Paño Fijo M-Tres, con Poliamida de 15 Mediterránea RPT

Similar documents
Travesaño para Paño fijo y Puerta de Rebartir, con poliamida de 25

Puerta de Rebatir M-Tres (Lateral), con Poliamida de 25

Cálculo del coeficiente de transmisión térmica (Uf) Ventana y Puerta Corrediza M-Cinco (Lateral) Mediterránea RPT

Ventana y Puerta Corrediza M-Tres (Encuentro central), con Poliamida de 15 - Mediterránea RPT

SIMULATION OF FRAME CAVITY HEAT TRANSFER USING BISCO v10w

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

The Concrete Centre. Dynamic Thermal Properties Calculator

ASSOCIATION POUR LA CERTIFICATION DES MATERIAUX ISOLANTS

Calculating the heat transfer coefficient of frame profiles with internal cavities

MODULE 2: Worked-out Problems

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

INTRODUCTION. Keywords: thermal conductivity, thermal transmittance, measurement, calibrated hot box, guarded hot plate. MEASUREMENT METHODS

ME 501A Seminar in Engineering Analysis Page 1

Elements of Heat Transfer Analysis

Numerical modelization by finite differences of a thermoelectric refrigeration device of double jump". Experimental validation.

Lecture Notes on Linear Regression

The influence of the way of modelling the radiative heat transfer on the temperature distribution in a charge heated inductively

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as:

THE NUMERICAL MODELLING OF THE DIFFUSIVE-CONVECTIVE WATER VAPOUR TRANSPORT THROUGH THE BUILDING CONSTRUCTIONS. Zbynek Svoboda

Linear Approximation with Regularization and Moving Least Squares

A Fast Computer Aided Design Method for Filters

Customer: Ashton Industrial Sales Ltd. South Road, Harlow Essex CM20 2AR UNITED KINGDOM. Project/Customer: Profilex HM spacer

THERMAL SIMULATION REPORT. TCL2013-Origin-01 Prepared For:

1 GSW Iterative Techniques for y = Ax

Formal solvers of the RT equation

DUE: WEDS FEB 21ST 2018

Building energy modelling and simulations: qualitative and quantitative analysis

ONE DIMENSIONAL TRIANGULAR FIN EXPERIMENT. Technical Advisor: Dr. D.C. Look, Jr. Version: 11/03/00

HEAT TRANSFER IN ELECTRONIC PACKAGE SUBMITTED TO TIME-DEPENDANT CLIMATIC CONDITIONS

1099. Application of sound loudness research in structural-acoustic coupling cavity with impedance and mobility approach method

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

Constitutive Modelling of Superplastic AA-5083

Research & Reviews: Journal of Engineering and Technology

Model and program for the prediction of the indoor air temperature and the indoor air relative humidity

ENERGY SAVING SOLAR FACADE FOR NON-RESIDENTIAL BUILDINGS FOR CLIMATIC CONDITION IN THE CZECH REPUBLIC

DETERMINATION OF TEMPERATURE DISTRIBUTION FOR ANNULAR FINS WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY BY HPM

Report on Image warping

4DVAR, according to the name, is a four-dimensional variational method.

Outline. EM Algorithm and its Applications. K-Means Classifier. K-Means Classifier (Cont.) Introduction of EM K-Means EM EM Applications.

ISO INTERNATIONAL STANDARD. Thermal bridges in building construction Linear thermal transmittance Simplified methods and default values

Lecture 21: Numerical methods for pricing American type derivatives

Negative Binomial Regression

Economic and Social Council

Hans-Joachim Kretzschmar and Katja Knobloch

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Implementation of the Matrix Method

The Analysis of Convection Experiment

Unbalanced Nested ANOVA - Sokal & Rohlf Example

ORIGIN 1. PTC_CE_BSD_3.2_us_mp.mcdx. Mathcad Enabled Content 2011 Knovel Corp.

BIO Lab 2: TWO-LEVEL NORMAL MODELS with school children popularity data

Three-dimensional eddy current analysis by the boundary element method using vector potential

Ch 35 Images. Eunil Won Department of Physics Korea University. Fundamentals of Physics by Eunil Won, Korea University 1

MMA and GCMMA two methods for nonlinear optimization

A PROCEDURE FOR SIMULATING THE NONLINEAR CONDUCTION HEAT TRANSFER IN A BODY WITH TEMPERATURE DEPENDENT THERMAL CONDUCTIVITY.

Introduction to Dummy Variable Regressors. 1. An Example of Dummy Variable Regressors

TF Magnet. Inputs. Material Data. Physics Parameters. R0 plasma major radius B toroidal field at plasma major radius. Bounding Box for the Plasma

Ecuaciones diferenciales en derivadas parciales

Experiment 1 Mass, volume and density

Lecture 10 Support Vector Machines II

Lifetime prediction of EP and NBR rubber seal by thermos-viscoelastic model

DEVELOPMENT OF APPROACH TO OPTIMIZATION OF BUILDING ENVELOPE DESIGN IN ASPECT OF THERMAL COMFORT AND ENERGY USE. Ruey Lung Hwang 1, Fu Shun Tsai 2

METHOD OF IN-SITU MEASUREMENT OF THERMAL INSULATION PERFORMANCE OF BUILDING ELEMENTS USING INFRARED CAMERA

Definition. Measures of Dispersion. Measures of Dispersion. Definition. The Range. Measures of Dispersion 3/24/2014

Identification of Linear Partial Difference Equations with Constant Coefficients

Please review the following statement: I certify that I have not given unauthorized aid nor have I received aid in the completion of this exam.

Newton s Method for One - Dimensional Optimization - Theory

Finite Element Modelling of truss/cable structures

Module 3: Element Properties Lecture 1: Natural Coordinates

Internet Engineering. Jacek Mazurkiewicz, PhD Softcomputing. Part 3: Recurrent Artificial Neural Networks Self-Organising Artificial Neural Networks

Digital Signal Processing

FUZZY FINITE ELEMENT METHOD

Zeroth Law of Thermodynamics

MATH 829: Introduction to Data Mining and Analysis The EM algorithm (part 2)

Linear Classification, SVMs and Nearest Neighbors

Statistical Circuit Optimization Considering Device and Interconnect Process Variations

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient

polynomial interpolation a x

Chapter 20: Exercises: 3, 7, 11, 22, 28, 34 EOC: 40, 43, 46, 58

Noise from structure borne sound sources mounted on lightweight receivers; progress report from CEN/TC126/WG7

Average Air Temperature Inside a Room With a Semitransparent Wall With a Solar Control Film: Effect of The Emissivity

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

Lecture 10 Support Vector Machines. Oct

of PASSIVE Europa 92 door with 44mm & 48mm glazing for Zyle Fenster UAB J. Jasinskio 16a LT Lithuania

Boundaries, Near-field Optics

TREES Training for Renovated Energy Efficient Social housing

The Geometry of Logit and Probit

POLYMER MELT FLOW IN SUDDEN EXPANSIONS: THE EFFECTS OF VISCOUS HEATING

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Digital Speech Processing Lecture 14. Linear Predictive Coding (LPC)-Lattice Methods, Applications

Lab session: numerical simulations of sponateous polarization

ISO INTERNATIONAL STANDARD. Thermal performance of windows, doors and shutters Calculation of thermal transmittance Part 1: Simplified method

An Interactive Optimisation Tool for Allocation Problems

ME6750 Thermoelectrics Design and Materials

Homework Notes Week 7

RELIABILITY ASSESSMENT

Radiation Chapter 12 L8 (MMV031) Martin Andersson

Influence of the PCM Layer Location on the Multilayer Wall Thermal Performance

Supplementary material: Margin based PU Learning. Matrix Concentration Inequalities

1 Convex Optimization

Study on Non-Linear Dynamic Characteristic of Vehicle. Suspension Rubber Component

Transcription:

Cálculo del coefcente de transmsón térmca (f) Paño Fjo M-Tres, con Polamda de 15 Medterránea RPT Clente: Alcemar Cálculos realzados or Technoform BATEC Ibérca, s.l. Laa Cardona Tel: +34 93 238 64 38/ Fax: +34 93 415 40 37 Emal: tb-es@technoform.es Fecha: 06.04.2006 Resultados Ventana de rebatr RTP M-3 medante BISCO según norma EN ISO 10077-2:2003 Ventana de rebatr RTP M-3 medante RADCON con Know-How TECHNOFORM f = 4,19 W/m 2 K f = 3,40 W/m 2 K En este nforme se detemna el coefcente de transmsón térmca (f) medante dos métodos de cálculo dferentes: A) Alcando la norma EN ISO 10077-2:2003, y usando el software BISCO de la emresa Physbel. B) Alcando un método róo, know-how de Technoform, dónde se usa el software RADCON - tambén roedad de Physbel - y el valor fnal equvale aroxmadamente al resultado en el test de cálculo de nuestra HOT-BOX (La dferenca es de un 5%) según norma ISO/FDIS 12567:2000. 1

Contendo Dbujo sstema A) medante BISCO según norma EN ISO 10077-2:2003 Inut data BISCO Outut data BISCO Cálculo del coefcente de transmsón térmca (f) Isotermas Flujo de calor B) medante RADCON con Know-How TECHNOFORM Inut data RADCON Outut data RADCON Cálculo del coefcente de transmsón térmca (f) Dbujo sstema 2

A) medante BISCO según norma EN ISO 10077-2:2003 Inut data BISCO Col. Name Tye CEN-rule Couled lambda es t h [W/mK] [-] [ C] [W/m²K] 8 alumnum MATERIAL 160.000 28 nsulaton MATERIAL 0.035 44 olyamd renf. MATERIAL 0.300 60 EPDM MATERIAL 0.250 119 tem. sensor 1 MATERIAL 160.000 135 tem. sensor 2 MATERIAL 160.000 151 tem. sensor 3 MATERIAL 160.000 167 tem. sensor 4 MATERIAL 160.000 170 exteror BC_SIMPL HE 0.0 25.00 174 nteror (norma BC_SIMPL HI_NORML 20.0 7.70 182 nteror (reduc BC_SIMPL HI_REDC 20.0 5.00 214 cavty (CEN) EQIMAT CEN_VF_I NO 0.137 215 cavty (CEN) EQIMAT CEN_VF_I NO 0.048 216 cavty (CEN) EQIMAT CEN_VF_I NO 0.060 217 cavty (CEN) EQIMAT CEN_VF_I NO 0.108 218 cavty (CEN) EQIMAT CEN_VF_I NO 0.134 240 cavty (CEN) EQIMAT CEN_VF_E NO 0.094 241 cavty (CEN) EQIMAT CEN_VF_E NO 0.098 251 cavty <3x3 mm2 MATERIAL 0.034 252 cavty <2x2 mm2 MATERIAL 0.031 253 cavty <1x1 mm2 MATERIAL 0.028 Col. q ta hc qc tr C1 C2 C3 [W/m²] [ C] [W/m²K] [W/m] [ C] [-] [-] [-] 8 28 44 60 119 135 151 167 170 0 174 0 182 0 214 0.025 0.73 0.333333 215 0.025 0.73 0.333333 216 0.025 0.73 0.333333 217 0.025 0.73 0.333333 218 0.025 0.73 0.333333 240 0.025 0.73 0.333333 241 0.025 0.73 0.333333 251 252 253 Calculaton arameters Contour aroxmaton margn (trangulaton) = 0 xels 3

Iteraton cycles = 5 Recalculaton of CEN values (before each teraton cycle) Maxmum number of teratons (er teraton cycle) = 10000 Maxmum temerature dfference = 0.0001 C Max. heat flow dvergence for total object = 0.001 % Max. heat flow dvergence for any node = 1 % Outut data BISCO Col. Name Tye tmn tmax ta flow n flow out [ C] [ C] [ C] [W/m] [W/m] 8 alumnum MATERIAL 2.85 11.64 28 nsulaton MATERIAL 1.10 16.21 44 olyamd renf. MATERIAL 3.05 11.24 60 EPDM MATERIAL 2.05 12.38 119 tem. sensor 1 MATERIAL 11.46 11.46 135 tem. sensor 2 MATERIAL 11.49 11.49 151 tem. sensor 3 MATERIAL 11.62 11.63 167 tem. sensor 4 MATERIAL 14.58 14.58 170 exteror BC_SIMPL 1.10 3.06 0.00 10.39 174 nteror (norma BC_SIMPL 11.42 16.21 8.77 0.00 182 nteror (reduc BC_SIMPL 11.48 15.41 1.61 0.00 214 cavty (CEN) EQIMAT 3.07 11.41 215 cavty (CEN) EQIMAT 2.98 3.06 216 cavty (CEN) EQIMAT 3.06 11.23 217 cavty (CEN) EQIMAT 11.23 11.49 218 cavty (CEN) EQIMAT 2.85 12.20 240 cavty (CEN) EQIMAT 1.76 3.07 241 cavty (CEN) EQIMAT 11.40 12.90 251 cavty <3x3 mm2 MATERIAL 11.30 11.54 252 cavty <2x2 mm2 MATERIAL 2.85 2.93 253 cavty <1x1 mm2 MATERIAL 2.34 11.78 4

Cálculo del coefcente de transmsón térmca (f) THERMAL TRANSMITTANCE ACCORDING TO ren 10077-2 Theory The thermal transmttance of a frame accordng to PrEN 10077-2: f = L 2D l f * l and L 2 D = q l, tot θ wth: f : thermal transmttance of the wndow frame [W/m 2 K] Calculaton : thermal transmttance of the flankng anel [W/m 2 K] l : rojected wdth of the flankng anel [m] l f : rojected wdth of the wndow frame [m] L 2D : two-dmensonal coulng coeffcent [W/mK] q l,tot : total heat flow through the wndow frame and the flankng anel [W/m] θ : temerature dfference between nsde (θ) and outsde (θe) [K] Item: nut data: q l,tot = 10,39 W/m R se = 0,04 m 2 K/W θ e = 0,0 o C R s = 0,13 m 2 K/W θ = 20,0 o C d = 0,0180 m λ = 0,035 W/m*K = l = 1,461 W/m 2 K 0,190 m calculaton results: L 2D = 0,52 W/mK l f = 0,0576 m f = 4,20 W/m 2 K nut data usng the Physbel Software BISCO q l,tot : alhanumerc outut BISKO heat losses er boundary condton θ : nut data, surface boundary condtons: nsde temerature mnus outsde temerature : calculaton, usng the followng formula: 1 = + h e d + λ 1 h 1 wth: h e / h ext./nt. surface heat transfer coeff. [W/m 2 K] d thckness of layer [m] λ thermal conductvty of layer [W/mK] l / l f : nut data: dmensons of the tem PHYSIBEL Herweg 21 B-9990 Maldegem Belgum tel +32 50 711432 fax +32 50 717842 5

Isotermas 6

Flujo de calor 7

B) medante RADCON con Know-How TECHNOFORM Inut data RADCON Col. Name Tye CEN-rule Couled lambda es t h [W/mK] [-] [ C] [W/m²K] 8 alumnum MATERIAL 160.000 0.90 28 nsulaton MATERIAL 0.035 0.90 44 olyamd renf. MATERIAL 0.300 0.90 60 EPDM MATERIAL 0.250 0.90 119 tem. sensor 1 MATERIAL 160.000 0.90 135 tem. sensor 2 MATERIAL 160.000 0.90 151 tem. sensor 3 MATERIAL 160.000 0.90 156 nsulaton far MATERIAL 0.035 0.90 167 tem. sensor 4 MATERIAL 160.000 0.90 170 exteror BC_SKY NIHIL 174 nteror 1 BC_SKY NIHIL 182 nteror 2 BC_SKY NIHIL 190 nteror 3 BC_SKY NIHIL 214 cavty BC_FREE CEN_VF_I NO 215 cavty EQIMAT CEN_VF_I NO 0.048 0.90 216 cavty EQIMAT CEN_VF_I NO 0.060 0.90 217 cavty BC_FREE CEN_VF_I NO 218 cavty BC_FREE CEN_VF_I NO 240 cavty EQIMAT CEN_VF_E NO 0.093 0.90 241 cavty EQIMAT CEN_VF_E NO 0.099 0.90 251 cavty <3x3 mm2 MATERIAL 0.034 0.90 252 cavty <2x2 mm2 MATERIAL 0.031 0.90 253 cavty <1x1 mm2 MATERIAL 0.028 0.90 Col. q ta hc qc tr C1 C2 C3 [W/m²] [ C] [W/m²K] [W/m] [ C] [-] [-] [-] 8 28 44 60 119 135 151 156 167 170 0 0.0 12.00 0.0 174 0 20.0 2.50 20.0 182 0 20.0 2.65 20.0 190 0 20.0 3.02 20.0 214 0 2.04 0 0.0247 0.58 0.25 215 0.0244 0.58 0.25 216 0.0247 0.58 0.25 217 0 1.66 0 0.025 0.58 0.25 218 0 2.05 0 0.0248 0.58 0.25 240 0.0243 0.58 0.25 241 0.0251 0.58 0.25 251 252 253 8

Calculaton arameters Contour aroxmaton margn (trangulaton) = 0 xels Iteraton cycles = 5 Nonlnear radaton Recalculaton of CEN values (before each teraton cycle) Smallest acceted vewfactor = 0.001 Number of vsblty rays between radatve surfaces = 100 Black radaton heat transfer coeff. (lnear radaton) = 5.25 W/m²K Maxmum number of teratons (er teraton cycle) = 10000 Maxmum temerature dfference = 0.0001 C Max. heat flow dvergence for total object = 0.001 % Max. heat flow dvergence for any node = 1 % Outut data RADCON Col. Name Tye tmn tmax ta flow n flow out [ C] [ C] [ C] [W/m] [W/m] 8 alumnum MATERIAL 3.67 13.43 28 nsulaton MATERIAL 1.74 15.72 44 olyamd renf. MATERIAL 3.79 13.21 60 EPDM MATERIAL 2.98 13.57 119 tem. sensor 1 MATERIAL 13.34 13.35 135 tem. sensor 2 MATERIAL 13.36 13.36 151 tem. sensor 3 MATERIAL 13.43 13.43 156 nsulaton far MATERIAL 1.72 16.26 167 tem. sensor 4 MATERIAL 15.29 15.29 170 exteror BC_SKY 1.72 3.79 0.00 9.31 174 nteror 1 BC_SKY 15.72 16.26 4.92 0.00 182 nteror 2 BC_SKY 13.43 15.72 1.12 0.00 190 nteror 3 BC_SKY 13.31 14.47 3.26 0.00 214 cavty BC_FREE 3.80 13.31 10.11 0.70 0.70 215 cavty EQIMAT 3.74 3.80 216 cavty EQIMAT 3.80 13.20 217 cavty BC_FREE 13.20 13.36 13.28 0.02 0.02 218 cavty BC_FREE 3.68 13.45 9.73 1.48 1.48 240 cavty EQIMAT 2.56 3.80 241 cavty EQIMAT 13.30 14.47 251 cavty <3x3 mm2 MATERIAL 13.24 13.38 252 cavty <2x2 mm2 MATERIAL 3.67 3.78 253 cavty <1x1 mm2 MATERIAL 3.23 13.50 9

Cálculo del coefcente de transmsón térmca (f) THERMAL TRANSMITTANCE ACCORDING TO ren 10077-2 Theory The thermal transmttance of a frame accordng to PrEN 10077-2: f = L 2D l f * l and L 2 D = q l, tot θ wth: f : thermal transmttance of the wndow frame [W/m 2 K] Calculaton : thermal transmttance of the flankng anel [W/m 2 K] l : rojected wdth of the flankng anel [m] l f : rojected wdth of the wndow frame [m] L 2D : two-dmensonal coulng coeffcent [W/mK] q l,tot : total heat flow through the wndow frame and the flankng anel [W/m] θ : temerature dfference between nsde (θ) and outsde (θe) [K] Item: nut data: q l,tot = 9,310 W/m R se = 0,06 m 2 K/W θ e = 0,0 o C R s = 0,13 m 2 K/W θ = 20,0 o C d = 0,0180 m λ = 0,035 W/m*K = l = 1,420 W/m 2 K 0,190 m calculaton results: L 2D = 0,47 W/mK l f = 0,0576 m f = 3,40 W/m 2 K nut data usng the Physbel Software BISCO q l,tot : alhanumerc outut BISKO heat losses er boundary condton θ : nut data, surface boundary condtons: nsde temerature mnus outsde temerature : calculaton, usng the followng formula: 1 = + h e d + λ 1 h 1 wth: h e / h ext./nt. surface heat transfer coeff. [W/m 2 K] d thckness of layer [m] λ thermal conductvty of layer [W/mK] l / l f : nut data: dmensons of the tem PHYSIBEL Herweg 21 B-9990 Maldegem Belgum tel +32 50 711432 fax +32 50 717842 10