CE4501 Environmental Engineering Chemical Processes, Fall 2008 Problem Set 6

Similar documents
Redox, ph, pe OUTLINE 9/12/17. Equilibrium? Finish last lecture Mineral stability Aquatic chemistry oxidation and reduction: redox

Solubility of gases in water: Henry s Law concentration dissolved / partial pressure of the gas K H (units mol L -1 atm -1 ) = c X /p X

Dissolved Gases in Natural Water Dissolved Solids in Natural Water

Addition of an electrolyte to water

Acid-Base Equilibria and Solubility Equilibria Chapter 17

Titrator 3.0 Tutorial: Calcite precipitation

Chapter 17. Additional Aspects of Equilibrium

Solubility Equilibrium. Solutions. Dissociation Equations. April/May Chemistry 30

Equilibri acido-base ed equilibri di solubilità. Capitolo 16

Chemistry 12 JANUARY Course Code = CH. Student Instructions

Types of Reactions: Reactions

Chapter 3: Acid Base Equilibria. HCl + KOH KCl + H 2 O acid + base salt + water

15. Studio ScaleChem Getting Started

Wksht 4.2 Aqueous Equilibria II

Lecture 11: Petrology of Mineralizing Aqueous Solutions GY303 Igneous & Metamorphic Petrology

Water Quality Evaluation and Limits

Chemistry 12 January 2002 Provincial Examination

Part One: Solubility Equilibria. Insoluble and slightly soluble compounds are important in nature and commercially.

Chemistry 12 Provincial Exam Workbook Unit 03: Solubility Equilibrium. Multiple Choice Questions

Learning Outcomes: At the end of this assignment, students will be able to:

Solubility Equilibria

Chem 110 General Principles of Chemistry

AP Chemistry Table of Contents: Ksp & Solubility Products Click on the topic to go to that section

Solubility and Complex Ion Equilibria

Solving Ionic Equilibria Problems Objectives and scope

Types of Reactions: Reactions

Homework: 14, 16, 21, 23, 27, 29, 39, 43, 48, 49, 51, 53, 55, 57, 59, 67, 69, 71, 77, 81, 85, 91, 93, 97, 99, 104b, 105, 107

Solubility and Complex Ion Equilibria

Solubility Equilibria. Even substances that are considered "insoluble" dissolve to a small extent.

Unit 13 Electrochemistry Review

Tutorial on Visual Minteq 2.30 operation and input/output for simple problems related to acid/base ph and titrations.

CHEM 12 Unit 3 Review package (solubility)

Chemistry 12 APRIL Course Code = CH. Student Instructions

Groundwater chemistry

Aqueous Equilibria: Part II- Solubility Product

CHEMICAL EQUATIONS WHAT BALANCING AN EQUATION MEANS

Chapter 17. Additional Aspects of Equilibrium

Problem Set 6 Solutions Due Nov. 7, 2007

CHEM 10123/10125, Exam 3

Chapter 12: Acids and Bases: Ocean Carbonate System James Murray 4/30/01 Univ. Washington

ANSWER KEY CHEMISTRY F14O4 FIRST EXAM 2/16/00 PROFESSOR J. MORROW EACH QUESTION IS WORTH 1O POINTS O. 16.

Chem 42 Final Review Sheet Mr. J. Fassler Spring 2018

Chemistry 12 AUGUST Course Code = CH. Student Instructions

7-4 Systematic Treatment of Equilibrium

AP Chemistry. Slide 1 / 39. Slide 2 / 39. Slide 3 / 39. Equilibrium Part C : Solubility Equilibrium. Table of Contents

SCH4U Chemistry Review: Fundamentals

Honors General Chemistry Test 3 Prof. Shattuck, practice

INTRODUCTION TO GEOCHEMICAL AND REACTIVE TRANSPORT MODELING. Ondra Sracek

1. Which one of the following would form an ionic solution when dissolved in water? A. I2 C. Ca(NO3)2 B. CH3OH D. C12H22O11

CHEM J-14 June 2014

Chemistry 112 Name Exam III Form A Section April 2,

SOLUBILITY AND SOLUBILITY PRODUCT

Modified Dr. Cheng-Yu Lai

Lab 8 Dynamic Soil Systems I: Soil ph and Liming

Aquatic chemistry for engineers

ANITA S WORK H I4 6 I6 5

Lecture Presentation. Chapter 16. Aqueous Ionic Equilibrium. Sherril Soman Grand Valley State University Pearson Education, Inc.

CHEM 1413 Chapter 4 Homework Questions TEXTBOOK HOMEWORK

Unit 3: Solubility Equilibrium

Solubility Rules See also Table 4.1 in text and Appendix G in Lab Manual

SECTION 8.2 THROUGH 8.8:

Chemistry 12. Resource Exam B. Exam Booklet

Unit 3: Solubility Equilibrium

Solubility Multiple Choice. January Which of the following units could be used to describe solubility? A. g/s B. g/l C. M/L D.

1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions)

Section 3 Environmental Chemistry

CHEMICAL REACTIONS IN SOLUTION AND NET IONIC EQUATIONS

Chapter 4. Properties of Aqueous Solutions. Electrolytes in Aqueous Solutions. Strong, weak, or nonelectrolyte. Electrolytic Properties

Ba 2+ (aq) + SO 4 2 (aq) ] = at 25 C

Chapter 16. Solubility Equilibria 10/14/2010. Solubility Equilibria. Solubility Product (Constant), K sp. Solubility and the Solubility Product

( ) SENIOR 4 CHEMISTRY FINAL PRACTICE REVIEW TEST VALUE: TOTAL 100 MARKS. Multiple Choice. Ca (PO ) 3Ca + 2PO. Name Student Number

Concentration Units. Solute CONCENTRATION. Solvent. g L -1. (M, molarity) concentration in. mol / litre of solution. mol L -1. molality. molality.

Chapter 7 Chemical Reactions

1) What is the volume of a tank that can hold Kg of methanol whose density is 0.788g/cm 3?

HW 7 KEY!! Chap. 7, #'s 11, 12, odd, 31, 33, 35, 39, 40, 53, 59, 67, 70, all, 77, 82, 84, 88, 89 (plus a couple of unassigned ones)

AP Chemistry Note Outline Chapter 4: Reactions and Reaction Stoichiometry:

Solutions to CHEM 301 Review Exercises

CHAPTER 8 SALTS. NaCl. A salt is an ionic substance produced when the hydrogen ion of the acid is replaced by metal ion or an ammonium ion.

UNIT III: SOLUBILITY EQUILIBRIUM YEAR END REVIEW (Chemistry 12)

Acid-Base Equilibria and Solubility Equilibria

8.00 Activity and Systematic Treatment of Equilibrium

Chem 12 Practice Solubility Test

Ionic Equilibria in Aqueous Systems. Dr.ssa Rossana Galassi

Chapter 15 - Applications of Aqueous Equilibria

Chapter 4 Suggested end-of-chapter problems with solutions

15.0 g Fe O 2 mol Fe 55.8 g mol Fe = g

Chapter 9: Acids, Bases, and Salts

Chapter 18. Solubility and Complex- Ionic Equilibria

IONIC CHARGES. Chemistry 51 Review

Chemical Equilibrium. What is the standard state for solutes? a) 1.00 b) 1 M c) 100% What is the standard state for gases? a) 1 bar b) 1.

Chapter 17: Solubility Equilibria

Lecture 16 Guest Lecturer this week. Prof. Greg Ravizza

Reactions in Aqueous Solutions

CHEMICAL REACTIONS WORDS, SYMBOLS AND ABBREVIATIONS

] after equilibrium has been established?

Solutions 4a (Chapter 4 problems)

Lecture #19 MINEQL: Intro & Tutorial Benjamin; Chapter 6

EXPERIMENT A5: TYPES OF REACTIONS. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

4 Carbonates and CO2

Week 9 Solubility & Redox

Transcription:

CE4501 Environmental Engineering Chemical Processes, Fall 2008 Problem Set 6 Due: Friday, 11/21 by 5 p.m. Solutions will be posted on the Web. Problem sets will be graded for completeness, and one problem (selected at random) will be graded in detail. Each problem set contributes 2.5% towards your final grade. Remember that for problems done with MINEQL, you must print out and attach the header file so that I can see your input. 1. Problem 19.3 (p. 454) in the text. Realize that the CdCO 3(s) is added to pure water. Some CdCO 3 is added to pure water that is open to the atmosphere; not all of the solid dissolves and the equilibrium ph is 8.1. What is the solubility product for CdCO 3(s)? SOLUTION: The solubility product will be for the reaction: CdCO 3(s) Cd 2+ + CO 3 2 and the solubility product will be defined as: K s0 = {Cd 2+ }{CO 3 2 } Thus, to find the solubility product, we need to know the activities of Cd 2+ and CO 3 2. Because it is an open system, the CO 3 2 activity can be calculated from the ph (8.1) and the pco 2 in the atmosphere (370 μatm). K H = {H 2 CO 3 }/pco 2 = 10 1.49 mole/l atm {H 2 CO 3 } = (10 1.49 mole/l atm) 370x10 6 atm = 1.2x10 7 K a1 = {HCO 3 }{H + }/{H 2 CO 3 } {HCO 3 ] = K a1 {H 2 CO 3 }/{H + } = 6.7x10 6 M K a2 = {CO 3 2 }{H + }/{HCO 3 } {CO 3 2 } = K a2 {HCO 3 }/{H + } = 3.96x10 8 M To obtain the Cd 2+ activity, it is suggested that we use the charge balance equation: [H + ] + 2[Cd 2+ ] = [OH ] + [HCO 3 ] + 2[CO 3 2 ] If activity coefficients are ignored, all quantities except [Cd 2+ ] are known, so we can rearrange to solve for this unknown: [Cd 2+ ] = ½ ([OH ] + [HCO 3 ] + 2[CO 3 2 ] [H + ]) = ½ (10 5.9 + 6.7x10 6 + 2(3.96x10 8 ) 10 8.1 ) [Cd 2+ ] = 4.0x10 6 M Continuing to ignore activity coefficients, the solubility product would be: K s0 = {Cd 2+ }{CO 3 2 } =( 4.0x10 6 )( 3.96x10 8 ) = 1.59x10 13 = 10 12.799 This value is close to the solubility product for Otavite (10 12.1 ). This discrepancy arises in part because we ignored activity coefficients and thereby underestimated the Cd 2+ concentration. 2. Problem 19.9 (p. 455) in the text. Use MINEQL. The mineral name for Mn(OH) 2(s) is pyrochroite, and for MnCO 3(s) is rhodochrosite. Part C will require some thinking. Solubility diagrams can be generated directly in MINEQL or the data can be copied to the clipboard and pasted into Excel for graphing. 19.9A. Draw a solubility diagram for Mn(+2) as a function of ph if Mn(OH) 2 controls the Mn solubility and MnCO 3(s) does not exist. Assume a total dissolved carbonate concentration of 2x10 3 M SOLUTION: This problem is easily solved using MINEQL. We must be sure that H 2 O, H +, Mn2+, and CO32 are checked as components. The header file would contain: MINEQL+ Header file for pyrochroite.mdo

ELECTRONEUTRALITY NOT GUARANTEED TEMPERATURE = 25.0 CELSIUS IONIC STRENGTH CORRECTIONS OFF NO SURFACE MODEL USED EPS = 1.0E 04 ID X LOGX T COMPONENTS 2 1.00D 20 20.00 1.000E 18 H2O 3 1.00D 07 7.00 1.000E 18 H(+) 23 2.00D 05 4.70 2.000E 03 CO3(2 ) 42 1.00D 02 2.00 1.000E+00 Mn(2+) ID NAME LOGK DELH SPECIES: TYPE III FIXED SOLIDS 197600 PYROCHROITE 15.194 23.186 H2O 2.0 H(+) 2.0 Mn(2+) 1.0 3801 H2O (Solution).000.000 H2O 1.0 175310 ph (+1).000.000 H(+) 1.0 ID NAME LOGK DELH SPECIES: TYPE VI SPECIES NOT CONSIDERED 175300 CO2 (g) 21.647.970 H2O 1.0 H(+) 2.0 CO3(2 ) 1.0 224800 RHODOCHROSITE 10.580.449 CO3(2 ) 1.0 Mn(2+) 1.0 The resultant solubility diagram is shown below: B. Draw the solubility diagram for Mn(2+) as a function of ph if Mn(OH) 2(s) does not exist and MnCO 3(s) (Rhodochrosite) controls the solubility. SOLUTION: Again, this is easily done in MINEQL. The same components must be checked as before. The only difference is that pyrochroite is moved to species not considered (Type VI) and Rhodochrocite is moved to Type III (fixed solids). The header file should look similar to this:

MINEQL+ Header file for rhodo.mdo $$$ INPUT DATA $$$ ELECTRONEUTRALITY NOT GUARANTEED TEMPERATURE = 25.0 CELSIUS IONIC STRENGTH CORRECTIONS OFF NO SURFACE MODEL USED EPS = 1.0E 04 ID X LOGX T COMPONENTS 2 1.00D 20 20.00 1.000E 18 H2O 3 1.00D 07 7.00 1.000E 18 H(+) 23 2.00D 05 4.70 2.000E 03 CO3(2 ) 42 1.00D 02 2.00 1.000E+00 Mn(2+) ID NAME LOGK DELH SPECIES: TYPE I COMPONENTS 2 H2O.000.000 H2O 1.0 3 H(+).000.000 H(+) 1.0 23 CO3(2 ).000.000 CO3(2 ) 1.0 42 Mn(2+).000.000 Mn(2+) 1.0 ID NAME LOGK DELH SPECIES: TYPE II COMPLEXES 3800 OH ( 1) 13.997 13.339 H2O 1.0 H(+) 1.0 18000 MnOH+ (+1) 10.597 13.339 H2O 1.0 H(+) 1.0 Mn(2+) 1.0 18100 Mn(OH)3 ( 1) 34.800.000 H2O 3.0 H(+) 3.0 Mn(2+) 1.0 18101 Mn(OH)4 2 ( 2) 48.288.000 H2O 4.0 H(+) 4.0 Mn(2+) 1.0 31700 H2CO3 (aq) 16.681 5.679 H(+) 2.0 CO3(2 ) 1.0 31800 HCO3 ( 1) 10.329 3.490 H(+) 1.0 CO3(2 ) 1.0 32100 MnHCO3+ (+1) 11.629 2.534 H(+) 1.0 CO3(2 ) 1.0 Mn(2+) 1.0 ID NAME LOGK DELH SPECIES: TYPE III FIXED SOLIDS 224800 RHODOCHROSITE 10.580.449 CO3(2 ) 1.0 Mn(2+) 1.0 3801 H2O (Solution).000.000 H2O 1.0 175310 ph (+1).000.000 H(+) 1.0 ID NAME LOGK DELH SPECIES: TYPE VI SPECIES NOT CONSIDERED 175300 CO2 (g) 21.647.970 H2O 1.0 H(+) 2.0 CO3(2 ) 1.0 197600 PYROCHROITE 15.194 23.186 H2O 2.0 H(+) 2.0 Mn(2+) 1.0 The solubility diagram should look as shown below.

C. Draw a solubility diagram for Mn(2+) as a function of ph assuming both solids exist. SOLUTION: Simply combining the two figures above gives us the required figure as shown below. Mn concentrations are controlled by the least soluble solid; below ph 8 the concentration is controlled by Rhodochrocite, and above ph 8, concentrations are regulated by phyrochroite. 3. Problem 19.11 (p. 456) in the text. A. Manganese can form two common solids in natural waters, MnO 2(s) and Mn(OH) 2(s). Which of these solids controls the Mn solubility at ph 8 and pe 7? SOLUTION:

This problem is as easily done by hand as with MINEQL. Each solid dissolves to yield one mole of Mn 2+ per mole of solid dissolved. Hence, if there is no other source of dissolved Mn, the Mn concentration will equal the mineral solubility. For Mn(OH) 2(s), the solubility (S) may be calculated as: S = [Mn 2+ ] = K s0 /{OH } 2 = 10 12.8 /10 12 = 10 0.8 = 0.158 M For MnO 2(s) it is easiest to start with the Nernst equation applied to the following reaction: MnO 2(s) + 2e + 4H + Mn 2+ + 2H 2 O pe = pe o + 1/n log({h + } 4 /{Mn 2+ }) At pe = 8 we can solve for {Mn 2+ } which equals the solubility: {Mn 2+ } = {H + } 4 / 10 n (pe pe0) = 10 28 /10 2(8 20.5) = 10 3 Because the solubility for MnO 2 is smaller, it would control the concentration of Mn under the stated pe and ph conditions. B. Sketch a pe ph diagram for the equilibrium between MnO 2(s) and Mn(OH) 2(s). SOLUTION: We are only asked for the equilibrium line between these two species. We must simply combine the two reactions given above: MnO 2(s) + 2e + 4H + Mn 2+ + 2H 2 O pe o = 20.5 logk = 40.9 Mn 2+ + 2OH Mn(OH) 2(s) logk = 12.8 MnO 2(s) + 2e +2H + Mn(OH) 2(s) pe 0 = 26.9 logk = 53.7 pe = pe o + 1/n log({h + } 2 /1) = 26.9 1/2 2 ph = 26.9 ph This line is shown on the graph below together with the boundaries for water. The diagram suggests that these two solids should not coexist in water but only at higher oxidation potentials. We would therefore expect Mn(OH) 2(s) to be the predominant mineral encountered in natural waters. 4. Problem 19.12 (p.456) in the text.

5. Use MINEQL and calculate the solubility of cerargyrite (AgCl) as a function of ionic strength over the range 0.0001 < I < 0.1 M. It is not possible to titrate with ionic strength, so you will have to do multiple single runs. Make a plot of solubility vs. ionic strength, and explain qualitatively the trend. SOLUTION: We will assume a ph of 7. The graph below shows that solubility increases only 30% between ionic strength of 10 5 and 10 1 M. The increase in solubility is a result of the decrease in activity coefficients with increasing ionic strength; in other words, the effective concentrations of ions decreases the more ions there are in solution to shield one ion from another. 6. Calculate the solubility of malachite (Cu 2 CO 3 (OH) 2(S) ) in pure water and in ground water that has an alkalinity of 2 meq/l. In which situation is the solubility higher? Why? This problem could be done easily with MINEQL. SOLUTION: To calculate the solubility in pure water using MINEQL, one would enter components of Cu2+ and CO3(2 ). MINEQL should calculate ph based on electroneutrality; total carbonate may be entered as a very low value. All solids except malachite should be moved to type VI (not considered); malachite should be moved to type III (fixed). The header file should contain: MINEQL+ Header file for mala.mdo $$$ INPUT DATA $$$ OPTIONS: IADS= 0 IONIT= 1 IONPH= 0 IPHFX= 0 IPHA= 0 IPHB= 0 ITITL= 0 IPCP=0 ICND=0 SOLUTION IS ELECTRICALLY NEUTRAL TEMPERATURE = 25.0 CELSIUS IONIC STRENGTH CALCULATED FROM SPECIES NO SURFACE MODEL USED EPS = 1.0E 04 ID X LOGX T COMPONENTS 2 1.00D 20.00 1.000E 18 H2O 3 1.00D 07 7.00 0.000E+00 H(+) 23 1.00D 11.00 1.000E 18 CO3(2 )

30 1.00D 02.00 1.000E 18 Cu(2+) ID NAME LOGK DELH SPECIES: TYPE I COMPONENTS 2 H2O.000.000 H2O 1.0 3 H(+).000.000 H(+) 1.0 23 CO3(2 ).000.000 CO3(2 ) 1.0 30 Cu(2+).000.000 Cu(2+) 1.0 ID NAME LOGK DELH SPECIES: TYPE II COMPLEXES 3800 OH ( 1) 13.997 13.339 H2O 1.0 H(+) 1.0 13100 Cu2(OH)2+2 (+2) 10.594 18.313 H2O 2.0 H(+) 2.0 Cu(2+) 2.0 13200 Cu(OH)3 ( 1) 26.879.000 H2O 3.0 H(+) 3.0 Cu(2+) 1.0 13300 Cu(OH)4 2 ( 2) 39.980.000 H2O 4.0 H(+) 4.0 Cu(2+) 1.0 13400 CuOH+ (+1) 7.497 8.559 H2O 1.0 H(+) 1.0 Cu(2+) 1.0 13500 Cu(OH)2 (aq) 16.194.000 H2O 2.0 H(+) 2.0 Cu(2+) 1.0 31700 H2CO3 (aq) 16.681 5.679 H(+) 2.0 CO3(2 ) 1.0 31800 HCO3 ( 1) 10.329 3.490 H(+) 1.0 CO3(2 ) 1.0 31900 CuHCO3+ (+1) 12.129.000 H(+) 1.0 CO3(2 ) 1.0 Cu(2+) 1.0 95100 CuCO3 (aq) 6.770.000 CO3(2 ) 1.0 Cu(2+) 1.0 95200 Cu(CO3)2 2 ( 2) 10.200.000 CO3(2 ) 2.0 Cu(2+) 1.0 ID NAME LOGK DELH SPECIES: TYPE III FIXED SOLIDS 190600 MALACHITE 5.306 18.255 H2O 2.0 H(+) 2.0 CO3(2 ) 1.0 Cu(2+) 2.0 3801 H2O (Solution).000.000 H2O 1.0 ID NAME LOGK DELH SPECIES: TYPE VI SPECIES NOT CONSIDERED 175310 ph (+1) 7.000.000 H(+) 1.0 175300 CO2 (g) 21.647.970 H2O 1.0 H(+) 2.0 CO3(2 ) 1.0 190500 AZURITE 16.906 22.758 H2O 2.0 H(+) 2.0 CO3(2 ) 2.0 Cu(2+) 3.0 192400 TENORITE 7.644 15.504 H2O 1.0 H(+) 2.0 Cu(2+) 1.0 192500 Cu(OH)2 8.674 13.485 H2O 2.0 H(+) 2.0 Cu(2+) 1.0 224300 CuCO3 11.500.000 CO3(2 ) 1.0 Cu(2+) 1.0 The total soluble Cu under these circumstances is 1.76 μm; because there are two Cu atoms per molecule of malachite, the solubility is one half this value or 0.88 μm. The ph is 8.0 and the total alkalinity is 1.9 μeq/l. In a ground water with alkalinity of 2 meq/l, if all of the alkalinity were associated with Ca 2+, the ph would be about 7.3 (see Fig. 19.7 in the text). At this ph and alkalinity, the header file should look like: MINEQL+ Header file for mala2.mdo $$$ INPUT DATA $$$ OPTIONS: IADS= 0 IONIT= 1 IONPH= 0 IPHFX= 0 IPHA= 0 IPHB= 0 ITITL= 0 IPCP=0 ICND=0 ELECTRONEUTRALITY NOT GUARANTEED TEMPERATURE = 25.0 CELSIUS IONIC STRENGTH CALCULATED FROM SPECIES NO SURFACE MODEL USED EPS = 1.0E 04 ID X LOGX T COMPONENTS 2 1.00D 20 20.00 1.000E 18 H2O 3 1.00D 07 7.00 1.000E 18 H(+) 16 1.00D 05 5.00 1.000E 03 Ca(2+)

23 2.24D 05 4.65 2.222E 03 CO3(2 ) 30 1.00D 08 8.00 1.000E 06 Cu(2+) ID NAME LOGK DELH SPECIES: TYPE I COMPONENTS 2 H2O.000.000 H2O 1.0 3 H(+).000.000 H(+) 1.0 16 Ca(2+).000.000 Ca(2+) 1.0 23 CO3(2 ).000.000 CO3(2 ) 1.0 30 Cu(2+).000.000 Cu(2+) 1.0 ID NAME LOGK DELH SPECIES: TYPE II COMPLEXES 3800 OH ( 1) 13.997 13.339 H2O 1.0 H(+) 1.0 7300 CaOH+ (+1) 12.697 15.323 H2O 1.0 H(+) 1.0 Ca(2+) 1.0 13100 Cu2(OH)2+2 (+2) 10.594 18.313 H2O 2.0 H(+) 2.0 Cu(2+) 2.0 13200 Cu(OH)3 ( 1) 26.879.000 H2O 3.0 H(+) 3.0 Cu(2+) 1.0 13300 Cu(OH)4 2 ( 2) 39.980.000 H2O 4.0 H(+) 4.0 Cu(2+) 1.0 13400 CuOH+ (+1) 7.497 8.559 H2O 1.0 H(+) 1.0 Cu(2+) 1.0 13500 Cu(OH)2 (aq) 16.194.000 H2O 2.0 H(+) 2.0 Cu(2+) 1.0 28400 CaHCO3+ (+1) 11.599 1.291 H(+) 1.0 Ca(2+) 1.0 CO3(2 ) 1.0 31700 H2CO3 (aq) 16.681 5.679 H(+) 2.0 CO3(2 ) 1.0 31800 HCO3 ( 1) 10.329 3.490 H(+) 1.0 CO3(2 ) 1.0 31900 CuHCO3+ (+1) 12.129.000 H(+) 1.0 CO3(2 ) 1.0 Cu(2+) 1.0 71800 CaCO3 (aq) 3.200 3.824 Ca(2+) 1.0 CO3(2 ) 1.0 95100 CuCO3 (aq) 6.770.000 CO3(2 ) 1.0 Cu(2+) 1.0 95200 Cu(CO3)2 2 ( 2) 10.200.000 CO3(2 ) 2.0 Cu(2+) 1.0 ID NAME LOGK DELH SPECIES: TYPE III FIXED SOLIDS 190600 MALACHITE 5.306 18.255 H2O 2.0 H(+) 2.0 CO3(2 ) 1.0 Cu(2+) 2.0 3801 H2O (Solution).000.000 H2O 1.0 175310 ph (+1) 7.300.000 H(+) 1.0 ID NAME LOGK DELH SPECIES: TYPE VI SPECIES NOT CONSIDERED 175300 CO2 (g) 21.647.970 H2O 1.0 H(+) 2.0 CO3(2 ) 1.0 186700 LIME 32.699 46.346 H2O 1.0 H(+) 2.0 Ca(2+) 1.0 186800 PORTLANDITE 22.804 30.741 H2O 2.0 H(+) 2.0 Ca(2+) 1.0 190500 AZURITE 16.906 22.758 H2O 2.0 H(+) 2.0 CO3(2 ) 2.0 Cu(2+) 3.0 192400 TENORITE 7.644 15.504 H2O 1.0 H(+) 2.0 Cu(2+) 1.0 192500 Cu(OH)2 8.674 13.485 H2O 2.0 H(+) 2.0 Cu(2+) 1.0 218800 ARAGONITE 8.300 2.868 Ca(2+) 1.0 CO3(2 ) 1.0 218900 CALCITE 8.480 1.912 Ca(2+) 1.0 CO3(2 ) 1.0 224300 CuCO3 11.500.000 CO3(2 ) 1.0 Cu(2+) 1.0 Under these circumstances, the total dissolved Cu is predicted to be 1.05 μm or 40% lower than in the absence of the background bicarbonate. The solubility again is ½ the Cu concentration of 0.52 μm. The presence of carbonate ions from other sources lowers the solubility (common ion effect). 7. The total dissolved concentration of Cu(II) in Torch Lake is 20 μg/l. Given the ion concentrations that you measured (summarized in the table below), is the lake water in equilibrium with any of the copper minerals included in MINEQL? Which mineral do you think may be regulating the concentration of Cu in the lake? Explain your answer. Substance Conc. Units Temperature 18.9 o C ph 8.09 Ionic Strength 1.6 mm Na + 445 μm

K + 25 μm Ca 2+ 440 μm Mg 2+ 150 μm Cl 365 μm NO 3 50 μm 2 SO 4 5 μm Alkalinity 988 μeq/l SOLUTION: If all components are entered into MINEQL, the header file resembles this: MINEQL+ Header file for torch.mdo $$$ INPUT DATA $$$ OPTIONS: IADS= 0 IONIT= 1 IONPH= 0 IPHFX= 0 IPHA= 0 IPHB= 0 ITITL= 0 IPCP=0 ICND=0 ELECTRONEUTRALITY NOT GUARANTEED TEMPERATURE = 19.0 CELSIUS IONIC STRENGTH CALCULATED FROM SPECIES NO SURFACE MODEL USED EPS = 1.0E 04 ID X LOGX T COMPONENTS 2 1.00D 20 20.00 1.000E 18 H2O 3 1.00D 07 7.00 1.000E 18 H(+) 16 4.37D 06 5.36 4.400E 04 Ca(2+) 19 3.63D 06 5.44 3.650E 04 Cl( ) 23 1.00D 05 5.00 9.989E 04 CO3(2 ) 30 3.09D 09 8.51 3.100E 07 Cu(2+) 38 2.51D 07 6.60 2.500E 05 K(+) 41 1.51D 06 5.82 1.500E 04 Mg(2+) 45 4.47D 06 5.35 4.450E 04 Na(+) 50 5.01D 07 6.30 5.000E 05 NO3( ) 68 5.01D 08 7.30 5.000E 06 SO4(2 ) ID NAME LOGK DELH SPECIES: TYPE I COMPONENTS 2 H2O.000.000 H2O 1.0 3 H(+).000.000 H(+) 1.0 16 Ca(2+).000.000 Ca(2+) 1.0 19 Cl( ).000.000 Cl( ) 1.0 23 CO3(2 ).000.000 CO3(2 ) 1.0 30 Cu(2+).000.000 Cu(2+) 1.0 38 K(+).000.000 K(+) 1.0 41 Mg(2+).000.000 Mg(2+) 1.0 45 Na(+).000.000 Na(+) 1.0 50 NO3( ).000.000 NO3( ) 1.0 68 SO4(2 ).000.000 SO4(2 ) 1.0 ID NAME LOGK DELH SPECIES: TYPE II COMPLEXES 3800 OH ( 1) 13.997 13.339 H2O 1.0 H(+) 1.0 7300 CaOH+ (+1) 12.697 15.323 H2O 1.0 H(+) 1.0 Ca(2+) 1.0

13100 Cu2(OH)2+2 (+2) 10.594 18.313 H2O 2.0 H(+) 2.0 Cu(2+) 2.0 13200 Cu(OH)3 ( 1) 26.879.000 H2O 3.0 H(+) 3.0 Cu(2+) 1.0 13300 Cu(OH)4 2 ( 2) 39.980.000 H2O 4.0 H(+) 4.0 Cu(2+) 1.0 13400 CuOH+ (+1) 7.497 8.559 H2O 1.0 H(+) 1.0 Cu(2+) 1.0 13500 Cu(OH)2 (aq) 16.194.000 H2O 2.0 H(+) 2.0 Cu(2+) 1.0 17900 MgOH+ (+1) 11.397 16.207 H2O 1.0 H(+) 1.0 Mg(2+) 1.0 28400 CaHCO3+ (+1) 11.599 1.291 H(+) 1.0 Ca(2+) 1.0 CO3(2 ) 1.0 31700 H2CO3 (aq) 16.681 5.679 H(+) 2.0 CO3(2 ) 1.0 31800 HCO3 ( 1) 10.329 3.490 H(+) 1.0 CO3(2 ) 1.0 31900 CuHCO3+ (+1) 12.129.000 H(+) 1.0 CO3(2 ) 1.0 Cu(2+) 1.0 32000 MgHCO3+ (+1) 11.339 2.534 H(+) 1.0 CO3(2 ) 1.0 Mg(2+) 1.0 32200 NaHCO3 (aq) 10.079 6.771 H(+) 1.0 CO3(2 ) 1.0 Na(+) 1.0 43900 HSO4 ( 1) 1.990 5.258 H(+) 1.0 SO4(2 ) 1.0 71800 CaCO3 (aq) 3.200 3.824 Ca(2+) 1.0 CO3(2 ) 1.0 71901 CaNO3+ (+1).500 1.291 Ca(2+) 1.0 NO3( ) 1.0 72300 CaSO4 (aq) 2.360 1.697 Ca(2+) 1.0 SO4(2 ) 1.0 89000 CuCl3 ( 1) 2.290 13.690 Cl( ) 3.0 Cu(2+) 1.0 89100 CuCl2 (aq).260 10.560 Cl( ) 2.0 Cu(2+) 1.0 89200 CuCl4 2 1 ( 2) 4.590 7.780 Cl( ) 4.0 Cu(2+) 1.0 89300 CuCl+ (+1).200 1.984 Cl( ) 1.0 Cu(2+) 1.0 95100 CuCO3 (aq) 6.770.000 CO3(2 ) 1.0 Cu(2+) 1.0 95200 Cu(CO3)2 2 ( 2) 10.200.000 CO3(2 ) 2.0 Cu(2+) 1.0 95300 MgCO3 (aq) 2.920 2.868 CO3(2 ) 1.0 Mg(2+) 1.0 95400 NaCO3 ( 1) 1.270 4.864 CO3(2 ) 1.0 Na(+) 1.0 104203 Cu(NO3)2 (aq).400.000 Cu(2+) 1.0 NO3( ) 2.0 104204 CuNO3+ (+1).500.980 Cu(2+) 1.0 NO3( ) 1.0 104800 CuSO4 (aq) 2.360 2.079 Cu(2+) 1.0 SO4(2 ) 1.0 129700 KSO4 ( 1).850.980 K(+) 1.0 SO4(2 ) 1.0 133400 MgSO4 (aq) 2.260 1.386 Mg(2+) 1.0 SO4(2 ) 1.0 141100 NaSO4 ( 1).730.239 Na(+) 1.0 SO4(2 ) 1.0 ID NAME LOGK DELH SPECIES: TYPE III FIXED SOLIDS 3801 H2O (Solution).000.000 H2O 1.0 175310 ph (+1) 8.090.000 H(+) 1.0 ID NAME LOGK DELH SPECIES: TYPE VI SPECIES NOT CONSIDERED 175300 CO2 (g) 21.647.970 H2O 1.0 H(+) 2.0 CO3(2 ) 1.0 186700 LIME 32.699 46.346 H2O 1.0 H(+) 2.0 Ca(2+) 1.0 186800 PORTLANDITE 22.804 30.741 H2O 2.0 H(+) 2.0 Ca(2+) 1.0 189300 ATACAMITE 7.391 22.330 H2O 3.0 H(+) 3.0 Cl( ) 1.0 Cu(2+) 2.0 190500 AZURITE 16.906 22.758 H2O 2.0 H(+) 2.0 CO3(2 ) 2.0 Cu(2+) 3.0 190600 MALACHITE 5.306 18.255 H2O 2.0 H(+) 2.0 CO3(2 ) 1.0 Cu(2+) 2.0 190800 ARTINITE 9.600 28.742 H2O 5.0 H(+) 2.0 CO3(2 ) 1.0 Mg(2+) 2.0 190900 HYDROMAGNESITE 8.766 52.210 H2O 6.0 H(+) 2.0 CO3(2 ) 4.0 Mg(2+) 5.0 192400 TENORITE 7.644 15.504 H2O 1.0 H(+) 2.0 Cu(2+) 1.0 192500 Cu(OH)2 8.674 13.485 H2O 2.0 H(+) 2.0 Cu(2+) 1.0 192700 Cu2(OH)3NO3 9.251 17.350 H2O 3.0 H(+) 3.0 Cu(2+) 2.0 NO3( ) 1.0 193000 ANTLERITE 8.788.000 H2O 4.0 H(+) 4.0 Cu(2+) 3.0 SO4(2 ) 1.0 193100 CuOCuSO4 10.303 32.929 H2O 1.0 H(+) 2.0 Cu(2+) 2.0 SO4(2 ) 1.0 193200 BROCHANTITE 15.222 48.485 H2O 6.0 H(+) 6.0 Cu(2+) 4.0 SO4(2 ) 1.0 193300 LANGITE 17.489 39.567 H2O 7.0 H(+) 6.0 Cu(2+) 4.0 SO4(2 ) 1.0 196600 PERICLASE 21.584 36.145 H2O 1.0 H(+) 2.0 Mg(2+) 1.0 196700 BRUCITE 16.844 27.246 H2O 2.0 H(+) 2.0 Mg(2+) 1.0

196702 Mg(OH)2 (active) 18.794.000 H2O 2.0 H(+) 2.0 Mg(2+) 1.0 204700 GYPSUM 4.610.239 H2O 2.0 Ca(2+) 1.0 SO4(2 ) 1.0 205800 NESQUEHONITE 4.670 5.789 H2O 3.0 CO3(2 ) 1.0 Mg(2+) 1.0 205900 THERMONATRITE.637 2.505 H2O 1.0 CO3(2 ) 1.0 Na(+) 2.0 206000 NATRON 1.311 15.745 H2O 10.0 CO3(2 ) 1.0 Na(+) 2.0 206400 CHALCANTHITE 2.640 1.440 H2O 5.0 Cu(2+) 1.0 SO4(2 ) 1.0 207100 EPSOMITE 2.127 2.763 H2O 7.0 Mg(2+) 1.0 SO4(2 ) 1.0 207200 MIRABILITE 1.114 18.987 H2O 10.0 Na(+) 2.0 SO4(2 ) 1.0 218800 ARAGONITE 8.300 2.868 Ca(2+) 1.0 CO3(2 ) 1.0 218900 CALCITE 8.480 1.912 Ca(2+) 1.0 CO3(2 ) 1.0 219100 HUNTITE 29.968 25.760 Ca(2+) 1.0 CO3(2 ) 4.0 Mg(2+) 3.0 219200 DOLOMITE (ordered) 17.090 9.441 Ca(2+) 1.0 CO3(2 ) 2.0 Mg(2+) 1.0 219201 ~ 16.540 11.090 Ca(2+) 1.0 CO3(2 ) 2.0 Mg(2+) 1.0 219900 ANHYDRITE 4.360 1.721 Ca(2+) 1.0 SO4(2 ) 1.0 221400 MELANOTHALLITE 6.257 15.155 Cl( ) 2.0 Cu(2+) 1.0 221800 HALITE 1.603.884 Cl( ) 1.0 Na(+) 1.0 224300 CuCO3 11.500.000 CO3(2 ) 1.0 Cu(2+) 1.0 224700 MAGNESITE 7.460 4.780 CO3(2 ) 1.0 Mg(2+) 1.0 227000 CuSO4 2.939 17.457 Cu(2+) 1.0 SO4(2 ) 1.0 230200 THENARDITE.322 2.180 Na(+) 2.0 SO4(2 ) 1.0 From the special reports, the solids saturation index may be used to see how close different minerals are to equilibrium. The report shows to following for minerals containing Cu: SOLIDS SATURATION INDEX SUMMARY SI Sample ph AZURITE MALACHIT 1 8.090 2.010 0.368 ~ Sample ARTINITE HYDROMAG TENORITE Cu(OH)2 Cu2(OH)3 1 7.015 16.739 0.271 0.729 5.629 Sample ANTLERIT CuOCuSO4 BROCHANT LANGITE PERICLAS 1 5.947 16.105 4.962 7.095 9.865 The only two minerals with SI close to zero are malachite (SI = 0.368) and tenorite (SI = 0.271). Both are slightly supersaturated. Because we did not account for the DOC in the lake, MINEQL likely overestimated the free Cu 2+ concentration and thereby overestimated the SI for all of the minerals. All that we can say with certainty is that malachite and tenorite are the two minerals that might potentially be regulating Cu concentrations in Torch Lake as evidenced by the fact that they are the closest to equilibrium concentrations estimated by MINEQL. Because all other minerals are predicted to be highly undersaturated, it is highly unlikely that these other minerals are present. If any of them are present, they are not regulating the Cu concentration because they are far from equilibrium.

8. It is generally desirable to have a Langelier Index of slightly greater than 0.5 in drinking water to prevent dissolution of metals (Cu, Pb) from the pipes into the water. What is the Langelier Index of the Houghton tap water at room temperature (21 o C)? What would be the Langelier Index of the same water when it is heated to 50 o C? Is scale formation likely to occur at either temperature? The ph sat is easily calculated using MINEQL. The measured ph of the water was 8.03 and the alkalinity was 2.66 meq/l. The ionic strength was 4.8 mm. SOLUTION: I did not do a very good job of giving you the correct information that you needed to do this problem correctly. To calculate a Langelier Index, you need measured values for Ca, HCO 3, and ph. I misread the table when I gave the ph value above; the correct value is 7.8. I neglected to give the Ca concentration which was 1355 μm. The problem can be done either manually or with MINEQL. The equation for LI is: LI = ph act ph sat where ph sat is given by: ph sat = log(γγ) +pca + phco 3 + pk a2 pk sp At an ionic strength of 0.0048, the activity coefficients may be calculated to be 0.93 and 0.74 (log(γ) = Az 2 I 0.5 /(1+I 0.5 )). The equilibrium constants must be corrected for temperature using the van t Hoff equation: ln(k 2 /K 1 ) = ΔH/R (1/T 1 1/T 2 ) Values of ΔH rxn may be calculated from values of ΔH formation that are tabulated in MINEQL as well as in most Aquatic Chemistry texts except the one that we are using this year. Temperature ΔH (kj/mole) log(k a2 ) ΔH (kj/mole) log(k sp ) 25 o C 14.9 10.329 12.53 8.48 21 o C 10.36 8.45 50 o C 10.13 8.65 Having the values above, one can calculate the ph sat to be 7.52 at 21 o and 7.08 at 50 o C. These, in turn yield LI values of 0.28 and 0.72. The LI values indicate that calcite is supersaturated at both temperatures, but the degree of supersaturation increases with increasing temperature. Calcite is more likely to precipitate at high temperature than at low temperature because of the lower solubility at high temperature (seen in the negative enthalpy value). To solve this with MINEQL one enters the total Ca given above, allows MINEQL to calculate CO3(2 ) from alkalinity and measured ph, but also allows MINEQL to calculate ph based on the total H concentration (TotH). The total hydrogen concentration is the sum of all of the forms in which H is bound: TotH = [H + ] + [HCO 3 ] + 2[H 2 CO 3 ] [OH ] In this case, it is essentially equal to the [HCO 3 ] or 2.66x10 3 M. All solids except calcite are moved to type VI (not considered), and calcite is moved to a fixed solid (Type III). Ionic strength is set at the stated value, and temperature is set to 21 o C. The ph sat calculated by MINEQL is 7.637 which gives a LI of 0.18, slightly below the value of 0.28 calculated by hand. The discrepancy is likely due to MINEQL s ability to consider all other simultaneous equilibria. Similarly, at 50 o C, the calculated ph sat is 7.335 which gives an LI value of 0.46, again lower than the hand calculated value. 9. The Chassell well water is slightly corrosive (i.e., LI < 0) due to the oxidation of reduced Fe. One option to prevent pipe corrosion would be to add CaCO 3 to the water. Make a plot of the Langelier Index vs. the concentration of CaCO 3 added to the water. What dose would be required to reach a LI of 0.6? The ionic composition of this water is summarized in the table below.

Substance Conc. Units Temperature 25 o C ph 8.1 Ionic Strength 2.3 mm Na + 145 μm K + 95 μm Ca 2+ 680 μm Mg 2+ 195 μm Cl 290 μm NO 3 460 μm 2 SO 4 25 μm Alkalinity 960 μeq/l DIC 975 μm SOLUTION: This problem is similar to the previous one. To solve it manually is challenging because we must calculate the actual ph after each addition of CaCO 3 ; we know the new total Ca and carbonate concentrations as well as the new alkalinity. The nice thing about the carbonate system is that knowing any two parameters allows one to calculate the others. To calculate ph from C T CO3 and alkalinity, one must solve a quartic equation that expresses {H + } as a function of DIC and alkalinity. [H + ] 4 + (Alk + K a1 )[H + ] 3 + (Alk K a1 K w + K a1 K a2 DIC K a1 )[H + ] 2 + (Alk K a1 K a2 K w K a1 2DIC K a1 K a2 )[H + ] K w K a1 K a2 = 0 The calculated initial ph (6.93) is lower than the estimate given above, but may be just as accurate of an estimate. Calculation of ph sat is straightforward because one knows the Ca 2+ and alkalinity after each addition of CaCO 3. ph sat = log(γγ) +pca + phco 3 + pk a2 pk sp The data for these hand calculations are shown below. CaCO 3 added (mmole/l) ph actual ph sat LI 0 8.1 (6.93) 8.15 1.22 0.5 7.28 7.73 0.45 1.0 7.47 7.45 0.02 1.5 7.60 7.23 0.37 2.0 7.69 7.06 0.63

To solve the problem using MINEQL, is much more challenging than I realized. 10. A local entrepreneur has proposed to use the Houghton area stamp sands on roofing shingles. His rationale is that some copper will dissolve from the stamp sands into the rain, and the Cu concentrations will prevent the growth of algae on the roof; it is the decomposition of algae and bacteria that provides the nutrients for mosses to grow on roofs. Free Cu 2+ concentrations of 0.01 μm are enough to inhibit the growth of algae. The two primary copper minerals present in the aged stamp sands are tenorite (CuO) and malachite (CuCO 3 (OH) 2 ). Given the composition of rain water measured in class (see table below), what concentration of free Cu 2+ would you predict to be in rain water in contact with tenorite and malachite? Which mineral will control the concentration of Cu? Use MINEQL to answer this problem; think carefully about how you specify the carbonate system. Is the idea to use the stamp sands in roofing materials a good idea based on your calculations? Substance Conc. Units Temperature 25 o C ph 7.1 Ionic Strength 0.1 mm Na + 5 μm K + 0 μm Ca 2+ 50 μm Mg 2+ 7 μm Cl 0 μm NO 3 0 μm 2 SO 4 2 μm Alkalinity 100 μeq/l SOLUTION: One thing that MINEQL reveals is that not all of our measurements in the lab are internally self consistent. Rain is likely to be in equilibrium with atmospheric CO 2 and so we

should model the system as open. If we also fix the ph at our measured value of 7.1, we will find that MINEQL predicts a carbonate concentration of only 70 mm; thus, the measured alkalinity is too high for the measured ph. You must also realize that you can only specify one mineral as being in equilibrium at a time; one can put the other mineral in the dissolved solids category and see if it precipitates. So if we enter the measured cation concentrations as input, specify an open system that is in equilibrium with tenorite, MINEQL predicts that the ph will be 7.3, total carbonate will be 126 μm, total dissolved copper will be 0.2 μm, and free Cu 2+ will be 0.083 μm. Malachite is predicted to be undersaturated (SI = 1.05), and thus tenorite is controlling the solubility at this ph. Free Cu 2+ is predicted to be high enough (> 0.01 μm) to inhibit algal growth. If we tried to specify that Malachite was the fixed species and allowed tenorite to be a dissolved solid (Type V changing to Type IV if precipitation occurs), the program would give an error message because equilibrium with malachite could not be maintained. As shown in the lecture slides on the web, at circum neutral ph, tenorite is much less soluble than malachite. Malachite could continue to dissolve and tenorite to precipitate until the computer processor wore out; for that reason, an error message is generated. The header file and Cu summary output file are shown below. MINEQL+ Header file for rain2.mdo $$$ INPUT DATA $$$ OPTIONS: IADS= 0 IONIT= 1 IONPH= 0 IPHFX= 0 IPHA= 0 IPHB= 0 ITITL= 0 IPCP=0 ICND=0 SOLUTION IS ELECTRICALLY NEUTRAL TEMPERATURE = 25.0 CELSIUS IONIC STRENGTH FIXED CONCENTRATION NO SURFACE MODEL USED EPS = 1.0E 04 ID X LOGX T COMPONENTS 2 1.00D 20.00 1.000E 18 H2O 3 1.00D 07 7.00 1.150E 04 H(+) 16 5.01D 07 6.30 5.000E 05 Ca(2+) 23 1.00D 20.00 1.000E 18 CO3(2 ) 30 1.00D 09.00 1.000E 18 Cu(2+) 41 7.08D 08 7.15 7.000E 06 Mg(2+) 45 5.01D 08 7.30 5.000E 06 Na(+) 68 2.00D 08 7.70 2.000E 06 SO4(2 ) ID NAME LOGK DELH SPECIES: TYPE I COMPONENTS 2 H2O.000.000 H2O 1.0 3 H(+).000.000 H(+) 1.0 16 Ca(2+).000.000 Ca(2+) 1.0 23 CO3(2 ).000.000 CO3(2 ) 1.0 30 Cu(2+).000.000 Cu(2+) 1.0 41 Mg(2+).000.000 Mg(2+) 1.0 45 Na(+).000.000 Na(+) 1.0 68 SO4(2 ).000.000 SO4(2 ) 1.0

ID NAME LOGK DELH SPECIES: TYPE II COMPLEXES 3800 OH ( 1) 13.997 13.339 H2O 1.0 H(+) 1.0 7300 CaOH+ (+1) 12.697 15.323 H2O 1.0 H(+) 1.0 Ca(2+) 1.0 13100 Cu2(OH)2+2 (+2) 10.594 18.313 H2O 2.0 H(+) 2.0 Cu(2+) 2.0 13200 Cu(OH)3 ( 1) 26.879.000 H2O 3.0 H(+) 3.0 Cu(2+) 1.0 13300 Cu(OH)4 2 ( 2) 39.980.000 H2O 4.0 H(+) 4.0 Cu(2+) 1.0 13400 CuOH+ (+1) 7.497 8.559 H2O 1.0 H(+) 1.0 Cu(2+) 1.0 13500 Cu(OH)2 (aq) 16.194.000 H2O 2.0 H(+) 2.0 Cu(2+) 1.0 17900 MgOH+ (+1) 11.397 16.207 H2O 1.0 H(+) 1.0 Mg(2+) 1.0 28400 CaHCO3+ (+1) 11.599 1.291 H(+) 1.0 Ca(2+) 1.0 CO3(2 ) 1.0 31700 H2CO3 (aq) 16.681 5.679 H(+) 2.0 CO3(2 ) 1.0 31800 HCO3 ( 1) 10.329 3.490 H(+) 1.0 CO3(2 ) 1.0 31900 CuHCO3+ (+1) 12.129.000 H(+) 1.0 CO3(2 ) 1.0 Cu(2+) 1.0 32000 MgHCO3+ (+1) 11.339 2.534 H(+) 1.0 CO3(2 ) 1.0 Mg(2+) 1.0 32200 NaHCO3 (aq) 10.079 6.771 H(+) 1.0 CO3(2 ) 1.0 Na(+) 1.0 43900 HSO4 ( 1) 1.990 5.258 H(+) 1.0 SO4(2 ) 1.0 71800 CaCO3 (aq) 3.200 3.824 Ca(2+) 1.0 CO3(2 ) 1.0 72300 CaSO4 (aq) 2.360 1.697 Ca(2+) 1.0 SO4(2 ) 1.0 95100 CuCO3 (aq) 6.770.000 CO3(2 ) 1.0 Cu(2+) 1.0 95200 Cu(CO3)2 2 ( 2) 10.200.000 CO3(2 ) 2.0 Cu(2+) 1.0 95300 MgCO3 (aq) 2.920 2.868 CO3(2 ) 1.0 Mg(2+) 1.0 95400 NaCO3 ( 1) 1.270 4.864 CO3(2 ) 1.0 Na(+) 1.0 104800 CuSO4 (aq) 2.360 2.079 Cu(2+) 1.0 SO4(2 ) 1.0 133400 MgSO4 (aq) 2.260 1.386 Mg(2+) 1.0 SO4(2 ) 1.0 141100 NaSO4 ( 1).730.239 Na(+) 1.0 SO4(2 ) 1.0 ID NAME LOGK DELH SPECIES: TYPE III FIXED SOLIDS 192400 TENORITE 7.644 15.504 H2O 1.0 H(+) 2.0 Cu(2+) 1.0 175300 CO2 (g) 21.647.970 H2O 1.0 H(+) 2.0 CO3(2 ) 1.0 3801 H2O (Solution).000.000 H2O 1.0 ID NAME LOGK DELH SPECIES: TYPE V DISSOLVED SOLIDS 190600 MALACHITE 5.306 18.255 H2O 2.0 H(+) 2.0 CO3(2 ) 1.0 Cu(2+) 2.0 ID NAME LOGK DELH SPECIES: TYPE VI SPECIES NOT CONSIDERED 175310 ph (+1) 7.000.000 H(+) 1.0 186700 LIME 32.699 46.346 H2O 1.0 H(+) 2.0 Ca(2+) 1.0 186800 PORTLANDITE 22.804 30.741 H2O 2.0 H(+) 2.0 Ca(2+) 1.0 190500 AZURITE 16.906 22.758 H2O 2.0 H(+) 2.0 CO3(2 ) 2.0 Cu(2+) 3.0 190800 ARTINITE 9.600 28.742 H2O 5.0 H(+) 2.0 CO3(2 ) 1.0 Mg(2+) 2.0 190900 HYDROMAGNESITE 8.766 52.210 H2O 6.0 H(+) 2.0 CO3(2 ) 4.0 Mg(2+) 5.0 192500 Cu(OH)2 8.674 13.485 H2O 2.0 H(+) 2.0 Cu(2+) 1.0 193000 ANTLERITE 8.788.000 H2O 4.0 H(+) 4.0 Cu(2+) 3.0 SO4(2 ) 1.0 193100 CuOCuSO4 10.303 32.929 H2O 1.0 H(+) 2.0 Cu(2+) 2.0 SO4(2 ) 1.0 193200 BROCHANTITE 15.222 48.485 H2O 6.0 H(+) 6.0 Cu(2+) 4.0 SO4(2 ) 1.0 193300 LANGITE 17.489 39.567 H2O 7.0 H(+) 6.0 Cu(2+) 4.0 SO4(2 ) 1.0 196600 PERICLASE 21.584 36.145 H2O 1.0 H(+) 2.0 Mg(2+) 1.0 196700 BRUCITE 16.844 27.246 H2O 2.0 H(+) 2.0 Mg(2+) 1.0 196702 Mg(OH)2 (active) 18.794.000 H2O 2.0 H(+) 2.0 Mg(2+) 1.0 204700 GYPSUM 4.610.239 H2O 2.0 Ca(2+) 1.0 SO4(2 ) 1.0 205800 NESQUEHONITE 4.670 5.789 H2O 3.0 CO3(2 ) 1.0 Mg(2+) 1.0 205900 THERMONATRITE.637 2.505 H2O 1.0 CO3(2 ) 1.0 Na(+) 2.0 206000 NATRON 1.311 15.745 H2O 10.0 CO3(2 ) 1.0 Na(+) 2.0 206400 CHALCANTHITE 2.640 1.440 H2O 5.0 Cu(2+) 1.0 SO4(2 ) 1.0 207100 EPSOMITE 2.127 2.763 H2O 7.0 Mg(2+) 1.0 SO4(2 ) 1.0 207200 MIRABILITE 1.114 18.987 H2O 10.0 Na(+) 2.0 SO4(2 ) 1.0 218800 ARAGONITE 8.300 2.868 Ca(2+) 1.0 CO3(2 ) 1.0 218900 CALCITE 8.480 1.912 Ca(2+) 1.0 CO3(2 ) 1.0

219100 HUNTITE 29.968 25.760 Ca(2+) 1.0 CO3(2 ) 4.0 Mg(2+) 3.0 219200 DOLOMITE (ordered) 17.090 9.441 Ca(2+) 1.0 CO3(2 ) 2.0 Mg(2+) 1.0 219201 ~ 16.540 11.090 Ca(2+) 1.0 CO3(2 ) 2.0 Mg(2+) 1.0 219900 ANHYDRITE 4.360 1.721 Ca(2+) 1.0 SO4(2 ) 1.0 224300 CuCO3 11.500.000 CO3(2 ) 1.0 Cu(2+) 1.0 224700 MAGNESITE 7.460 4.780 CO3(2 ) 1.0 Mg(2+) 1.0 227000 CuSO4 2.939 17.457 Cu(2+) 1.0 SO4(2 ) 1.0 230200 THENARDITE.322 2.180 Na(+) 2.0 SO4(2 ) 1.0 Cu Component Species summary Obs.,Species ID, Name, Type, Conc., LogC, LogK, %Total, Stoch., 1, 30, Cu(2+), 1, 8.31e 8, 7.08, 0, 40.5, 1, 1, 13100, Cu2(OH)2(+2), 2, 9.33e 11, 10, 10.6, 0, 2, 1, 13200, Cu(OH)3( 1), 2, 1.39e 12, 11.9, 26.9, 0, 1, 1, 13300, Cu(OH)4( 2), 2, 2.68e 18, 17.6, 40, 0, 1, 1, 13400, CuOH(+1), 2, 6.02e 8, 7.22, 7.51, 29.3, 1, 1, 13500, Cu(OH)2 (aq) 2, 2.82e 9, 8.55, 16.2, 1.4, 1, 1, 31900, CuHCO 3 (+1), 2, 5.74e 10, 9.24, 12.1, 0, 1, 1, 95100, CuCO3 (aq 2, 5.85e 8, 7.23, 6.73, 28.5, 1, 1, 95200, Cu(CO3)2 ( 2) 2, 2.06e 11, 10.7, 10.2, 0, 1, 1, 104800, CuSO4 (aq 2, 3.43e 11, 10.5, 2.32, 0, 1, 1, 192400, TENORITE 3,,, 7.65,, 1, 1, 190600, MALACHITE 5 1.05, 5.26,, 2, 1, 190500, AZURITE 6, 0.00035, 3.46, 16.8,, 3, 1, 192500, Cu(OH)2 6, 0.0933, 1.03, 8.68,, 1, 1, 193000, ANTLERITE 6, 4.73e 7, 6.33, 8.85,, 3, 1, 193100, CuOCuSO4 6, 3.28e 16, 15.5, 10.3,, 2, 1, 193200, BROCHANTITE 6, 7.68e 6, 5.12, 15.3,, 4, 1, 193300, LANGITE 6, 4.15e 8, 7.38, 17.6,, 4, 1, 206400, CHALCANTHITE 6, 6.54e 11, 10.2, 2.6,, 1, 1, 224300, CuCO3 6, 0.00314, 2.5, 11.5,, 1, 1, 227000, CuSO4 6, 1.72e 16, 15.8, 2.98,, 1, 1, 600030, TOTAL Cu(2+) 7, 2.05e 7, 6.69,, 100,,