Spatiotemporal correlation functions of fully developed turbulence. Léonie Canet

Similar documents
Max Planck Institut für Plasmaphysik

A Sufficient Condition for the Kolmogorov 4/5 Law for Stationary Martingale Solutions to the 3D Navier-Stokes Equations

The non-perturbative renormalization group approach to KPZ

arxiv: v1 [physics.flu-dyn] 4 Jul 2015

Velocity fluctuations in a turbulent soap film: The third moment in two dimensions

Lagrangian intermittency in drift-wave turbulence. Wouter Bos

Small-Scale Statistics and Structure of Turbulence in the Light of High Resolution Direct Numerical Simulation

Energy spectrum in the dissipation range of fluid turbulence

On the (multi)scale nature of fluid turbulence

Nonperturbative renormalization group approach to nonequilibrium systems.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

arxiv:physics/ v1 [physics.flu-dyn] 28 Feb 2003

Linearly forced isotropic turbulence

Computational Fluid Dynamics 2

arxiv:chao-dyn/ v1 27 Nov 1998

Dimensionality influence on energy, enstrophy and passive scalar transport.

Statistical studies of turbulent flows: self-similarity, intermittency, and structure visualization

Turbulent Mixing of Passive Tracers on Small Scales in a Channel Flow

Nonequilibrium Dynamics in Astrophysics and Material Science YITP, Kyoto

Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of the turbulence in this water jet. Only eddies of size

A new approach to the study of the 3D-Navier-Stokes System

Effects of forcing in three-dimensional turbulent flows

Characteristics of Linearly-Forced Scalar Mixing in Homogeneous, Isotropic Turbulence

arxiv: v1 [physics.flu-dyn] 7 Jul 2015

E. Gravanis, E. Akylas, M.M. Fyrillas, D. Rousson and S.C. Kassinos

Out of equilibrium Stat. Mech.: The Kardar-Parisi-Zhang equation

The dispersion of a light solid particle in high-reynolds number homogeneous stationary turbulence: LES approach with stochastic sub-grid model

PoS(LAT2009)061. Monte Carlo approach to turbulence

The infrared properties of the energy spectrum in freely decaying isotropic turbulence

Multifractals and Wavelets in Turbulence Cargese 2004

Rough solutions of the Stochastic Navier-Stokes Equation

arxiv: v2 [nlin.cd] 7 Oct 2011

One-particle two-time diffusion in three-dimensional homogeneous isotropic turbulence

Spectral reduction for two-dimensional turbulence. Abstract

Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers

Role of polymers in the mixing of Rayleigh-Taylor turbulence

Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS UMR 5672, Laboratoire de Physique, F Lyon, France

DECAYING TURBULENCE: THEORY AND EXPERIMENTS

Cascade Phenomenology in Turbulence: Navier-Stokes and MHD

Energy transfer and dissipation in forced isotropic turbulence

Eddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr):

Fragmentation under the scaling symmetry and turbulent cascade with intermittency

From time series to superstatistics

arxiv: v2 [physics.flu-dyn] 1 Oct 2008

A scaling limit from Euler to Navier-Stokes equations with random perturbation

Turbulent velocity fluctuations need not be Gaussian

6. Renormalized Perturbation Theory

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

FUNDAMENTAL AND CONCEPTUAL ASPECTS OF TURBULENT FLOWS

Renormalization group in stochastic theory of developed turbulence 4

Intermittent distribution of heavy particles in a turbulent flow. Abstract

Isotropic homogeneous 3D turbulence

P2.1 Scalar spectra in the near-dissipation range derived from structure functions

Local flow structure and Reynolds number dependence of Lagrangian statistics in DNS of homogeneous turbulence. P. K. Yeung

Energy fluxes in turbulent separated flows

TURBULENCE IN STRATIFIED ROTATING FLUIDS Joel Sommeria, Coriolis-LEGI Grenoble

An Introduction to Theories of Turbulence. James Glimm Stony Brook University

Diffusive Transport Enhanced by Thermal Velocity Fluctuations

Logarithmic scaling in the near-dissipation range of turbulence

The effect of asymmetric large-scale dissipation on energy and potential enstrophy injection in two-layer quasi-geostrophic turbulence

PLEASE SCROLL DOWN FOR ARTICLE

INVERSE FRACTAL STATISTICS IN TURBULENCE AND FINANCE

Model Representation for Self - Consistent - Field Theory of Isotropic Turbulence

Lecture 2. Turbulent Flow

Vortex dynamics in finite temperature two-dimensional superfluid turbulence. Andrew Lucas

On the decay of two-dimensional homogeneous turbulence

arxiv:cond-mat/ v1 30 Jul 1995

CVS filtering to study turbulent mixing

AGAT 2016, Cargèse a point-vortex toy model

Bifurcations and multistability in turbulence

Concentration and segregation of particles and bubbles by turbulence : a numerical investigation

arxiv:nlin/ v2 [nlin.cd] 29 Jul 2001

Locality and stability of the cascades of two-dimensional turbulence.

The Johns Hopkins Turbulence Databases (JHTDB)

Lagrangian acceleration in confined 2d turbulent flow

Turbulent drag reduction by streamwise traveling waves

Local shell-to-shell energy transfer via nonlocal interactions in fluid turbulence

Autocorrelation function of velocity increments time series in fully developed turbulence

Before we consider two canonical turbulent flows we need a general description of turbulence.

Logarithmically modified scaling of temperature structure functions in thermal convection

The Navier-Stokes equations I consider an incompressible fluid continuum R 3, of constant density ( 0 = 1) I conservation of mass/incompressibility re

Energy and potential enstrophy flux constraints in quasi-geostrophic models

Schmidt number effects on turbulent transport with uniform mean scalar gradient

Homogeneous Turbulence Dynamics

Spectral laws for the enstrophy cascade in a twodimensional

Analysis of Turbulent Free Convection in a Rectangular Rayleigh-Bénard Cell

Intermittency, Fractals, and β-model

Collision of inertial particles in turbulent flows.

THE DECAY OF HOMOGENEOUS TURBULENCE GENERATED BY MULTI-SCALE GRIDS

Turbulent Rankine Vortices

Published online: 12 Jun To link to this article:

From Boltzmann Equations to Gas Dynamics: From DiPerna-Lions to Leray

Simulations of Three-Dimensional Turbulent Mixing for Schmidt Numbers of the Order 1000

arxiv:chao-dyn/ v3 10 Mar 2000

Isotropic homogeneous 3D turbulence

Incompressible MHD simulations

Energy spectrum of isotropic magnetohydrodynamic turbulence in the Lagrangian renormalized approximation

Turbulent Vortex Dynamics

Turbulence: Basic Physics and Engineering Modeling

AER1310: TURBULENCE MODELLING 1. Introduction to Turbulent Flows C. P. T. Groth c Oxford Dictionary: disturbance, commotion, varying irregularly

Transcription:

Spatiotemporal correlation functions of fully developed turbulence ERG Trieste Léonie Canet 19/09/2016

In collaboration with... Guillaume Balarac Bertrand Delamotte Nicola s Wschebor LPTMC Univ. Repu blica LPMMC LEGI Univ. Paris 6 Montevideo Univ. Grenoble Alpes Grenoble INP Vincent Rossetto LC, B. Delamotte, N. Wschebor, Phys. Rev. E 91 (2015) LC, B. Delamotte, N. Wschebor, Phys. Rev. E 93 (2016) LC, V. Rossetto, N. Wschebor, G. Balarac, arxiv :1607.03098 (2016)

Presentation outline 1 NPRG approach to Navier-Stokes equation Fully developed turbulence Navier-Stokes equation NPRG formalism for NS Leading Order approximation 2 Exact correlation function in the limit of large wave-numbers Exact flow equations in the limit of large wave-numbers Solution in the inertial range Solution in the dissipative range 3 Perspectives

Navier-Stokes turbulence stationary regime of fully developed isotropic and homogeneous turbulence integral scale (energy injection) : l 0 Kolmogorov scale (energy dissipation) : η energy cascade l 0 η R3/4 l 0 η flux ɛ injection ɛ dissipation ɛ constant energy flux in the inertial range η < r < l 0 Frisch, Turbulence, the legacy of AN Kolmogorov Cambridge Univ. Press (1995)

Scale invariance in the inertial range velocity structure functions velocity increments δv l = [ u( x + l) u( x)] l structure function S p (l) (δv l ) p l ξp energy spectrum ξ 2 = 2/3 E(k) = 4πk 2 TF ( v( x) v(0) ) k 5/3 inertial range ONERA wind tunnel Anselmet, Gagne, Hopfinger, Antonia, J. Fluid Mech. 140 (1984).

Scale invariance in the inertial range velocity structure functions velocity increments δv l = [ u( x + l) u( x)] l structure function S p (l) (δv l ) p l ξp energy spectrum ξ 2 = 2/3 E(k) = 4πk 2 TF ( v( x) v(0) ) k 5/3 dissipative range ONERA wind tunnel Anselmet, Gagne, Hopfinger, Antonia, J. Fluid Mech. 140 (1984).

Scale invariance in the inertial range velocity structure functions velocity increments δv l = [ u( x + l) u( x)] l structure function S p (l) (δv l ) p l ξp energy spectrum ξ 2 = 2/3 E(k) = 4πk 2 TF ( v( x) v(0) ) k 5/3 ONERA wind tunnel Anselmet, Gagne, Hopfinger, Antonia, J. Fluid Mech. 140 (1984).

Kolmogorov K41 theory for isotropic 3D turbulence Kolmogorov original work A.N. Kolmogorov, Dokl. Akad. Nauk. SSSR 30, 31, 32 (1941) Assumptions symmetries restored in a statistical sense : homogeneity, isotropy finite dissipation rate per unit mass ɛ in the limit ν 0 = derivation of energy flux constancy relation exact result four-fifth law S 3 (l) = 4 5 ɛ l Assuming universality in the inertial range self-similarity δ v ( r, λ l) = λ h δ v ( r, l) dimensional analysis = scaling predictions S p (l) = C p ɛ p/3 l p/3 E(k) = C K ɛ 2/3 k 5/3

Intermittency, multi-scaling deviations from K41 in experiments and numerical simulations S p (l) (δv l ) p l ξp illustration : von Kárman swirling flow ξ p p/3 violation of simple scaleinvariance = multi-scaling non-gaussian statistics of velocity differences = intermittency exp., * num. - - - K41 Mordant, Lévêque, Pinton, New J. Phys. 6 (2004)

Intermittency, multi-scaling theoretical challenge : understand K41 and intermittency from first principles (microscropic description) Various perturbative RG approaches formal expansion parameter through the forcing profile N αβ ( p) p 4 d 2ɛ early works de Dominicis, Martin, PRA 19 (1979), Fournier, Frisch, PRA 28 (1983) Yakhot, Orszag, PRL 57 (1986) reviews Zhou, Phys. Rep. 488 (2010) Adzhemyan et al., The Field Theoretic RG in Fully Developed Turbulence, Gordon Breach, 1999 Non-Perturbative (functional) RG approaches Tomassini, Phys. Lett. B 411 (1997), Mejía-Monasterio, Muratore-Ginnaneschi, PRE 86 (2012)

Intermittency, multi-scaling theoretical challenge : understand K41 and intermittency from first principles (microscropic description) Various perturbative RG approaches formal expansion parameter through the forcing profile N αβ ( p) p 4 d 2ɛ early works de Dominicis, Martin, PRA 19 (1979), Fournier, Frisch, PRA 28 (1983) Yakhot, Orszag, PRL 57 (1986) reviews Zhou, Phys. Rep. 488 (2010) Adzhemyan et al., The Field Theoretic RG in Fully Developed Turbulence, Gordon Breach, 1999 Non-Perturbative (functional) RG approaches Tomassini, Phys. Lett. B 411 (1997), Mejía-Monasterio, Muratore-Ginnaneschi, PRE 86 (2012)

Intermittency, multi-scaling theoretical challenge : understand K41 and intermittency from first principles (microscropic description) Various perturbative RG approaches formal expansion parameter through the forcing profile N αβ ( p) p 4 d 2ɛ early works de Dominicis, Martin, PRA 19 (1979), Fournier, Frisch, PRA 28 (1983) Yakhot, Orszag, PRL 57 (1986) reviews Zhou, Phys. Rep. 488 (2010) Adzhemyan et al., The Field Theoretic RG in Fully Developed Turbulence, Gordon Breach, 1999 NPRG without truncations : exact closure based on symmetries! LC, Delamotte, Wschebor, PRE 93 (2016), LC, Rossetto, Wschebor, Balarac, arxiv :1607.03098

Microscopic theory Navier Stokes equation with forcing for incompressible fluids v t + v v = 1 ρ p + ν 2 v + f v(t, x) = 0 v( x, t) velocity field and p( x, t) pressure field ρ density and ν kinematic viscosity f ( x, t) gaussian stochastic stirring force with variance fα (t, x)f β (t, x ) = 2δ αβ δ(t t )N l0 ( x x ). with N l0 peaked at the integral scale (energy injection)

Non-Perturbative Renormalisation Group for NS MSR Janssen de Dominicis formalism : NS field theory Martin, Siggia, Rose, PRA 8 (1973), Janssen, Z. Phys. B 23 (1976), de Dominicis, J. Phys. Paris 37 (1976) S 0 = t, x v α t, x, x v α [ t v α + v β β v α + 1 ρ αp ν 2 v α ] + p [ ] N l0 ( x x ) v α [ α v α ] Non-Perturbative Renormalization Group approach Wetterich s equation for scale-dependent effective actions Γ κ κ Γ κ = 1 [ ] 1 2 Tr κ R κ Γ (2) 1 κ + R κ = 2 Tr κ R κ G κ C. Wetterich, Phys. Lett. B 301 (1993) q q

Non-Perturbative Renormalisation Group for NS Aim : compute correlation function and response function vα (t, x)v β (0, 0) and v α (t, x)f β (0, 0) Wetterich s equation for the 2-point functions κγ (2) κ,ij (p) = Tr q ( κr κ(q) G κ(q) 1 2 Γ(4) κ,ij (p, p, q) ) +Γ (3) κ,i (p, q) Gκ(p + q) Γ(3) κ,j ( p, p + q) G κ(q) infinite hierarchy of flow equations approximation scheme : truncation of higher-order vertices Tomassini, Phys. Lett. B 411 (1997), Mejía-Monasterio, Muratore-Ginnaneschi, PRE 86 (2012) LC, Delamotte, Wschebor, PRE 93 (2016) exact closure exploiting (time-gauged) symmetries of NS action LC, Delamotte, Wschebor, PRE 93 (2016)

Non-Perturbative Renormalisation Group for NS Aim : compute correlation function and response function vα (t, x)v β (0, 0) and v α (t, x)f β (0, 0) Wetterich s equation for the 2-point functions κγ (2) κ,ij (p) = Tr q ( κr κ(q) G κ(q) 1 2 Γ(4) κ,ij (p, p, q) ) +Γ (3) κ,i (p, q) Gκ(p + q) Γ(3) κ,j ( p, p + q) G κ(q) infinite hierarchy of flow equations approximation scheme : truncation of higher-order vertices Tomassini, Phys. Lett. B 411 (1997), Mejía-Monasterio, Muratore-Ginnaneschi, PRE 86 (2012) LC, Delamotte, Wschebor, PRE 93 (2016) exact closure exploiting (time-gauged) symmetries of NS action LC, Delamotte, Wschebor, PRE 93 (2016)

Non-Perturbative Renormalisation Group for NS Aim : compute correlation function and response function vα (t, x)v β (0, 0) and v α (t, x)f β (0, 0) Wetterich s equation for the 2-point functions κγ (2) κ,ij (p) = Tr q ( κr κ(q) G κ(q) 1 2 Γ(4) κ,ij (p, p, q) ) +Γ (3) κ,i (p, q) Gκ(p + q) Γ(3) κ,j ( p, p + q) G κ(q) infinite hierarchy of flow equations approximation scheme : truncation of higher-order vertices Tomassini, Phys. Lett. B 411 (1997), Mejía-Monasterio, Muratore-Ginnaneschi, PRE 86 (2012) LC, Delamotte, Wschebor, PRE 93 (2016) exact closure exploiting (time-gauged) symmetries of NS action LC, Delamotte, Wschebor, PRE 93 (2016)

NPRG at Leading Order (LO) approximation general form of the effective action from the symmetries Γ[ u, u, ( p, p] = {ū α t u α + u β β u α + ) } αp + p α u α + ˆΓ[ u, u] ρ t, x Ansatz for ˆΓ κ at LO approximation ˆΓ κ [ u, u] } = {ū α fκ,αβ ν ( x x ) u β ū α fκ,αβ D ( x x ) ū β t, x, x truncation at quadratic order in the fields two flowing functions f ν κ ( k) and f D κ ( k) = works very accurately for Kardar-Parisi-Zhang equation LC, Chaté, Delamotte, Wschebor, PRL 104 (2010), PRE 84 (2011) Kloss, LC, Wschebor, PRE 86 (2012), PRE 89 (2014)

NPRG at Leading Order (LO) approximation Numerical integration at LO LC, Delamotte, Wschebor, PRE 93 (2016) fixed-point in d = 2 and d = 3 kinetic energy spectrum Kolmogorov scaling k 5/3 in d = 3 Kraichnan-Batchelor scaling k 3 in d = 2

Presentation outline 1 NPRG approach to Navier-Stokes equation Fully developed turbulence Navier-Stokes equation NPRG formalism for NS Leading Order approximation 2 Exact correlation function in the limit of large wave-numbers Exact flow equations in the limit of large wave-numbers Solution in the inertial range Solution in the dissipative range 3 Perspectives

Ingredient 1 : Symmetries of the NS field theory infinitesimal time-gauged galilean transformations { x x + ɛ (t) G( ɛ (t)) = v v ɛ δ v α(t, x) δp(t, x) (t) { δvα(t, x) = ɛ α(t) + ɛ β (t) β v α(t, x) = ɛ β (t) β v α(t, x) = ɛ β (t) β p(t, x) δ p(t, x) = ɛ β (t) β p(t, x) infinitesimal time-gauged response field shift not identified yet! { δ vα (t, x) = ɛ R( ɛ (t)) = α (t) δ p(t, x) = v β (t, x) ɛ β (t) LC, Delamotte, Wschebor, Phys. Rev. E 91 (2015) infinite set of local in time exact Ward identities for all vertices with one zero momentum Γ (2,1) αβγ (ω, q = 0; ν, p) = pα ( ω Γ (1,1) βγ ) (ω + ν, p) Γ(1,1) βγ (ν, p) Γ (2,2) αβγδ (ω, 0, ω, 0, ν, p) = pα p β [ ] ω 2 Γ (0,2) γδ (ν + ω, p) 2Γ(0,2) γδ (ν, p) + Γ(0,2) γδ (ν ω, p)

Ingredient 2 : limit of large wave-numbers Wetterich s equation for the 2-point functions κγ (2) κ,ij (ν, p) = Tr ν, q ( κr κ( q) G κ(ω, q) 1 2 Γ(4) κ,ij (ν, p; ν, p; ω, 0) ) +Γ (3) κ,i (ν, p; ω, 0) Gκ(ν + ω, p + q) Γ(3) κ,j ( ω, 0; ν + ω, p + 0) G κ(ω, q) regime of large wave-vector p κ or κ 0 = q p set q = 0 in all vertices and close with Ward identities { s Γ (1,1) (ν, p) = p2 ω [ Γ (1,1) + 1 2ω 2 s Γ (0,2) (ν, p) =... LC, Delamotte, Wschebor, PRE 93 (2016) Γ(1,1) (ω + ν, p) Γ(1,1) 2 (ν, p) ω (d 1) s G uu (ω, q) d q G uū ( ω ν, p) (ω + ν, p) 2Γ(1,1) (ν, p) + Γ(1,1) ( ω + ν, p) ]}

Exact flow equations in the large wave-number limit exact equation for C κ (ω, k) when k κ and ω κ z κ κ C κ (ω, k) = 1 3 k2 I κ 2 ωc κ (ω, k) { } I κ = 2 sn s( q) G κ(ν, q) 2 2 sr s( q) C κ(ν, q)rg κ(ν, q) ν, q = also exact equation for response function LC, Delamotte, Wschebor, PRE 93 (2016) exact analytical solutions of the fixed-point equations two regimes : I > 0 : solution in the inertial range I < 0 : solution in the dissipative range LC, Rossetto, Wschebor, Balarac, arxiv :1607.03098 (2016)

Analytical solutions I : inertial range analytical solution in the inertial range C(ω, k) = c [ ] C 1 k 13/3 exp (ω/k)2 4παk 2/3 4α α = 3I /2 kinetic energy spectrum (in wave-vector) E(k) = 4πk 2 dω C(ω, k) k 5/3 π kinetic energy spectrum (in frequency) E(ω) = 4π 0 0 k 2 C(ω, k)dk ω 5/3 = sweeping effect! (random Taylor hypothesis Tennekes, J. Fluid Mech. 67 (1975)) standard scaling theory with z = 2/3 = E(ω) ω 2 observed for Lagrangian velocities, but not Eulerian ones Chevillard, Roux, Lévêque, Mordant, Pinton, Arnéodo, PRL 95 (2005)

Analytical solutions I : inertial range analytical solution in the inertial range C(ω, k) = c [ ] C 1 k 13/3 exp (ω/k)2 4παk 2/3 4α α = 3I /2 kinetic energy spectrum (in wave-vector) E(k) = 4πk 2 dω C(ω, k) k 5/3 π kinetic energy spectrum (in frequency) E(ω) = 4π 0 0 k 2 C(ω, k)dk ω 5/3 = sweeping effect! (random Taylor hypothesis Tennekes, J. Fluid Mech. 67 (1975)) standard scaling theory with z = 2/3 = E(ω) ω 2 observed for Lagrangian velocities, but not Eulerian ones Chevillard, Roux, Lévêque, Mordant, Pinton, Arnéodo, PRL 95 (2005)

Analytical solutions I : inertial range analytical solution in the inertial range C(ω, k) = c [ ] C 1 k 13/3 exp (ω/k)2 4παk 2/3 4α α = 3I /2 kinetic energy spectrum (in wave-vector) E(k) = 4πk 2 dω C(ω, k) k 5/3 π kinetic energy spectrum (in frequency) E(ω) = 4π 0 0 k 2 C(ω, k)dk ω 5/3 = sweeping effect! (random Taylor hypothesis Tennekes, J. Fluid Mech. 67 (1975)) standard scaling theory with z = 2/3 = E(ω) ω 2 observed for Lagrangian velocities, but not Eulerian ones Chevillard, Roux, Lévêque, Mordant, Pinton, Arnéodo, PRL 95 (2005)

Analytical solutions I : inertial range analytical solution in the inertial range C(ω, k) = c [ ] C 1 k 13/3 exp (ω/k)2 4παk 2/3 4α α = 3I /2 kinetic energy spectrum (in wave-vector) E(k) = 4πk 2 dω C(ω, k) k 5/3 π kinetic energy spectrum (in frequency) E(ω) = 4π time-dependence { C(t, k) = R 0 0 0 k 2 C(ω, k)dk ω 5/3 } dω C(ω, k)e iωt π 1 2 t 2 e αk k11/3

Analytical solutions I : inertial range numerical data our simulations based on pseudo-spectral code Lagaert, Balarac, Cottet, J. Comp. Phys. 260 (2014) JHTBD Johns Hopkins TurBulence Database http ://turbulence.pha.jhu.edu/ LC, Rossetto, Wschebor, Balarac, arxiv :1607.03098

Analytical solutions I : inertial range numerical data analytical prediction C (t, k) exp( αk 2 t 2 )

Analytical solutions II : dissipative range analytical solution in the dissipative range C(ω, k) = c C k 13/3 [ ( exp µk 2/3 + A ω )] k 2/3 A = 2µ 3I kinetic energy spectrum E(k) = 4πk 2 0 dω 1 [ C(ω, k) π k exp µk 2/3] 5/3 several empirical propositions exp[ ck γ ] with γ = 1/2, 3/2, 4/3, 2,... Monin and Yaglom, Statistical Fluid Mechanics : Mechanics of Turbulence (1973) common wisdom : approximately exponential decay

Analytical solutions II : dissipative range analytical solution in the dissipative range C(ω, k) = c C k 13/3 [ ( exp µk 2/3 + A ω )] k 2/3 A = 2µ 3I kinetic energy spectrum E(k) = 4πk 2 0 dω 1 [ C(ω, k) π k exp µk 2/3] 5/3

Analytical solutions II : dissipative range numerical data analytical prediction E (k) exp( µk 2/3 ) LC, Rossetto, Wschebor, Balarac, arxiv :1607.03098

Analytical solutions II : dissipative range numerical data and experiments! in preparation... Dubue, Kuzzay, Saw, Daviaud, Dubrulle, Wschebor, LC, Rossetto (2016) analytical prediction E (k) exp( µk 2/3 )

Conclusion and perspectives Conclusion analytical solution for C(ω, k) in d = 3 confirmed by numerical simulations bidimensional turbulence both energy and enstrophy are conserved Numerical solution for C(ω, k) interplay of the two regimes intermittency effects structure functions derive flow equations for S p (l), p = 3, 4,... intermittency exponents ξ p direct cascade inverse cascade energy spectra

Thank you for attention!

NPRG formalism for NS Navier-Stokes action ( S 0 = v α t v α + v β β v α + 1 ) t, x ρ αp ν 2 v α + p α v α v α N L 1,αβ( x x ) v β t, x, x early NPRG setting proposed in R. Collina and P. Tomassini, Phys. Lett. B 411 (1997) using the inverse integral scale L 1 as the RG scale

NPRG formalism for NS I improved regulator term L. Canet, B. Delamotte, N. Wschebor, PRE (2016) S κ [ v, v] = v α (t, x)n k,αβ ( x x ) v β (t, x ) t, x, x + v α (t, x)r κ,αβ ( x x )v β (t, x ) t, x, x with N k,αβ ( q) = δ αβ D κ ˆn ( q /κ) and R κ,αβ ( q) = δ αβ ν κ q 2ˆr ( q /κ) physically : RG (volume) scale κ and integral scale k 1 can be kept independent technically : flow equations regularized down to d = 2

Symmetries of the NS field theory infinitesimal gauged shifts in the pressure sector p(t, x) p(t, x) + ɛ(t, x) p(t, x) p(t, x) + ɛ(t, x) infinitesimal time-gauged galilean transformations G( ɛ (t)) = { x x + ɛ (t) v v ɛ (t) { δvα(t, x) = ɛ α(t) + ɛ β (t) β v α(t, x) δ v α(t, x) = ɛ β (t) β v α(t, x) δp(t, x) = ɛ β (t) β p(t, x) δ p(t, x) = ɛ β (t) β p(t, x) infinitesimal time-gauged response field shift { δ vα (t, x) = ɛ R( ɛ (t)) = α (t) δ p(t, x) = v β (t, x) ɛ β (t) LC, Delamotte, Wschebor, Phys. Rev. E 91 (2015) not identified yet!

Symmetries of the NS field theory fully gauged shift symmetry ɛ α (t) ɛ α ( x, t) in the presence of a local source term v α L αβ v β local functional Ward identity for W = ln Z [ t + ν 2 + K ] δw 1 δj α ρ δw α δk + J δw α β + δl αβ LC, Delamotte, Wschebor, Phys. Rev. E 91 (2015) from which can be derived : Kárman-Howarth-Monin relation = four-fifth Kolmogorov law : S 3 (l) = 4 5 ɛ l x { 2 δw } δj N αβ = 0 β exact relation for a pressure-velocity correlation function v( r)p( r) v 2 (0) r Falkovich, Fouxon, Oz, J. Fluid Mech. 644, (2010). infinite set of generalized exact local relations