VLSI Design and Simulation

Similar documents
CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

CMOS Inverter (static view)

Integrated Circuits & Systems

DC and Transient Responses (i.e. delay) (some comments on power too!)

THE INVERTER. Inverter

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

EE5311- Digital IC Design

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

EEE 421 VLSI Circuits

ECE 342 Solid State Devices & Circuits 4. CMOS

The CMOS Inverter: A First Glance

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

Digital Integrated Circuits

EE115C Digital Electronic Circuits Homework #3

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

EE5311- Digital IC Design

Lecture 5: DC & Transient Response

Integrated Circuits & Systems

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Lecture 12 Circuits numériques (II)

DC & Transient Responses

Lecture 6: DC & Transient Response

MOSFET and CMOS Gate. Copy Right by Wentai Liu

The CMOS Inverter: A First Glance

CMOS Technology for Computer Architects

ECE 546 Lecture 10 MOS Transistors

Lecture 4: DC & Transient Response

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

EE5780 Advanced VLSI CAD

ECE321 Electronics I

MOS Transistor Theory

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman

CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.

MOS Transistor Theory

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 5: DC & Transient Response

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

4.10 The CMOS Digital Logic Inverter

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

5. CMOS Gate Characteristics CS755

Important! EE141- Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

Integrated Circuit Design ELCT 701 (Winter 2017) Lecture 2: Resistive Load Inverter

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

EECS 141: FALL 05 MIDTERM 1

Homework Assignment #3 EE 477 Spring 2017 Professor Parker , -.. = 1.8 -, 345 = 0 -

Digital Microelectronic Circuits ( ) Ratioed Logic. Lecture 8: Presented by: Mr. Adam Teman

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Chapter 2 MOS Transistor theory

9/18/2008 GMU, ECE 680 Physical VLSI Design

High-to-Low Propagation Delay t PHL

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

SRAM Cell, Noise Margin, and Noise

Digital Integrated Circuits A Design Perspective

EE 330 Lecture 36. Digital Circuits. Transfer Characteristics of the Inverter Pair One device sizing strategy Multiple-input gates

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

Lecture 4: CMOS review & Dynamic Logic

Based on slides/material by. Topic 3-4. Combinational Logic. Outline. The CMOS Inverter: A First Glance

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Digital Integrated Circuits 2nd Inverter

CPE/EE 427, CPE 527 VLSI Design I Delay Estimation. Department of Electrical and Computer Engineering University of Alabama in Huntsville

COMBINATIONAL LOGIC. Combinational Logic

EEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Digital Integrated Circuits Designing Combinational Logic Circuits. Fuyuzhuo

CMOS Logic Gates. University of Connecticut 181

CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 07: Pass Transistor Logic

EE141Microelettronica. CMOS Logic

EE 434 Lecture 33. Logic Design

Digital Integrated Circuits A Design Perspective

THE CMOS INVERTER CHAPTER. Quantification of integrity, performance, and energy metrics of an inverter Optimization of an inverter design

EE40 Lec 20. MOS Circuits

14:332:231 DIGITAL LOGIC DESIGN. Organizational Matters (1)

ECE 342 Electronic Circuits. 3. MOS Transistors

The Physical Structure (NMOS)

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

Practice 3: Semiconductors

Properties of CMOS Gates Snapshot

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

Modeling the Effect of V th -Variations on Static Noise Margin

Topic 4. The CMOS Inverter

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

COMP 103. Lecture 10. Inverter Dynamics: The Quest for Performance. Section 5.4.2, What is this lecture+ about? PERFORMANCE

CMOS Logic Gates. University of Connecticut 172

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

B.Supmonchai July 5th, q Quantification of Design Metrics of an inverter. q Optimization of an inverter design. B.Supmonchai Why CMOS Inverter?

Low Power VLSI Circuits and Systems Prof. Ajit Pal Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

MOS Inverters. Digital Electronics - INEL Prof. Manuel Jiménez. With contributions by: Rafael A. Arce Nazario

Transcription:

VLSI Design and Simulation CMOS Inverters

Topics Inverter VTC Noise Margin Static Load Inverters

CMOS Inverter First-Order DC Analysis R p V OL = 0 V OH = R n =0 =

CMOS Inverter: Transient Response R p t phl = f(r on.c L ) = 0.69 R on C L C L C L R n =0 (a) Low-to-high = (b) High-to-low

PMOS Load Lines = +V GSp I Dn = - I Dp I Dn = +V DSp I Dp =0 I Dn I Dn =0 =1.5 =1.5 V GSp =-1 V DSp V DSp V GSp =-.5 = +V GSp I Dn = - I Dp = +V DSp

CMOS Inverter Load Characteristics I Dn = 0 =.5 PMOS = 0.5 = NMOS = 1 = 1.5 = 1.5 = 1 = = 1.5 = 1 = 0.5 =.5 = 0

CMOS Inverter VTC.5 1.5 NMOS off PMOS res NMOS sat PMOS res NMOS sat PMOS sat 1.5 0 NMOS res PMOS sat NMOS res PMOS off 0.5 1 1.5.5

CMOS Inverter VTC nmos cutoff pmos linear V tn

CMOS Inverter VTC nmos saturation pmos linear V tn -V tp

CMOS Inverter VTC Set pmos Linear I DS equal to nmos Saturation I DS k n V tn ( ) ( ) = k p V tp ( ) ( V tp )( ) + k n k p ( ( ) V DD) ( V tn) ( ) = ( V tp ) + ( V tp ) k n k p = ( V tp ) + ( V tp ) k n k p ( V tn ) = 0 ( V tn )

CMOS Inverter VTC Short channel model k n V DSATn V tn V DSATn = k p V tp ( ) ( ) ( V tp )( ) + k n ( ) = ( V tp ) + ( V tp ) k n = ( V tp ) + ( V tp ) k n ( ( ) ) V DSATn V tn V DSATn = 0 k p V DSATn V tn V DSATn k p V DSATn V tn V DSATn k p

CMOS Inverter VTC nmos saturation pmos saturation V tn -V tp -V tn

CMOS Inverter VTC nmos linear pmos saturation V tn -V tp -V tp -V tn

CMOS Inverter VTC Set nmos Linear I DS equal to pmos Saturation I DS k p ( V tp ) = k n ( V tn ) ( V tn ) + k p k n = ( V tn ) ( V tn ) k p k n ( V tp ) = 0 ( V tp )

CMOS Inverter VTC Short channel model k p V DSATp V tp V DSATp = k n ( V tn ) ( V tp ) + k p V DSATp V tp V DSATp = 0 k n = ( V tn ) ( V tn ) k p V DSATp V tp V DSATp k n

CMOS Inverter VTC nmos linear pmos cutoff V tn -V tp -V tp -V tn

CMOS Inverter VTC V tn -V tp

CMOS Inverter pmos mode nmos mode <V t Linear Cutoff V t < < - V t Linear Saturation ( + V t ) + ( + V t ) ( V t ) -V t < < +V t Saturation Saturation Interpolate out +V t < in < -V t Saturation Linear ( V t ) ( V t ) ( + V t ) in > DD -V t Cutoff Linear 0

Switching Threshold The point at which the inverter has both transistors in saturation k n ( V V M tn) = k p ( V V V M DD tp) ( V M V tn ) = k p k n V M ( V M V tp ) ( ) ( ) ( 1+ r) = V tn + r + V tp V M = V + r V + V tn DD tp 1+ r

Switching Threshold V M = r ( V + tp) + V tn 1+ r When V tn =-V tp and r=1, V M = In switching region, the curve is actually vertical; can have multiple values

CMOS Inverter VTC V M -V tp V M -V tp V tn V M -V tp

Switching Threshold With short-channel devices k n V DSATn V M V tn V DSATn = k p V DSATp V M V tp V DSATp V M V tn V DSATn = k V p DSATp V M V tp V DSATp k n V DSATn V M 1+ k V p DSATp = V tn + V DSATn k V p DSATp V tp V DSATp k n V DSATn k n V DSATn V tn + V DSATn + r + V tp + V DSATp V M = 1+ r V M = r 1+ r

Noise Margin A measure of the acceptable noise at a gate input so that the output is not affected. Noise Noise

Noise Budget Allocates gross noise margin to expected sources of noise Sources: supply noise, cross talk, interference, offset Differentiate between fixed and proportional noise sources

Key Reliability Properties Absolute noise margin values are deceptive a floating node is more easily disturbed than a node driven by a low impedance (in terms of voltage) Noise immunity is the more important metric the capability to suppress noise sources Key metrics: Noise transfer functions, Output impedance of the driver and input impedance of the receiver;

Noise Margins V OHmin NM H V IHmin V ILmax V OLmax NM L V SS

Noise Margins Obvious choice Set V IH =V IL =V M No noise margin V OH? High gain at V IH and V IL Any perturbations could cause incorrect values V sth

Noise Margins Set V IL = V tn and V IH = -V tp V OL = 0 and V OH = Too restrictive V tn -V tp

Noise Margins Voltage Transfer Function = f ( ) Voltage Transfer Function with Noise = f ( + ΔV noise ) f ( ) + d d ΔV noise Perturbed voltage is the sum of the nominal output plus the gain times the noise Keep the gain less than 1

Noise Margins V OH V OL V IL V IH

Noise Margins Setting the derivative to -1 and solving V M V Tn V DSATn V IH = V M + V M 1+ r V IL = V M V M Assuming ( ) ( ) λ n λ p ( ) ( ( ) V V V M Tn DSATn ) λ n λ p 1+ r r =1,V Tn = V Tp,V DSATn = V V IH = V DD 1+ V T V DSAT λ DSATp n λ p ( ) ( ) V IL = V DD 1 V T V DSAT λ n λ p

Noise Margins 4.4 = 5 V V t = 0.5 V V DSAT =1.0V λ=0.1 0.5.15.875

Static Load Inverter V OUT V IN

Static Load Inverter V OUT V IN V t

Static Load Inverter Transistor is in saturation ( V I DS = k GS V T ) n ( 1+ λv DS ) V OUT = Rk n V OUT = V Rk V n IN T + λrk n V IN V T ( V IN V T ) ( 1+ λv OUT ) ( ) ( ) V IN V OUT

Static Load Inverter V OUT V IN V t

Static Load Inverter Transistor is in linear region I DS = k n ( V GS V T )V DS V DS V OUT = Rk n ( V IN V T )V OUT V OUT V IN V OUT Rk n V OUT ( Rk n ( V IN V T ) +1)V OUT + = 0 V OUT = ( V IN V T ) + 1 Rk n ( ) + 1 V IN V T Rk n Rk n

Static Load Inverter V OUT V IN V t

Static Load Inverter Noise Margin V IL = V T + 1 k n R V IH = V T + 8 3 k n R 1 k n R V t

Static Load Inverter Does not go down all the way to 0 Noise margins are tighter Switching threshold is not centered To get high gain in the transition region, you need bigger resistors

Homework Due February 3rd Read Chapter