quantum physics in quantum dots


400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Enhancement-mode quantum transistors for single electron spin

Controlling Spin Qubits in Quantum Dots. C. M. Marcus Harvard University

Determination of the tunnel rates through a few-electron quantum dot

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

Supplementary Material: Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires

Coherence and Correlations in Transport through Quantum Dots

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

Magnetic semiconductors. (Dilute) Magnetic semiconductors

Electrical control of spin relaxation in a quantum dot. S. Amasha et al., condmat/

Introduction. Resonant Cooling of Nuclear Spins in Quantum Dots

Wave function engineering in quantum dot-ring structures

Few-electron quantum dots for quantum computing

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Electron spin qubits in P donors in Silicon

Two-qubit Gate of Combined Single Spin Rotation and Inter-dot Spin Exchange in a Double Quantum Dot

Electron Spin Qubits Steve Lyon Electrical Engineering Department Princeton University

Stability Diagram of a Few-Electron Triple Dot

Magnetic field B B V

collaboration D. G. Austing (NTT BRL, moved to NRC) Y. Tokura (NTT BRL) Y. Hirayama (NTT BRL, CREST-JST) S. Tarucha (Univ. of Tokyo, NTT BRL,

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Spin electric coupling and coherent quantum control of molecular nanomagnets

Supplementary Information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration

Quantum Computing with Semiconductor Quantum Dots

Driven coherent oscillations of a single electron spin in a quantum dot

The Role of Spin in Ballistic-Mesoscopic Transport

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University

Electron spins in nonmagnetic semiconductors

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Supporting Online Material for

Quantum Computation With Spins In Quantum Dots. Fikeraddis Damtie

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum control of spin qubits in silicon

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

Solid-State Spin Quantum Computers

Short Course in Quantum Information Lecture 8 Physical Implementations

Coherent Control of a Single Electron Spin with Electric Fields

Quantum Computing Architectures! Budapest University of Technology and Economics 2018 Fall. Lecture 3 Qubits based on the electron spin

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Circuit QED with electrons on helium:

The effect of surface conductance on lateral gated quantum devices in Si/SiGe heterostructures

Manipulating and characterizing spin qubits based on donors in silicon with electromagnetic field

Tunable Non-local Spin Control in a Coupled Quantum Dot System. N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus

Nanoelectronics. Topics

Quantum Confinement in Graphene

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin

Title: Co-tunneling spin blockade observed in a three-terminal triple quantum dot

Manipulation of Majorana fermions via single charge control

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

SUPPLEMENTARY INFORMATION

A Double Quantum Dot as an Artificial Two-Level System

Superconducting Qubits Lecture 4

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Developing Quantum Logic Gates: Spin-Resonance-Transistors

Weak-measurement theory of quantum-dot spin qubits

Contents. List of contributors Preface. Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1

Self-assembled SiGe single hole transistors

Scalable Quantum Computing With Enhancement Quantum Dots

single-electron electron tunneling (SET)

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique

Hole Spin Relaxation in Ge- Si Core-Shell Nanowire Qubits

SUPPLEMENTARY INFORMATION

Cotunneling and Kondo effect in quantum dots. Part I/II

SUPPLEMENTARY INFORMATION

Magnetic Resonance in Quantum Information

Imaging a Single-Electron Quantum Dot

Anomalous magnetic field dependence of the T 1 spin lifetime in a lightly doped GaAs sample

tunneling theory of few interacting atoms in a trap

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Coulomb blockade and single electron tunnelling

Fabrication / Synthesis Techniques

Controlling Spin Qubits in Quantum Dots

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Spin-orbit qubit in a semiconductor nanowire

A Tunable Kondo Effect in Quantum Dots

Transcription:

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys. 79, 1217 (2007) for an exhaustive reference list.

Quantum computing hardware Trapped ion/atom QC NMR QC Optical QC Superconducting QC Spin based QC Topological QC Bertet Petta Raussendorf

DiVincenzo Criteria 1 Loss & DiVincenzo Proposal Phys. Rev. A 57, 120 (1998) 0 Efficient initialization Readout Universal set of gates Long decoherence times (T 1,T 2 ) Scalable Prepare spin in ground state Spin to charge conversion ESR for single spin rotations Exchange interaction T 1 ~ 1 second, T 2 ~ 200 s Standard semiconductor fabrication

Quantum condensed matter physics- The goals 1. Build quantum systems with experimentally tunable Hamiltonians H= Z J(V g ) B nuc Z B 0 nuc J ( (ev)2 1 0-2 -1 0 (mv) 2. Determine the limits of quantum coherence in the solid state 3. Extend coherence by tailoring the solid state environment (isotopic purification.) 4. Build artificial quantum materials Spin chains & lattice Atom Tri-atom Molecule Ciorga et al. (2000) Petta et al. (2005) Gaudreau, Schroer (2007)

Quantum condensed matter physics- The challenges 1. Quantum system must be isolated from the environment to preserve coherence 2. Hamiltonian must be experimentally tunable 3. Desire strong and controllable qubit coupling (not always compatible with 1.) Electron-phonon coupling quantum bit Charge dephasing Hyperfine interactions Spin-orbit interactions

Lecture 1: Introduction to quantum dots Loss and DiVincenzo PRA 57, 120 (1998) Motivation for using spins in semiconductors Introduction to quantum dot physics Isolating and detecting single electrons Spin in quantum dots Spin-orbit and hyperfine interactions ti Measurements of the spin lifetime (T 1 )

Electron spin as a quantum bit Single spin qubit Motivation for using electron spin: Relatively easy to trap single charges Weakly interacting Spin-orbit interactions (~1 sec. T 1 ) Qubit states: Hyperfine interactions (~ 200 s T 2 ) ħ 1 E Zeeman Manipulate single spins using ESR Couple spins using exchange interactions 0 Use electron spin resonance to drive coherent evolution Loss and DiVincenzo PRA 57, 120 (1998)

Semiconductor technology: scaling and Moore s law First transistor 1947 410 Million Transistors (2009) ~10 9 Feature e size (Ǻ) 10 10 Quad-Core Itanium 10 5 10 9 Itanium 2 10 8 Pentium 4 10 4 10 7 486 286 10 3 8080 quantum quantum 10 2 effects? 1970 1975 1980 1985 1990 1995 2000 2005 Year 2010 10 6 10 5 10 4 10 3 # of tran nsistors Source: Intel

Types of quantum dots Single molecules Vertical semiconducting dots Groups: McEuen, Ralph Groups: Kouwenhoven, Tarucha Metal nanoparticles Lateral semiconducting dots Groups: Ralph, Petta Groups: Marcus, Kouwenhoven, many others

Quantum dots- Artificial atoms Kouwenhoven and Marcus, Phys. World (1998)

Quantum dots- Artificial atoms Atoms Quantum dots 3D confinement V(x) x Discrete spectrum He Cu nanoparticle Petta&Ralph (2002) GaAs double dot Molecular bonding Livermore (1996)

Some differences between quantum dots and atoms Atoms Quantum dots V(x) x Size d=1 Ǻ d=1000 Ǻ Level spacing ~ ev ~ 100 s of ev-mev # of nuclei N nuc =1 N nuc =10 5-10 6 Spin-orbit L S Material dependent Structure dependent Anisotropic

Lateral quantum dot fabrication GaAs/AlGaAs heterostructure Quantum point contact ohmic contact depletion gate

Evolution of quantum dot devices Many-electron quantum dots Few-electron quantum dots N e ~100 400 nm N e ~1 450 nm Marcus group (1996) Ciorga et al., PRB 61, 16315 (2000) Double dots Double-double dots Triple dots Elzerman (2003) Petta (2004) Petta (2006) Gaudreau, Schroer (2007)

Coulomb blockade and charging R 1,C 1 R 2,C 2 N-1 N N+1 N+2 I V G Energy V SD Charging energy E 2 c =e /2C V G E F e 2 /C Kastner, RMP 64, 849 (1992) V G V G

Non-interacting electrons-in-a-box model V E ev Can resolve discrete states if E>>kT di/dv QD level spacing E 0.8 R 1,C 1 R 2,C 2 04 0.4 I (n na) B Z = 100 mt T e ~ 80 mk I Quantum dot 0 di I/dV (ns) 300 200 V 100 Petta and Ralph, PRL 87, 266801 (2001) Cu #1 0 5 10 15 20 25 V (mv)

Finite bias spectroscopy di/dv color-scale plot Coulomb diamonds L. P. Kouwenhoven et al., Science 278 1788 (1997).

Trapping and detecting single electrons Transport measurements Charge detection empty dot I QPC charged dot I QPC 450 nm Ciorga et al., PRB 61, 16315 (2000) -2.88 V g -2.82 Field et al., PRL 70, 1311 (1993) Hanson et al., PRL 91, 196802 (2003)

Spin: Zeeman splitting E I (n na) 0.8 04 0.4 B Z = 100 mt T e ~ 80 mk o B z ev Specific case: B Bzˆ di I/dV (ns) 0 300 200 100 Cu #1 0 5 10 15 20 25 V (mv) 9 Cu#1 B z E g o 1 B B 2 z Petta and Ralph, PRL 87, 266801 (2001) 6 3 0 2 5 8 E (mev)

DiVincenzo Criteria 1 Loss & DiVincenzo Proposal Phys. Rev. A 57, 120 (1998) 0 Efficient initialization Readout Prepare spin in ground state Spin to charge conversion Long decoherence times (T 1,T 2 ) T 1 ~ 1 second, T 2 ~ 200 s Universal set of gates Scalable ESR for single spin rotations Exchange interaction Standard semiconductor fabrication

Spin qubit initialization Load Empty spin-up py dot electron ect L E R E E Z E F E E Z 5 kt P P e E Z 10 L >> R

DiVincenzo Criteria 1 Loss & DiVincenzo Proposal Phys. Rev. A 57, 120 (1998) 0 Efficient initialization Readout Prepare spin in ground state Spin to charge conversion Long decoherence times (T 1,T 2 ) T 1 ~ 1 second, T 2 ~ 200 s Universal set of gates Scalable ESR for single spin rotations Exchange interaction Standard semiconductor fabrication

Spin-to-charge conversion (Readout) measure spin-up L R manipulate qubit L R E F E F? ħ measure spin-down L R E F Fujisawa, Nature (2002) Elzerman, Nature (2004)

DiVincenzo Criteria 1 Loss & DiVincenzo Proposal Phys. Rev. A 57, 120 (1998) 0 Efficient initialization Readout Prepare spin in ground state Spin to charge conversion? Long decoherence times (T 1,T 2 ) T 1 ~ 1 second, T 2 ~ 200 s Universal set of gates ESR for single spin rotations Exchange interaction Scalable Standard semiconductor fabrication

Charge relaxation -vs- spin relaxation time (T 1 ) charge relaxation Phonon emission E F E F 1 spin relaxation Phonon emission +spin flip E 0 E Requires: energy loss phonon emission inel ( 1-0 )~100 MHz Requires: energy loss + spin flip phonon emission + spin-orbit interactions SF ~khz (field dependent) phonon emission + hyperfine interactions SF ~khz-mhz (field dependent)

Spin-orbit interactions in quantum dots: electric field S L H p V H SO B = effective B field Effective S O field E B = effective B field Structural inversion asymmetry (Rashba spin-orbit term) Effective S-O field x p y y p x R H Structural inversion asymmetry (Rashba spin orbit term) Bulk inversion asymmetry (Dresselhaus spin-orbit term) y p y x p x D H

Hyperfine interactions in quantum dots: H I S H j e B ExtS e b, j js I,, j Zeeman Hyperfine H e( BExt BNuc) S GaAs nuclear spins 75 As, I=3/2, 100% 69 Ga, I=3/2, 60% 71 Ga, I=3/2, 40% Fully polarized nuclei, B Nuc =5.3 T Unpolarized nuclei, B Nuc ~2 mt S B Ext B Tot B Nuc

Single spin relaxation time measurements (T 1 ) Elzerman et al., Nature 430, 431 (2004). See also Fujisawa et al., Nature 419, 278 (2002).

Spin relaxation time measurements (T 1 ) T 1 ~0.5 ms at 10 T Hanson et al., Nature 430, 431 (2004). Optical measurements Kroutvar et al., Nature 432, 81 (2004). T 1 B 5 spin-orbit limited at high field

High field spin relaxation mechanism E F spin relaxation E Phonon emission +spin flip 2 2 nl" " H nl" ", e, ph n l DE Z E phonon density of states H E SO Z, e ( ),, iq H q j M r b b e ph q j q, j q, j 2 Z E piezeoelectric field scales as 1/ q 1/ E Z electron-phonon coupling E Z E 3/2 z 2 E2 E5 z z Erlingsson, Nazarov, Falko, Phys. Rev. B (2001)

Energy dependence of the relaxation rate hc E ph ph 16 nm c 4000 m/ s ph E mev ph 1 >d ~d <d T. Meunier et al., Phys. Rev. Lett. 98, 126601 (2007)

Beyond single quantum dots Loss and DiVincenzo PRA 57, 120 (1998) Single spin rotations and spin-spin interactions, e.g. are sufficient for spin based quantum computation Requires coupled quantum dots SWAP single dot double dot triple dot

Single dots -vs- double dots kt E Z kt Require E Z >>kt Freq. = 4 GHz/Tesla Interdot tunneling linewidth is independent of kt