Casimir and Casimir-Polder forces in chiral and non-reciprocal media

Similar documents
Quantum Theory of Light and Dispersion Forces in Non-Reciprocal and Bianisotropic Media

Springer Tracts in Modern Physics 247. Dispersion Forces I

Appendix A The Green s Tensor

arxiv: v1 [quant-ph] 8 Dec 2015

Chiroptical Spectroscopy

E E D E=0 2 E 2 E (3.1)

Quantum levitation by left-handed metamaterials

Macroscopic QED in Linearly Responding Media and a Lorentz-Force Approach to Dispersion Forces

arxiv:quant-ph/ v3 14 Aug 2008

Progress In Electromagnetics Research, PIER 48, , 2004

Progress In Electromagnetics Research, Vol. 110, , 2010

arxiv:quant-ph/ v1 24 Nov 1998

Electromagnetically Induced Flows in Water

Casimir Force in Anisotropic Materials with AC Kerr Effect

Lecture 4. Diffusing photons and superradiance in cold gases

arxiv: v3 [quant-ph] 26 Mar 2009

Dispersion Forces I: Macroscopic Quantum Electrodynamics And Ground-State Casimir, Casimir- Polder And Van Der Waals Forces (Springer Tracts In

3 Constitutive Relations: Macroscopic Properties of Matter

Casimir energy & Casimir entropy

Electric properties of molecules

Linear Response in Fluctuational Electrodynamics

Electromagnetism II Lecture 7

The physics of the perfect lens

arxiv: v1 [physics.optics] 30 Jun 2008

Overview in Images. S. Lin et al, Nature, vol. 394, p , (1998) T.Thio et al., Optics Letters 26, (2001).

Symmetry of the Dielectric Tensor

Polarized and unpolarised transverse waves, with applications to optical systems

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308)

Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics

Open Quantum Systems and Markov Processes II

Microscopic-Macroscopic connection. Silvana Botti

The Electromagnetic Green s Function for Layered Topological Insulators

1 Fundamentals of laser energy absorption

Hydrodynamic Modes of Incoherent Black Holes

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion

Electromagnetic optics!

A Simply Regularized Derivation of the Casimir Force

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

MHD Linear Stability Analysis Using a Full Wave Code

Theory and Applications of Dielectric Materials Introduction

Fluctuation-induced interaction of neutrons with metal or dielectric surfaces

Quantum Cluster Methods (CPT/CDMFT)

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

arxiv: v1 [quant-ph] 15 Jul 2015

Lecture 4 Quantum mechanics in more than one-dimension

MD simulation: output

Plasma waves in the fluid picture I

INTRODUCTION TO QUANTUM ELECTRODYNAMICS by Lawrence R. Mead, Prof. Physics, USM

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic

arxiv: v1 [physics.class-ph] 8 Apr 2019

Phys 622 Problems Chapter 5

PEMC PARABOLOIDAL REFLECTOR IN CHIRAL MEDIUM SUPPORTING POSITIVE PHASE VELOC- ITY AND NEGATIVE PHASE VELOCITY SIMULTANE- OUSLY

ENTANGLEMENT TRANSFORMATION AT ABSORBING AND AMPLIFYING DIELECTRIC FOUR-PORT DEVICES

ATTRACTION FORCE BETWEEN A POLARIZABLE POINT-LIKE PARTICLE AND A SEMI-INFINITE SOLID

Electromagnetic Wave Propagation Lecture 8: Propagation in birefringent media

Note on Group Velocity and Energy Propagation

Boundary conditions on a δ-function material

D. S. Weile Radiation

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime

arxiv: v3 [quant-ph] 11 May 2009

CLASSICAL ELECTRICITY

arxiv: v1 [quant-ph] 31 Oct 2018

Landau s Fermi Liquid Theory

Lecture 2: Open quantum systems

Chapter 9. Electromagnetic Radiation

Hilbert s Stress-Energy Tensor

Quantum Mechanics II Lecture 11 ( David Ritchie

Cloaking The Road to Realization

Nonlinear Oscillators and Vacuum Squeezing

The Casimir Effect. Notes by Asaf Szulc

Quantum Light-Matter Interactions

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

σ 2 + π = 0 while σ satisfies a cubic equation λf 2, σ 3 +f + β = 0 the second derivatives of the potential are = λ(σ 2 f 2 )δ ij, π i π j

The Raman Effect. A Unified Treatment of the Theory of Raman Scattering by Molecules. DerekA. Long

3.3 Energy absorption and the Green function

1. Reminder: E-Dynamics in homogenous media and at interfaces

Light Localization in Left-Handed Media

Many-Body Problems and Quantum Field Theory

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016

FORTH. Essential electromagnetism for photonic metamaterials. Maria Kafesaki. Foundation for Research & Technology, Hellas, Greece (FORTH)

The 3 dimensional Schrödinger Equation

DoD MURI on Metamaterials

H ( E) E ( H) = H B t

Lecture 4 Quantum mechanics in more than one-dimension

Quantum Physics III (8.06) Spring 2008 Final Exam Solutions

Magnetism and Magnetic Switching

CLASS OF BI-QUADRATIC (BQ) ELECTROMAGNETIC MEDIA

Homogeneous Bianisotropic Medium, Dissipation and the Non-constancy of Speed of Light in Vacuum for Different Galilean Reference Systems

McGill University. Department of Physics. Ph.D. Preliminary Examination. Long Questions

Dynamics of thermal Casimir-Polder forces on polar molecules

Electromagnetic Theory I

LINEAR RESPONSE THEORY

Quantum Electrodynamical TDDFT: From basic theorems to approximate functionals

Optical Cloaking of a Spherical Shape. Creating an Illusion of Invisibility using Metamaterials April 1, 2010

KINETICS OF SYSTEM OF EMITTERS AND NONEQUILIBRIUM ELECTROMAGNETIC FIELD S. F. Lyagushyn, A. I. Sokolovsky

Frequency Dependence Effective Refractive Index of Meta Materials by Effective Medium Theory

APPENDIX E SPIN AND POLARIZATION

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Inverse Problems in Quantum Optics

Modeling of electromagnetic wave propagation and spectra of optical excitations in complex media using 4 4 matrix formalism

Transcription:

Casimir and Casimir-Polder forces in chiral and non-reciprocal media Stefan Yoshi Buhmann, Stefan Scheel, David Butcher Quantum Optics and Laser Science Blackett Laboratory, Imperial College London, UK Electronic address: s.buhmann@imperial.ac.uk Homepage: http://qols.ph.ic.ac.uk/ sbuhmann

Outline Introduction: Dispersion forces and unusual materials Dispersion forces Repulsive forces? Unusual material properties QED in nonlocal, nonreciprocal media Ohm s law Field quantisation QED in local bianisotropic media Constitutive relations Commutation relations Duality Casimir Polder potential of chiral molecules Perturbation theory Perfect mirror

Introduction: Dispersion forces and unusual materials

Dispersion forces Dispersion force: Effective electromagnetic force between neutral, polarizable objects F. London, Z. Phys. 63, 245 (1930),

Dispersion forces Dispersion force: Effective electromagnetic force between neutral, polarizable objects London (1930): Dispersion force due to charge fluctuations ˆd = 0 _ + + + + + _ + _ +_ + F. London, Z. Phys. 63, 245 (1930),

Dispersion forces Dispersion force: Effective electromagnetic force between neutral, polarizable objects London (1930): Dispersion force due to charge fluctuations ˆd = 0, but ˆd 2 = 0 Dipole-dipole force _ + _ + + _ + _ + + + + F. London, Z. Phys. 63, 245 (1930), H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)

Dispersion forces Dispersion force: Effective electromagnetic force between neutral, polarizable objects London (1930): Dispersion force due to charge fluctuations ˆd = 0, but ˆd 2 = 0 Dipole-dipole force Casimir (1948): Dispersion force due to field fluctuations Ê = 0 F. London, Z. Phys. 63, 245 (1930), H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)

Dispersion forces Dispersion force: Effective electromagnetic force between neutral, polarizable objects London (1930): Dispersion force due to charge fluctuations ˆd = 0, but ˆd 2 = 0 Dipole-dipole force Casimir (1948): Dispersion force due to field fluctuations Ê = 0, but Ê 2 = 0 Radiation pressure force F. London, Z. Phys. 63, 245 (1930), H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)

Dispersion forces Dispersion force: Effective electromagnetic force between neutral, polarizable objects London (1930): Dispersion force due to charge fluctuations ˆd = 0, but ˆd 2 = 0 Dipole-dipole force Casimir (1948): Dispersion force due to field fluctuations Ê = 0, but Ê 2 = 0 Radiation pressure force Physical origin: Correlated charge and/or field fluctuations F. London, Z. Phys. 63, 245 (1930), H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)

Repulsive dispersion forces? Direction of ground-state dispersion forces between electric objects in vacuum typically attractive!

Repulsive dispersion forces? Direction of ground-state dispersion forces between electric objects in vacuum typically attractive! Repulsive dispersion forces: Objects in a medium ε < ε < ε 1 2 3 J.N. Munday, F. Capasso, V.A. Parsegian, Nature 457, 170 (2009);

Repulsive dispersion forces? Direction of ground-state dispersion forces between electric objects in vacuum typically attractive! Repulsive dispersion forces: Objects in a medium Excited or amplifying objects * * * * * * * * * J.N. Munday, F. Capasso, V.A. Parsegian, Nature 457, 170 (2009); A. Sambale, S.Y.B., D.-G. Welsch, T.D. Ho, PRA 80, 051801(R) (2009)

Repulsive dispersion forces? Direction of ground-state dispersion forces between electric objects in vacuum typically attractive! Repulsive dispersion forces: Objects in a medium Excited or amplifying objects Magnetoelectric objects ε µ J.N. Munday, F. Capasso, V.A. Parsegian, Nature 457, 170 (2009); A. Sambale, S.Y.B., D.-G. Welsch, T.D. Ho, PRA 80, 051801(R) (2009)

Electric vs magnetic objects Distance Retarded Nonretarded Objects e e e m e e e m r AB 1 r 8 AB + 1 r 8 AB 1 r 7 AB + 1 r 5 AB r A 1 r 8 A + 1 r 8 A 1 r 7 A + 1 r 5 A z A 1 z 6 A + 1 z 6 A 1 z 5 A + 1 z 3 A z A 1 z 5 A + 1 z 5 A 1 z 4 A + 1 z 2 A z 1 z 4 + 1 z 4 1 z 3 + 1 z

Electric vs magnetic objects Distance Retarded Nonretarded Objects e e e m e e e m Dual objects m m m e m m m e r AB r A z A z A 1 r 8 AB 1 r 8 A 1 z 6 A 1 z 5 A + 1 rab 8 + 1 ra 8 + 1 za 6 + 1 za 5 1 r 7 AB 1 r 7 A 1 z 5 A 1 z 4 A + 1 rab 5 + 1 ra 5 + 1 za 3 + 1 za 2 z 1 z 4 + 1 z 4 1 z 3 + 1 z Duality invariance: α β/c 2, ε µ (e m, m e) S.Y.B., S. Scheel, Phys. Rev. Lett. 102, 140404 (2009)

Electric vs magnetic objects Distance Retarded Nonretarded Objects e e e m e e e m Dual objects m m m e m m m e r AB r A z A z A 1 r 8 AB 1 r 8 A 1 z 6 A 1 z 5 A + 1 rab 8 + 1 ra 8 + 1 za 6 + 1 za 5 1 r 7 AB 1 r 7 A 1 z 5 A 1 z 4 A + 1 rab 5 + 1 ra 5 + 1 za 3 + 1 za 2 z 1 z 4 + 1 z 4 1 z 3 + 1 z Duality invariance: α β/c 2, ε µ (e m, m e) Opposites repel! S.Y.B., S. Scheel, Phys. Rev. Lett. 102, 140404 (2009)

Unusual material properties Simplest magnetoelectric: permittvity ε(r, ω), permeability µ(r, ω)

Unusual material properties Simplest magnetoelectric: permittvity ε(r, ω), permeability µ(r, ω) Generalisations: nonlocal media: ε(r, r, ω) ( metals)

Unusual material properties Simplest magnetoelectric: permittvity ε(r, ω), permeability µ(r, ω) Generalisations: nonlocal media: ε(r, r, ω) ( metals) anisotropic media: ε(r, ω) ( crystals, metamaterials, birefringence)

Unusual material properties Simplest magnetoelectric: permittvity ε(r, ω), permeability µ(r, ω) Generalisations: nonlocal media: ε(r, r, ω) ( metals) anisotropic media: ε(r, ω) ( crystals, metamaterials, birefringence) bi(an)isotropic media: cross-susceptibilitities ξ(r, ω), ζ(r, ω) ( chiral media)

Unusual material properties Simplest magnetoelectric: permittvity ε(r, ω), permeability µ(r, ω) Generalisations: nonlocal media: ε(r, r, ω) ( metals) anisotropic media: ε(r, ω) ( crystals, metamaterials, birefringence) bi(an)isotropic media: cross-susceptibilitities ξ(r, ω), ζ(r, ω) ( chiral media) nonreciprocal media: violation of Onsager theorem ( external magnetic fields, spontaneous symmetry breaking, moving media)

Onsager theorem Onsager reciprocity: current j along e 1 at r 1 causes field E along e 2 at r 2 j r 1 e 1 e E r 2 2

Onsager theorem Onsager reciprocity: current j along e 1 at r 1 causes field E along e 2 at r 2 current j along e 2 at r 2 causes field E along e 1 at r 1 E r 1 e 1 e j r 2 2

Onsager theorem Onsager reciprocity: current j along e 1 at r 1 causes field E along e 2 at r 2 current j along e 2 at r 2 causes field E along e 1 at r 1 Formally: E(r, ω) = iµ 0 ω d 3 r G(r, r, ω) j(r, ω), G T (r, r, ω) = G(r, r, ω)

QED in nonlocal, nonreciprocal media

Maxwell equations + Ohm s law Maxwell equations: ˆB = 0, Ê + ˆB = 0, Ê = ˆρ in ε 0, ˆB 1 c 2 Ê = µ 0 ĵ in

Maxwell equations + Ohm s law Maxwell equations: ˆB = 0, Ê + ˆB = 0, Ê = ˆρ in ε 0, Linear constitutive relations: ĵ in (r, t) = dτ ˆB 1 c 2 Ê = µ 0 ĵ in d 3 r Q(r, r, τ) Ê(r, t τ) + ĵ N (r, t), Q(r, r, τ)=0 for cτ < r r (causality)

Maxwell equations + Ohm s law Maxwell equations: ˆB = 0, Ê + ˆB = 0, Ê = ˆρ in ε 0, Linear constitutive relations: ĵ in (r, t) = dτ ˆB 1 c 2 Ê = µ 0 ĵ in d 3 r Q(r, r, τ) Ê(r, t τ) + ĵ N (r, t), Q(r, r, τ)=0 for cτ < r r (causality) Frequency components: ĵ in (r, ω) = d 3 r Q(r, r, ω) Ê(r, ω) + ĵ N (r, ω)

Maxwell equations + Ohm s law Maxwell equations: ˆB = 0, Ê + ˆB = 0, Ê = ˆρ in ε 0, Linear constitutive relations: ĵ in (r, t) = dτ ˆB 1 c 2 Ê = µ 0 ĵ in d 3 r Q(r, r, τ) Ê(r, t τ) + ĵ N (r, t), Q(r, r, τ)=0 for cτ < r r (causality) Frequency components: ĵ in (r, ω) = d 3 r Q(r, r, ω) Ê(r, ω) + ĵ N (r, ω) Solution: Ê(r, ω) = iµ 0 ω d 3 r G(r, r, ω) ĵ N (r, ω)

Green tensor Helmholtz equation: [ ω2 c 2 ] G(r, r, ω) iµ 0 ω d 3 sq(r, s, ω) G(s, r, ω) = δ(r r )

Green tensor Helmholtz equation: [ ω2 c 2 ] G(r, r, ω) iµ 0 ω d 3 sq(r, s, ω) G(s, r, ω) = δ(r r ) General properties: Reciprocal media [Q T (r, r, ω)=q(r, r, ω)] Schwarz reflection principle: G (r, r, ω)=g(r, r, ω ) Onsager reciprocity: G T (r, r, ω) = G(r, r, ω) Integral relation: µ 0 ω d 3 s d 3 s G(r, s, ω) Re Q(s, s, ω) G (s, r, ω) = Im G(r, r, ω)

Green tensor General properties: Nonreciprocal media [Q T (r, r, ω) Q(r, r, ω)] Schwarz reflection principle: G (r, r, ω)=g(r, r, ω ) Onsager reciprocity: G T (r, r, ω) G(r, r, ω) Integral relation: µ 0 ω d 3 s d 3 s G(r, s, ω) ReQ(s, s, ω) G (s, r, ω) = ImG(r, r, ω), ReT(r, r ) = 1 2[ T(r, r ) + T (r, r) ], ImT(r, r ) = 1 2i [ T(r, r ) T (r, r) ]

Commutation relations: [ ĵ N (r, ω), ĵ ] N (r, ω ) Field quantisation = ω π ReQ(r, r, ω)δ(ω ω )

Commutation relations: [ ĵ N (r, ω), ĵ ] N (r, ω ) Field quantisation = ω π ReQ(r, r, ω)δ(ω ω ) Fundamental variables: [ ˆf(r, ω), ˆf (r, ω ) ] = δ(r r )δ(ω ω ) with ĵ N (r, ω) = ω π d 3 r R(r, r, ω) ˆf(r, ω), d 3 s R(r, s, ω) R (r, s, ω) = ReQ(r, r, ω)

Commutation relations: [ ĵ N (r, ω), ĵ ] N (r, ω ) Field quantisation = ω π ReQ(r, r, ω)δ(ω ω ) Fundamental variables: [ ˆf(r, ω), ˆf (r, ω ) ] = δ(r r )δ(ω ω ) with ĵ N (r, ω) = ω π d 3 r R(r, r, ω) ˆf(r, ω), d 3 s R(r, s, ω) R (r, s, ω) = ReQ(r, r, ω) Medium field Hamiltonian: Ĥ F = d 3 r 0 dω ω ˆf (r, ω) ˆf(r, ω)

Commutation relations: [ ĵ N (r, ω), ĵ ] N (r, ω ) Field quantisation = ω π ReQ(r, r, ω)δ(ω ω ) Fundamental variables: [ ˆf(r, ω), ˆf (r, ω ) ] = δ(r r )δ(ω ω ) with ĵ N (r, ω) = ω π d 3 r R(r, r, ω) ˆf(r, ω), d 3 s R(r, s, ω) R (r, s, ω) = ReQ(r, r, ω) Medium field Hamiltonian: Ĥ F = d 3 r 0 dω ω ˆf (r, ω) ˆf(r, ω) Consistency: Maxwell equations free-space QED fluctuation dissipation theorem

Local bianisotropic media

Local bianisotropic media Maxwell equations: ˆB = 0, Ê + iω ˆB = 0, ˆD = 0, Ĥ + iω ˆD = 0

Local bianisotropic media Maxwell equations: ˆB = 0, Ê + iω ˆB = 0, ˆD = 0, Ĥ + iω ˆD = 0 Constitutive relations: ˆD =ε 0 Ê+ ˆP, Ĥ = ˆB/µ 0 ˆM ˆP = ε 0 (ε ξ µ 1 ζ I) Ê + 1 Z 0 ξ µ 1 ˆB + ˆP N, ˆM = 1 Z 0 µ 1 ζ Ê + 1 µ 0 (I µ 1 ) ˆB + ˆM N

Local bianisotropic media Maxwell equations: ˆB = 0, Ê + iω ˆB = 0, ˆD = 0, Ĥ + iω ˆD = 0 Constitutive relations: ˆD =ε 0 Ê+ ˆP, Ĥ = ˆB/µ 0 ˆM ˆP = ε 0 (ε ξ µ 1 ζ I) Ê + 1 Z 0 ξ µ 1 ˆB + ˆP N, ˆM = 1 Z 0 µ 1 ζ Ê + 1 µ 0 (I µ 1 ) ˆB + ˆM N Alternative form: ˆD = ε 0 ε Ê + 1 c ξ Ĥ + ˆP N + 1 c ξ ˆM N, ˆB = 1 c ζ Ê + µ 0 µ Ĥ + µ 0 µ ˆM N

Relation to conductivity Conductivity: Q(r, r, ω) = 1 iµ 0 ω (µ 1 I) δ(r r ) + 1 Z 0 µ 1 ζ δ(r r ) + 1 Z 0 ξ µ 1 δ(r r ) iε 0 ω(ε ξ µ 1 ζ I) δ(r r ) Noise terms: ĵ N = iω ˆP N + ˆM N Green tensor: [ µ 1 iω c µ 1 ζ + iω c ξ µ 1 ] ω2 c 2 (ε ξ µ 1 ζ) G(r, r, ω) = δ(r r )

Commutation relations [ ˆP N (r, ω), ˆP N (r, ω ) ] = ε 0 π Im(ε ξ µ 1 ζ) δ(r r )δ(ω ω ), [ ˆM N (r, ω), ˆM N (r, ω ) ] = πµ 0 Imµ 1 δ(r r )δ(ω ω ), [ ˆP N (r, ω), ˆM N (r, ω ) ] = 2πiZ 0 (ζ µ 1 ξ µ 1 ) δ(r r )δ(ω ω )

Commutation relations [ ˆP N (r, ω), ˆP N (r, ω ) ] = ε 0 π Im(ε ξ µ 1 ζ) δ(r r )δ(ω ω ), [ ˆM N (r, ω), ˆM N (r, ω ) ] = πµ 0 Imµ 1 δ(r r )δ(ω ω ), [ ˆP N (r, ω), ˆM N (r, ω ) ] = 2πiZ 0 (ζ µ 1 ξ µ 1 ) δ(r r )δ(ω ω ) Basic variables: [ ˆf λ (r, ω), ˆf λ (r, ω ) ] = δ λλ δ(r r )δ(ω ω ) with R R = ( ) ˆP N (r, ω) ˆM N (r, ω) = ε 0 Im(ε ξ µ 1 ζ) µ 1 ζ µ 1 ξ 2πiZ 0 ( ) ˆf π R e (r, ω) ˆf m (r, ω) ζ µ 1 ξ µ 1 2iZ 0 Imµ 1 µ 0

Duality invariance Maxwell equations in dual-pair notation: ( ) ( ) Z0 ˆD 0 =, ˆB 0 ( Z0 ˆD ˆB ( Ê ) ) iω Z 0 Ĥ = 1 ( ε ξ c ζ µ ( 0 1 1 0 )( Ê Z 0 Ĥ )( Z0 ˆD ˆB ) + ) ( 1 0 0 µ = ( 0 0 ), )( Z0 ˆP N µ 0 ˆM N )

Duality invariance Maxwell equations in dual-pair notation: ( ) ( ) Z0 ˆD 0 =, ˆB 0 ( Z0 ˆD ˆB ( Ê ) ) iω Z 0 Ĥ = 1 ( ε ξ c ζ µ ( 0 1 1 0 )( Ê Z 0 Ĥ )( Z0 ˆD ˆB ) + ) ( 1 0 0 µ = ( 0 0 ), )( Z0 ˆP N µ 0 ˆM N ) Duality transformation: ( ) ( x x = D(θ) y y ), D(θ) = ( cos θ sin θ sin θ cos θ )

Transformation of response functions ε ξ ζ µ = cos 2 θ sin θ cos θ sin θ cos θ sin 2 θ sin θ cos θ cos 2 θ sin 2 θ sin θ cos θ sin θ cos θ sin 2 θ cos 2 θ sin θ cos θ sin 2 θ sin θ cos θ sin θ cos θ cos 2 θ ε ξ ζ µ

Transformation of response functions ε ξ ζ µ = cos 2 θ sin θ cos θ sin θ cos θ sin 2 θ sin θ cos θ cos 2 θ sin 2 θ sin θ cos θ sin θ cos θ sin 2 θ cos 2 θ sin θ cos θ sin 2 θ sin θ cos θ sin θ cos θ cos 2 θ ε ξ ζ µ Discrete vs continuous symmetry: Isotropic media (ε=εi, µ=µi, ξ =ζ =0): discrete Biisotropic media (ε=εi, µ=µi, ξ =ξi, ζ =ζi): continuous Anisotropic media (ξ = ζ = 0): discrete Reciprocal media (ε T =ε, ξ T = ζ, µ T =µ): discrete

Casimir Polder potential of chiral molecules

Perturbation theory Idea: System in ground state g = 0 {0} Interaction Ĥ AF = ˆd Ê(r A ) ˆm ˆB(r A ) energy shift E Casimir-Polder potential U(r A )= E(r A ) 2 nd -order perturbation theory: E = ψ E g E ψ g Ĥ AF ψ 2 H.B.G. Casimir, D. Polder, PRA 73 360 (1948)

Perturbation theory Idea: System in ground state g = 0 {0} Interaction Ĥ AF = ˆd Ê(r A ) ˆm ˆB(r A ) energy shift E Casimir-Polder potential U(r A )= E(r A ) U(r A ) = µ 0 π 0 dξ ξχ(iξ) Tr[ G (1) (r A, r A, iξ) ] Chiral polarisability: χ(ω) = 2 3 lim ɛ 0 k iωr 0k ω 2 k ω2 iωɛ, R 0k = Im(d 0k m k0 ) Scattering Green tensor: G (1) (r, r, ω) H.B.G. Casimir, D. Polder, PRA 73 360 (1948)

Example: Atom near perfect mirror Curie principle: need chiral body to detect chiral molecule Perfect chiral mirror: r s p = 1, r p s = ±1

Example: Atom near perfect mirror Curie principle: need chiral body to detect chiral molecule Perfect chiral mirror: r s p = 1, r p s = ±1 Chiral Casimir Polder potential: U(z A ) = ± 8π 2 ε 0 za 3 0 dξ χ(iξ) c ( e 2ξz A/c 1 + 2 ξz ) A c

Example: Atom near perfect mirror Curie principle: need chiral body to detect chiral molecule Perfect chiral mirror: r s p = 1, r p s = ±1 Chiral Casimir Polder potential: U(z A ) = ± 8π 2 ε 0 za 3 0 dξ χ(iξ) c ( e 2ξz A/c 1 + 2 ξz ) A c Long-/short-distance limits: U(z A ) = 1 16π 2 ε 0 za 5 1 ± 12π 2 ε 0 cza 3 R 0k k ωk 2 k, R 0k ln(ω k z A /c)

Summary Macroscopic quantum electrodynamics Nonlocal, nonreciprocal media: conductivity Local bianisotropic media: cross-susceptibilities Duality: continuous (if Onsager violation allowed) Chiral Casimir-Polder potential Perfectly chiral plate: left- vs right-handed molecules Outlook Local duality: force maximal for opposite dual pairs? Nonreciprocal media: CP-violating systems? Moving systems: symmetrise Green tensor? Further Reading: S.Y.B., Dispersion Forces I + II, Springer Tracts in Modern Physics, to appear spring 2012