Section /07/2013. PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 5, pgs.

Similar documents
Chapter 5 Force and Motion

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

3/10/2019. What Is a Force? What Is a Force? Tactics: Drawing Force Vectors

What Is a Force? Slide Pearson Education, Inc.

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion

Lecture Presentation. Chapter 4 Forces and Newton s Laws of Motion. Chapter 4 Forces and Newton s Laws of Motion. Reading Question 4.

Physics for Scientists and Engineers. Chapter 5 Force and Motion

Section /07/2013. PHY131H1F University of Toronto Class 12 Preclass Video by Jason Harlow. Based on Knight 3 rd edition Ch. 7, pgs.

Circular Motion. A car is traveling around a curve at a steady 45 mph. Is the car accelerating? A. Yes B. No

4.2. Visualize: Assess: Note that the climber does not touch the sides of the crevasse so there are no forces from the crevasse walls.

Physics Mechanics. Lecture 11 Newton s Laws - part 2

Dynamics: Forces. Lecture 7. Chapter 5. Course website:

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

PHY131H1F Introduction to Physics I Review of the first half Chapters Error Analysis

A force is could described by its magnitude and by the direction in which it acts.

Chapter 4 Force and Motion

Forces and Newton s Laws Reading Notes. Give an example of a force you have experienced continuously all your life.

Chapter 4. Dynamics: Newton s Laws of Motion. That is, describing why objects move

FORCE AND MOTION. Conceptual Questions F G as seen in the figure. n, and a kinetic frictional force due to the rough table surface f k

Chapter Four Holt Physics. Forces and the Laws of Motion

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

PS113 Chapter 4 Forces and Newton s laws of motion

Forces. Brought to you by:

Dynamics; Newton s Laws of Motion

Chapter 3 The Laws of motion. The Laws of motion

Chapters 5-6. Dynamics: Forces and Newton s Laws of Motion. Applications

Introductory Physics PHYS101

Four naturally occuring forces

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

Chapter 5 Lecture. Pearson Physics. Newton's Laws of Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Dynamics Multiple Choice Homework

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones

Topic: Force PHYSICS 231

POGIL: Newton s First Law of Motion and Statics. Part 1: Net Force Model: Read the following carefully and study the diagrams that follow.

Isaac Newton ( ) 1687 Published Principia Invented Calculus 3 Laws of Motion Universal Law of Gravity

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Ch. 2 The Laws of Motion

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION.

Friction forces. Lecture 8. Chapter 6. Physics I. Course website:

3. What type of force is the woman applying to cart in the illustration below?

Newton s 3 Laws of Motion

1 In the absence of a net force, a moving object will. slow down and eventually stop stop immediately turn right move with constant velocity turn left

Make sure you know the three laws inside and out! You must know the vocabulary too!

1N the force that a 100g bar of chocolate exerts on your hand.

Physics B Newton s Laws AP Review Packet

Physics 2A Chapter 4: Forces and Newton s Laws of Motion

The Concept of Force. field forces d) The gravitational force of attraction between two objects. f) Force a bar magnet exerts on a piece of iron.

AP Physics I Summer Work

Physics 12 Unit 2: Vector Dynamics

If there is nothing pushing on an object, it will not move. If there is nothing pushing on an object, it will not stop. The List:

4 Study Guide. Forces in One Dimension Vocabulary Review

Part I: Mechanics. Chapter 2 Inertia & Newton s First Law of Motion. Aristotle & Galileo. Lecture 2

Concept of Force and Newton s Laws of Motion

s_3x03 Page 1 Physics Samples

Physics 221, January 24

Newton s Contributions. Calculus Light is composed of rainbow colors Reflecting Telescope Laws of Motion Theory of Gravitation

The Laws of Motion. Newton s first law Force Mass Newton s second law Gravitational Force Newton s third law Examples

Chapter 3, Problem 28. Agenda. Forces. Contact and Field Forces. Fundamental Forces. External and Internal Forces 2/6/14

7. Two forces are applied to a 2.0-kilogram block on a frictionless horizontal surface, as shown in the diagram below.

Force Concept Inventory

Unit 2: Vector Dynamics

CHAPTER 2. FORCE and Motion. CHAPTER s Objectives

Newton s First Law. Newton s Second Law 9/29/11

The diagram below shows a block on a horizontal frictionless surface. A 100.-newton force acts on the block at an angle of 30. above the horizontal.

Forces and Motion. Reference: Prentice Hall Physical Science: Concepts in Action Chapter 12

Chapter 5. The Laws of Motion

UNIT XX: DYNAMICS AND NEWTON S LAWS. DYNAMICS is the branch of mechanics concerned with the forces that cause motions of bodies

Last-night s Midterm Test. Last-night s Midterm Test. PHY131H1F - Class 10 Today, Chapter 6: Equilibrium Mass, Weight, Gravity

PSI AP Physics B Dynamics

Dynamic equilibrium: object moves with constant velocity in a straight line. = 0, a x = i

Chapter 5 Newton s Laws of Motion

Question: Are distance and time important when describing motion? DESCRIBING MOTION. Motion occurs when an object changes position relative to a.

Free-Body Diagrams: Introduction

Chapter 4. Forces in One Dimension

Tue Sept 15. Dynamics - Newton s Laws of Motion. Forces: Identifying Forces Free-body diagram Affect on Motion

Practice Honors Physics Test: Newtons Laws

PreClass Notes: Chapter 4, Sections

Concept of Force Concept Questions

Section 1 Changes in Motion. Chapter 4. Preview. Objectives Force Force Diagrams

A N D. c h a p t e r 1 2 M O T I O N F O R C E S

A Question about free-body diagrams

Yanbu University College. General Studies Department. Phsc001 Course (111) Chapter2 (forces) Worksheet Solutions

Engage I 1. What do you think about this design? If the car were to suddenly stop, what would happen to the child? Why?

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B.

Chapter 4 Newton s Laws

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge

General Physics I Spring Forces and Newton s Laws of Motion

Forces and Newton s Laws Notes

Newton. Galileo THE LAW OF INERTIA REVIEW

A force is a push or a pull.

Chapter 4 Dynamics: Newton s Laws of Motion

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Chapter 05 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

CHAPTER 4 NEWTON S LAWS OF MOTION

Newton's 1 st Law. Newton s Laws. Newton's 2 nd Law of Motion. Newton's Second Law (cont.) Newton's Second Law (cont.)

The Concept of Force Newton s First Law and Inertial Frames Mass Newton s Second Law The Gravitational Force and Weight Newton s Third Law Analysis

Chapter 4 Dynamics: Newton s Laws of Motion

Newton s Laws. A force is simply a push or a pull. Forces are vectors; they have both size and direction.

Transcription:

PHY131H1F University of Toronto Class 9 Preclass Video by Jason Harlow Based on Knight 3 rd edition Ch. 5, pgs. 116-133 Section 5.1 A force is a push or a pull What is a force? What is a force? A force requires an agent, something that acts or exerts power If you throw a ball, your hand is the agent or cause of the force exerted on the ball A force acts on an object Pushes and pulls are applied to something From the object s perspective, it has a force exerted on it A force is a vector To quantify a push or pull, we need to specify both magnitude and a direction Contact forces are forces that act on an object by touching it at a point of contact What is a force? The bat must touch the ball to hit it Long-range forces are forces that act on an object without physical contact A coffee cup released from your hand is pulled to the earth by the long-range force of gravity Tactics: Drawing force vectors 1

Example: Drawing a force vector A box is pulled to the right by a rope. Example: Drawing a force vector A box is pushed to the right by a spring. Example: Drawing a force vector A box is pulled down by gravity. Combining Forces A box is pulled by two ropes, as shown When several forces are exerted on an object, they combine to form a net force given by the vector sum of all the forces This is called a superposition of forces Section 5.2 A Short Catalog of Forces The pull of a planet on an object near the surface is called the gravitational force The agent for the gravitational force is the entire planet Gravity acts on all objects, whether moving or at rest The gravitational force vector always points vertically downward Gravity 2

Spring Force A spring can either push (when compressed) or pull (when stretched) Not all springs are metal coils Whenever an elastic object is flexed or deformed in some way, and then springs back to its original shape when you let it go, this is a spring force Tension Force When a string or rope or wire pulls on an object, it exerts a contact force called the tension force The tension force is in the direction of the string or rope A rope is made of atoms joined together by molecular bonds Molecular bonds can be modeled as tiny springs holding the atoms together Tension is a result of many molecular springs stretching ever so slightly Normal Force When an object sits on a table, the table surface exerts an upward contact force on the object This pushing force is directed perpendicular to the surface, and thus is called the normal force A table is made of atoms joined together by molecular bonds which can be modeled as springs Normal force is a result of many molecular springs being compressed ever so slightly Examples of Normal Force Suppose you place your hand on a wall and lean against it The wall exerts a horizontal normal force on your hand Suppose a frog sits on an inclined surface The surface exerts a tilted normal force on the frog Kinetic Friction When an object slides along a surface, the surface can exert a contact force which opposes the motion This is called sliding friction or kinetic friction The kinetic friction force is directed tangent to the surface, and opposite to the velocity of the object relative to the surface Kinetic friction tends to slow down the sliding motion of an object in contact with a surface Static friction is the contact force that keeps an object stuck on a surface, and prevents relative motion The static friction force is directed tangent to the surface Static Friction Static friction points opposite the direction in which the object would move if there were no static friction 3

Drag Kinetic friction is a resistive force, which opposes or resists motion Resistive forces are also experienced by objects moving through fluids The resistive force of a fluid is called drag Drag points opposite the direction of motion For heavy and compact objects in air, drag force is fairly small You can neglect air resistance in all problems unless a problem explicitly asks you to include it Thrust A jet airplane or a rocket has a thrust force pushing it forward during takeoff Thrust occurs when an engine expels gas molecules at high speed This exhaust gas exerts a contact force on the engine The direction of thrust is opposite the direction in which the exhaust gas is expelled Electric and Magnetic Forces Electricity and magnetism, like gravity, exert long-range forces Atoms and molecules are made of electrically charged particles Molecular bonds are due to the electric force between these particles Most forces, such as normal force and tension, are actually caused by electric forces between the charged particles in the atoms Section 5.3 Symbols for Forces: Tactics: Identifying forces 4

Tactics: Identifying forces Please read Section 5.3 Section 5.4 What Do Forces Do? A Virtual Experiment Attach a stretched rubber band to a 1 kg block Use the rubber band to pull the block across a horizontal, frictionless table Keep the rubber band stretched by a fixed amount We find that the block moves with a constant acceleration What Do Forces Do? A Virtual Experiment A standard rubber band can be stretched to some standard length This will exert a reproducible spring force of magnitude F on whatever it is attached to N side-by-side rubber bands exert N times the standard force: F net = NF What Do Forces Do? A Virtual Experiment When a 1 kg block is pulled on a frictionless surface by a single elastic band stretched to the standard length, it accelerates with constant acceleration a 1 Repeat the experiment with 2, 3, 4, and 5 rubber bands attached side-by-side The acceleration is directly proportional to the force What Do Forces Do? A Virtual Experiment When a 1 kg block is pulled on a frictionless surface by a single elastic band stretched to the standard length, it accelerates with constant acceleration a 1 Repeat the experiment with a 2 kg, 3 kg and 4 kg block The acceleration is inversely proportional to the mass 5

What Do Forces Do? A Virtual Experiment Force causes an object to accelerate! The result of the experiment is: The basic unit of force is the newton (N) 1 N = 1 kg m/s 2 Inertial Mass An object with twice the amount of matter accelerates only half as much in response to the same force The more matter an object has, the more it resists accelerating in response to the same force The tendency of an object to resist a change in its velocity is called inertia The mass used in a = F/m is called inertial mass Section 5.5 Newton s Second Law Newton s Second Law When more than one force is acting on an object, the object accelerates in the direction of the net force vector F net 6

Section 5.6 Newton s first law is also known as the law of inertia If an object is at rest, it has a tendency to stay at rest If it is moving, it has a tendency to continue moving with the same velocity Newton s First Law An object on which the net force is zero is said to be in mechanical equilibrium There are two forms of mechanical equilibrium: o If the object is at rest, then it is in static equilibrium o If the object is moving with constant velocity, it is in dynamic equilibrium If a car stops suddenly, you may be thrown forward You do have a forward acceleration relative to the car However, there is no force pushing you forward Inertial Reference Frames This guy thinks there s a force hurling him into the windshield. What a dummy! We define an inertial reference frame as one in which Newton s laws are valid The interior of a crashing car is not an inertial reference frame! A physics student cruises at a constant velocity in an airplane A ball placed on the floor stays at rest relative to the airplane Inertial Reference Frames There are no horizontal forces on the ball, so a = 0 when F net = 0 Newton s first law is satisfied, so this airplane is an inertial reference frame A physics student is standing up in an airplane during takeoff A ball placed on the floor rolls toward the back of the plane Inertial Reference Frames There are no horizontal forces on the ball, and yet the ball accelerates in the plane s reference frame Newton s first law is violated, therefore this airplane is not an inertial reference frame In general, accelerating reference frames are not inertial reference frames 7

Thinking About Force Every force has an agent which causes the force Forces exist at the point of contact between the agent and the object (except for the few special cases of long-range forces) Forces exist due to interactions happening now, not due to what happened in the past Consider a flying arrow A pushing force was required to accelerate the arrow as it was shot However, no force is needed to keep the arrow moving forward as it flies It continues to move because of inertia Please read Section 5.7 Tactics: Drawing a free-body diagram Tactics: Drawing a free-body diagram 8