Review Article Incomplete Bivariate Fibonacci and Lucas p-polynomials

Similar documents
Research Article Some E-J Generalized Hausdorff Matrices Not of Type M

Research Article A New Second-Order Iteration Method for Solving Nonlinear Equations

COMPLEX FACTORIZATIONS OF THE GENERALIZED FIBONACCI SEQUENCES {q n } Sang Pyo Jun

Research Article Approximate Riesz Algebra-Valued Derivations

Research Article Nonexistence of Homoclinic Solutions for a Class of Discrete Hamiltonian Systems

Research Article A Unified Weight Formula for Calculating the Sample Variance from Weighted Successive Differences

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

Research Article A Note on Ergodicity of Systems with the Asymptotic Average Shadowing Property

SOME RELATIONS ON HERMITE MATRIX POLYNOMIALS. Levent Kargin and Veli Kurt

On the Jacobsthal-Lucas Numbers by Matrix Method 1

Generalized Fibonacci-Like Sequence and. Fibonacci Sequence

Research Article Carleson Measure in Bergman-Orlicz Space of Polydisc

Matrix representations of Fibonacci-like sequences

ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS

New Results for the Fibonacci Sequence Using Binet s Formula

ON SOME GAUSSIAN PELL AND PELL-LUCAS NUMBERS

Bounds for the Positive nth-root of Positive Integers

Modified Decomposition Method by Adomian and. Rach for Solving Nonlinear Volterra Integro- Differential Equations

Research Article Two Expanding Integrable Models of the Geng-Cao Hierarchy

Research Article Quasiconvex Semidefinite Minimization Problem

On Generalized Fibonacci Numbers

Generating Functions for Laguerre Type Polynomials. Group Theoretic method

The log-concavity and log-convexity properties associated to hyperpell and hyperpell-lucas sequences

Research Article Powers of Complex Persymmetric Antitridiagonal Matrices with Constant Antidiagonals

Research Article Invariant Statistical Convergence of Sequences of Sets with respect to a Modulus Function

Uniform Strict Practical Stability Criteria for Impulsive Functional Differential Equations

A Study on Some Integer Sequences

The Binet formula, sums and representations of generalized Fibonacci p-numbers

TRACES OF HADAMARD AND KRONECKER PRODUCTS OF MATRICES. 1. Introduction

Correspondence should be addressed to Wing-Sum Cheung,

ON SOME TRIGONOMETRIC POWER SUMS

CertainSequencesanditsIntegralRepresentationsinTermsofLaguerrePolynomials

Research Article Norms and Spread of the Fibonacci and Lucas RSFMLR Circulant Matrices

On Some Identities and Generating Functions for Mersenne Numbers and Polynomials

Pellian sequence relationships among π, e, 2

Weakly Connected Closed Geodetic Numbers of Graphs

GAMALIEL CERDA-MORALES 1. Blanco Viel 596, Valparaíso, Chile. s: /

On the Fibonacci-like Sequences of Higher Order

2.4 - Sequences and Series

Research Article Nonautonomous Discrete Neuron Model with Multiple Periodic and Eventually Periodic Solutions

Research Article Sheffer and Non-Sheffer Polynomial Families

On the Number of 1-factors of Bipartite Graphs

Recurrence Relations

Average Number of Real Zeros of Random Fractional Polynomial-II

Record Values from T-X Family of. Pareto-Exponential Distribution with. Properties and Simulations

Research Article On q-bleimann, Butzer, and Hahn-Type Operators

Research Article Single-Machine Group Scheduling Problems with Deterioration to Minimize the Sum of Completion Times

Research Article Moment Inequality for ϕ-mixing Sequences and Its Applications

Research Article Convergence Theorems for Finite Family of Multivalued Maps in Uniformly Convex Banach Spaces

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION

A note on the p-adic gamma function and q-changhee polynomials

Research Article Robust Linear Programming with Norm Uncertainty

γ-max Labelings of Graphs

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

A generalization of Morley s congruence

New Inequalities of Hermite-Hadamard-like Type for Functions whose Second Derivatives in Absolute Value are Convex

Pell and Lucas primes

Ps(X) E PnSn x (1.2) PS (x) Po=0, and A k,n k > -I we get summablllty A, summabllity (L) and A method of summability respectively.

On Infinite Series Involving Fibonacci Numbers

#A51 INTEGERS 14 (2014) MULTI-POLY-BERNOULLI-STAR NUMBERS AND FINITE MULTIPLE ZETA-STAR VALUES

A.B. THAHEEM AND NOOR MOHAMMAD. Department of Mathematics Qulad-i-Azam Unlverslt y Islamabad, Pakistan

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution

Abstract. 1. Introduction This note is a supplement to part I ([4]). Let. F x (1.1) x n (1.2) Then the moments L x are the Catalan numbers

Two Topics in Number Theory: Sum of Divisors of the Factorial and a Formula for Primes

CONTENTS. Course Goals. Course Materials Lecture Notes:

REVIEW FOR CHAPTER 1

ON BLEIMANN, BUTZER AND HAHN TYPE GENERALIZATION OF BALÁZS OPERATORS

Some Results on Certain Symmetric Circulant Matrices

Research Article Strong and Weak Convergence for Asymptotically Almost Negatively Associated Random Variables

A NOTE ON SPECTRAL CONTINUITY. In Ho Jeon and In Hyoun Kim

Sequences of Definite Integrals, Factorials and Double Factorials

Hankel determinants of some polynomial sequences. Johann Cigler

QUANTITATIVE ESTIMATES FOR GENERALIZED TWO DIMENSIONAL BASKAKOV OPERATORS. Neha Bhardwaj and Naokant Deo

On forward improvement iteration for stopping problems

On Some Properties of Digital Roots

Taylor polynomial solution of difference equation with constant coefficients via time scales calculus

Research Article Global Exponential Stability of Discrete-Time Multidirectional Associative Memory Neural Network with Variable Delays

A solid Foundation for q-appell Polynomials

Properties of Fuzzy Length on Fuzzy Set

Course : Algebraic Combinatorics

On a class of convergent sequences defined by integrals 1

Solution of Differential Equation from the Transform Technique

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis

Benaissa Bernoussi Université Abdelmalek Essaadi, ENSAT de Tanger, B.P. 416, Tanger, Morocco

On The Generalized Gaussian and Mean curvatures in E₁ⁿ+¹. Ayşe Yavuz, F. Nejat Ekmekci

SOME TRIBONACCI IDENTITIES

Mathematics review for CSCI 303 Spring Department of Computer Science College of William & Mary Robert Michael Lewis

EVALUATION OF SUMS INVOLVING PRODUCTS OF GAUSSIAN q-binomial COEFFICIENTS WITH APPLICATIONS

Research Article On the Strong Laws for Weighted Sums of ρ -Mixing Random Variables

ON SOME RELATIONSHIPS AMONG PELL, PELL-LUCAS AND MODIFIED PELL SEQUENCES

Convergence of Random SP Iterative Scheme

Research Article Complete Convergence for Maximal Sums of Negatively Associated Random Variables

Regent College Maths Department. Further Pure 1. Proof by Induction

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION

Research Article A Note on the Generalized q-bernoulli Measures with Weight α

ON GENERALIZATION OF SISTER CELINE S POLYNOMIALS

Research Article Filling Disks of Hayman Type of Meromorphic Functions

Seed and Sieve of Odd Composite Numbers with Applications in Factorization of Integers

Research Article On Sequences of Numbers and Polynomials Defined by Linear Recurrence Relations of Order 2

The r-generalized Fibonacci Numbers and Polynomial Coefficients

Transcription:

Discrete Dyamics i Nature ad Society Volume 2012, Article ID 840345, 11 pages doi:10.1155/2012/840345 Review Article Icomplete Bivariate Fiboacci ad Lucas p-polyomials Dursu Tasci, 1 Mirac Ceti Firegiz, 2 ad Naim Tuglu 1 1 Departmet of Mathematics, Faculty of Sciece, Gazi Uiversity, Teioullar, 06500 Aara, Turey 2 Departmet of Mathematics, Faculty of Educatio, Başet Uiversity, Baglica, 06810 Aara, Turey Correspodece should be addressed to Mirac Ceti Firegiz, mceti@baset.edu.tr Received 26 November 2011; Accepted 8 February 2012 Academic Editor: Gerald Teschl Copyright q 2012 Dursu Tasci et al. This is a ope access article distributed uder the Creative Commos Attributio Licese, which permits urestricted use, distributio, ad reproductio i ay medium, provided the origial wor is properly cited. We defie the icomplete bivariate Fiboacci ad Lucas p-polyomials. I the case x 1, y 1, we obtai the icomplete Fiboacci ad Lucas p-umbers. If x 2, y 1, we have the icomplete Pell ad Pell-Lucas p-umbers. O choosig x 1, y 2, we get the icomplete geeralized Jacobsthal umber ad besides for the icomplete geeralized Jacobsthal-Lucas umbers. I the case x 1, y 1,, we have the icomplete Fiboacci ad Lucas umbers. If x 1, y 1,, 1/, we obtai the Fiboacci ad Lucas umbers. Also geeratig fuctio ad properties of the icomplete bivariate Fiboacci ad Lucas p-polyomials are give. 1. Itroductio Dordević itroduced icomplete geeralized Fiboacci ad Lucas umbers usig explicit formulas of geeralized Fiboacci ad Lucas umbers i 1.I2 icomplete Fiboacci ad Lucas umbers are give as follows: F L 1 1, 0, 2, 0 2, 1.1 where 1, 2, 3,... Note that for the case 1/2 icomplete Fiboacci umbers are reduced to Fiboacci umbers ad for the case /2 icomplete Lucas umbers are

2 Discrete Dyamics i Nature ad Society reduced to Lucas umbers i 2. Also the authors cosidered the geeratig fuctios of the icomplete Fiboacci ad Lucas umbers i 3. I4 Dordević ad Srivastava defied icomplete geeralized Jacobsthal ad Jacobsthal-Lucas umbers. The geeralized Fiboacci ad Lucas p-umbers were studied i 5, 6. Icomplete Fiboacci ad Lucas p-umbers are defied by F p L p p 1, 0 p, 0 p 1,, 1.2 for 1i7.I8 the authors itroduced icomplete Pell ad Pell-Lucas p-umbers. The geeralized bivariate Fiboacci p-polyomials F p, x, y ad geeralized bivariate Lucas p-polyomials L p, x, y are defied the recursio for p 1 F p, ) xfp, 1 ) yfp, p 1 ), > p, 1.3 with F p,0 ) 0, Fp, ) x 1 for 1, 2,...p, 1.4 ad L p, ) xlp, 1 ) ylp, p 1 ), > p, 1.5 with L p,0 ), Lp, ) x for 1, 2,...p 1.6 i 5. Whe x y 1, F p, 1, 1 F p. I5, the authors obtaied some relatios for these polyomials sequeces. I additio, i 5, the explicit formula of bivariate Fiboacci p-polyomials is 1/p1 p 1 F p, x, y x p1 1 y, 0, p 1, 1.7 ad the explicit formula of bivariate Lucas p-polyomials is /p1 L p, x, y p x p1 y, 0, p 1. 1.8 p

Discrete Dyamics i Nature ad Society 3 I this paper, we defied icomplete bivariate Fiboacci ad Lucas p-polyomials. We geeralize icomplete Fiboacci ad Lucas umbers, icomplete geeralized Fiboacci umbers, icomplete geeralized Jacobsthal umbers, icomplete Fiboacci ad Lucas p-umbers, icomplete Pell ad Pell-Lucas p-umbers. 2. Icomplete Bivariate Fiboacci ad Lucas p-polyomials Defiitio 2.1. For p 1, 1, icomplete bivariate Fiboacci p-polyomials are defied as F p, p 1 x, y x p1 1 y, 0 1. 2.1 For x 1, y 1, Fp,x, y Fp, we get icomplete Fiboacci p-umbers 7. If x 2, y 1, Fp,x, y Pp, we obtaied icomplete Pell p-umbers 8. O choosig x 1, y 2, Fp,x, y J,p1, we have icomplete geeralized Jacobsthal umbers 4. If x 1, y 1, p 1, Fp,x, y F, we get icomplete Fiboacci umbers 2. For x 1, y 1, p 1, 1/,Fp,x, y F, we obtaied Fiboacci umbers 9. Defiitio 2.2. For p 1, 1, icomplete bivariate Lucas p-polyomials are defied as L p p, x, y x p1 y, p 0. 2.2 If x 1, y 1, L p,x, y L p, we obtaied icomplete Lucas p-umbers 7. For x 2, y 1, L p,x, y Qp, we have icomplete Pell-Lucas p-umbers 8. O choosig x 1, y 2,, L p,x, y,p1, we get icomplete geeralized Jacobsthal-Lucas umbers 4. If x 1, y 1, p 1, L p,x, y L, we obtaied icomplete Lucas umbers 2. For x 1, y 1,, /, L p,x, y L, we have Lucas umbers 9. Propositio 2.3. The icomplete bivariate Fiboacci p-polyomials satisfy the followig recurrece relatio: F 1 p, ) xf 1 p, 1 ) yf p, p 1 ), 0 p 3. 2.3

4 Discrete Dyamics i Nature ad Society Proof. Usig 2.1, weobtai xf 1 p, 1 x, y yf p, p 1 x, y 1 p 2 x x p1 2 y y p p 2 x p p1 2 y 1 p 2 p p 2 x p1 1 y x p p1 2 y 1 1 p 2 1 p 2 x p1 1 y x p1 1 y 1 [ ] 1 p 2 p 2 2 x p1 1 y 1 1 1 p 1 x p1 1 y 0 1 x 1 2.4 Fp, 1 x, y. Taig x y 1i2.3, we could obtai a formula for icomplete Fiboacci p- umbers see 7,Propositio3. Taig x y i2.3, we could obtai a formula for icomplete Fiboacci umbers see 2, Propositio1. Propositio 2.4. The ohomogeeous recurrece relatio of icomplete bivariate Fiboacci p- polyomials is Fp, x, y xf p, 1 x, y yf p 1 2 p, p 1 x, y x p1 2 y 1. 2.5 Proof. It is easy to obtai from 2.1 ad 2.3. Propositio 2.5. For 0 h p 1/, oe has h h y h x F x, y F h p,p 1 p,p1h p ). 2.6

Discrete Dyamics i Nature ad Society 5 Proof. Equatio 2.6 clearly holds for h 0. Suppose that the equatio holds for h>0. We show that the equatio holds for h 1. We have h1 h 1 y h1 x F x, y p,p 1 [ ] h1 h h y h1 x F x, y 1 p,p 1 h1 h y h1 x F h1 h x, y p,p 1 1 ( yf h h p,p1h p x, y h 1 h h y h x 1 F 1 p,p 1 ) ) ( yf h h h p,p1h p x, y x x h1 F h1 p,ph x, y h y h1 F p, p x, y 1 yf h p,p1h p x, y xf h1 p,p1h x, y ) y h x F 1 p,p x, y y h1 x F x, y p,p 1 2.7 F h1 p,p1h1 x, y. Propositio 2.6. For p 2, h 1 y x F p, p 1 x, y F1 xh 1 p,h x, y xf 1 x, y. 2.8 p, Proof. Equatio 2.8 ca be easily proved by usig 2.3 ad iductio o h. We have the followig propositio i which the relatioship betwee the icomplete bivariate Fiboacci ad Lucas p-polyomials is preserved as foud i 5 before. Propositio 2.7. Oe has L p, x, y F p,1 x, y pyf 1 p, p x, y, 0. 2.9

6 Discrete Dyamics i Nature ad Society Proof. By 2.1, rewrite the right-had side of 2.9 as F p,1 x, y pyf 1 p 1 p p 1 p, p x, y x p1 y py x p p1 1 y p p 1 x p1 y py 1 x p1 y 1 [ ] p p 1 1 x p1 y 1 1 p x p1 y p 1 x L p,( x, y ). 2.10 Propositio 2.8. The icomplete bivariate Lucas p-polyomials satisfy the followig recurrece relatio: L 1 p, x, y xl 1 p, 1 x, y yl p 2 p, p 1 x, y, 0. 2.11 Proof. We write by usig 2.3 ad 2.9 L 1 p, x, y F 1 p,1 x, y pyf p, p x, y xfp, 1 [ x, y yf p, p x, y py xf ] p, p 1 x, y yf 1 p, 2p 1 x, y [ x F 1 p, ) x, y pyf p, p 1( ] [ x, y y F p, p ] x, y pyf 1 p, 2p 1 x, y 2.12 xl 1 ) p, 1 x, y yl p, p 1( x, y. Propositio 2.9. The ohomogeeous recurrece relatio of icomplete bivariate Lucas p- polyomials is L p, x, y xl p, 1 x, y yl p, p 1 x, y p 1 p 1 1 x p11 y 1. p 1 1 2.13 Proof. The proof ca be doe by usig 2.2 ad 2.11.

Discrete Dyamics i Nature ad Society 7 Propositio 2.10. For 0 p h/, oe has h h x y h L x, y L h p,p 1 p,p1h p ). 2.14 Proof. Proof is similar to the proof of Propositio 2.5. Propositio 2.11. For 1, oe has h 1 y x L p, p 1 x, y L1 xh 1 p,h x, y xl 1 x, y. 2.15 p, Proof. Proof is obtaied immediately by usig 2.11 ad iductio h. Propositio 2.12. Oe has /p1 L p, 0 ( x, y ) 1 L p, x, y [ ] xfp, x, y Lp, x, y. 2.16 Proof. We ca write from 2.2 /p1 L p, 0 x, y L 0 p, x, y L 1 p, x, y L 2 /p1 p, x, y L x, y [ x x ] p x p1 y 0 0 p 1 [ x ( ] p x p1 2p y )x 2p1 y 2 0 p 1 2p 2 x 0 / ( ) p p x p1 /p1 y /p1 p,

8 Discrete Dyamics i Nature ad Society ( ) ( ) p 1 x 1 1 x p1 y 0 p 1 ( ) 2p 1 2 x 2p1 y 2 2p 1 / ( ) p p x p1 /p1 y /p1 /p1 ( ) p 1 x p1 y p ( ) /p1 p 1 x p1 y p /p1 p x p1 y. p 2.17 Equatio 2.17 is calculated usig the formula L p, x, y ad L p, x, y/ x F p, x, y5 /p1 L p, 0 ( x, y ) /p1 1 p F p, x, y x 1 L p, x, y x 1 p x p1 y 2.18 ( ) [ ] 1 L p, x, y xfp, x, y Lp, x, y. The we have the followig coclusio. Coclusio 1. Whe x y i2.16, weobtai L /2 0 ( ) 1 L 2 2 F L 2.19 which is Propositio 11 i 2.

Discrete Dyamics i Nature ad Society 9 3. Geeratig Fuctios of the Icomplete Bivariate Fiboacci ad Lucas p-polyomials Lemma 3.1 see 3. Let {s } 0 be a complex sequece satisfyig the followig ohomogeeous recurrece relatio: s xs 1 ys p 1 r, > p, 3.1 where {r } is a give complex sequece. The the geeratig fuctio S px, y; t of the sequece {s } is [ S p x, y; t s 0 r 0 p [ s i xs i 1 r i t i Gt] 1 xt yt p1] 1, 3.2 i1 where Gt deotes the geeratig fuctio of {r }. Theorem 3.2. The geeratig fuctio of the icomplete bivariate Fiboacci p-polyomials is [ R p p x, y; t t p11 F p,p11 x, y t i( ) F p,p11i x, y xfp,p1i x, y i1 ] 3.3 y1 t p1 [ 1 xt yt p1] 1. 1 xt 1 Proof. From 2.1 ad 2.5, F p,x, y 0for0 <1, F p,p11( x, y ) Fp,p11 ), F p,p12( x, y ) Fp,p12 ),. 3.4 F p,p1p1( x, y ) Fp,p1p1 ), ad for p 2 Fp, x, y xf p, 1 x, y yf p 1 2 p, p 1 x, y ( ) x p1 2 y 1. p 2 3.5 Now let s 0 F p,p11 x, y, s1 F p,p12 x, y,..., sp F p,p1p1 x, y, 3.6

10 Discrete Dyamics i Nature ad Society ad s F p,p11( x, y ). 3.7 Also r 0 r 1 r p 0, p 1 r p 1 x p 1 y 1. 3.8 We obtaied that Gt y 1 t p1 /1 xt 1 is the geeratig fuctio of the sequece {r }. From Lemma 3.1, we get that the geeratig fuctio S px, y; t of sequece {s } is [ S p x, y; t F p ( p,p11 x, y t i i1 F p,p11i ) xf p,p1i ) ) ] 3.9 y1 t p1 [ 1 xt yt p1] 1. 1 xt 1 Therefore, R p; t ) t p11 S p; t ). 3.10 Theorem 3.3. The geeratig fuctio of the icomplete bivariate Lucas p-polyomials is [ Wp p x, y; t t p1 L p,p1 x, y t i( ) L p,p1i x, y xlp,p1i 1 x, y i1 tp1 y 1[ p1 xt 1 ] 1 xt 1 ] [ 1 xt yt p1] 1. 3.11 Proof. From 2.9 ad 3.3, W p ; t ) L p, 0 ) t [ F ] p,1 x, y pyf 1 p, p x, y t 0 Fp,1( ) x, y t py F 1 x, y t 0 0 p, p 3.12 t 1 R p x, y; t pyt p R 1 p x, y; t.

Discrete Dyamics i Nature ad Society 11 For the geeral case i Theorems 3.2 ad 3.3, we fid the geeratig fuctios of some special umbers by the special cases x, y, p. For example, x y 1i3.3 we obtai the geeratig fuctio of icomplete Fiboacci p-umbers. Refereces 1 G. B. Dordević, Geeratig fuctios of the icomplete geeralized Fiboacci ad geeralized Lucas umbers, The Fiboacci Quarterly, vol. 42, o. 2, pp. 106 113, 2004. 2 P. Filippoi, Icomplete Fiboacci ad Lucas umbers, Redicoti del Circolo Matematico di Palermo. Serie II, vol. 45, o. 1, pp. 37 56, 1996. 3 Á. Pitér ad H. M. Srivastava, Geeratig fuctios of the icomplete Fiboacci ad Lucas umbers, Redicoti del Circolo Matematico di Palermo. Serie II, vol. 48, o. 3, pp. 591 596, 1999. 4 G. B. Dordević ad H. M. Srivastava, Icomplete geeralized Jacobsthal ad Jacobsthal-Lucas umbers, Mathematical ad Computer Modellig, vol. 42, o. 9-10, pp. 1049 1056, 2005. 5 N. Tuglu, E. G. Kocer, ad A. Stahov, Bivariate Fiboacci lie p-polyomials, Applied Mathematics ad Computatio, vol. 217, o. 24, pp. 10239 10246, 2011. 6 E. G. Kocer ad N. Tuglu, The Biet formulas for the Pell ad Pell-Lucas p-umbers, Ars Combiatoria, vol. 85, pp. 3 17, 2007. 7 D. Tasci ad M. C. Firegiz, Icomplete Fiboacci ad Lucas p-umbers, Mathematical ad Computer Modellig, vol. 52, o. 9-10, pp. 1763 1770, 2010. 8 D. Tasci, M. Ceti Firegiz, ad G. B. Dordević, Icomplete Pell ad Pell-Lucas p-umbers, Submit. 9 T. Koshy, Fiboacci ad Lucas Numbers with Applicatios, Pure ad Applied Mathematics, Wiley, New Yor, NY, USA, 2001.

Advaces i Operatios Research Advaces i Decisio Scieces Joural of Applied Mathematics Algebra Joural of Probability ad Statistics The Scietific World Joural Iteratioal Joural of Differetial Equatios Submit your mauscripts at Iteratioal Joural of Advaces i Combiatorics Mathematical Physics Joural of Complex Aalysis Iteratioal Joural of Mathematics ad Mathematical Scieces Mathematical Problems i Egieerig Joural of Mathematics Discrete Mathematics Joural of Discrete Dyamics i Nature ad Society Joural of Fuctio Spaces Abstract ad Applied Aalysis Iteratioal Joural of Joural of Stochastic Aalysis Optimizatio