Lecture 2: Rotational and Vibrational Spectra

Similar documents
22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

Lecture 28 Title: Diatomic Molecule : Vibrational and Rotational spectra

Title: Vibrational structure of electronic transition

15 Lecture Short Course at Tsinghua University

Hydrogen Atom and One Electron Ions

5.80 Small-Molecule Spectroscopy and Dynamics

Classical Magnetic Dipole

Molecular Orbitals in Inorganic Chemistry

Numerical Problem Set for Atomic and Molecular Spectroscopy. Yr 2 HT SRM

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

2. Laser physics - basics

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Determination of Vibrational and Electronic Parameters From an Electronic Spectrum of I 2 and a Birge-Sponer Plot

Phys 402: Nonlinear Spectroscopy: SHG and Raman Scattering

Ch. 24 Molecular Reaction Dynamics 1. Collision Theory

Coupled Pendulums. Two normal modes.

Schrodinger Equation in 3-d

Contemporary, atomic, nuclear, and particle physics

The pn junction: 2 Current vs Voltage (IV) characteristics

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

Exam 2 Thursday (7:30-9pm) It will cover material through HW 7, but no material that was on the 1 st exam.

The failure of the classical mechanics

On the Hamiltonian of a Multi-Electron Atom

Chapter 1 Late 1800 s Several failures of classical (Newtonian) physics discovered

Why is a E&M nature of light not sufficient to explain experiments?

6. The Interaction of Light and Matter

Atomic and Laser Spectroscopy

de/dx Effectively all charged particles except electrons

Introduction to Condensed Matter Physics

Brief Introduction to Statistical Mechanics

Experiment 6, page 1 Version of March 17, 2015

orbiting electron turns out to be wrong even though it Unfortunately, the classical visualization of the

CE 530 Molecular Simulation

Lecture 4: Polyatomic Spectra

PRINCIPLES OF PLASMA PROCESSING Course Notes: Prof. J. P. Chang Part B3: ATOMIC COLLISIONS AND SPECTRA

Forces. Quantum ElectroDynamics. α = = We have now:

Elements of Statistical Thermodynamics

High Energy Physics. Lecture 5 The Passage of Particles through Matter

Collisions between electrons and ions

PH300 Modern Physics SP11 Final Essay. Up Next: Periodic Table Molecular Bonding

Extraction of Doping Density Distributions from C-V Curves

Davisson Germer experiment Announcements:

Intro to Nuclear and Particle Physics (5110)

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding...

DIELECTRIC AND MAGNETIC PROPERTIES OF MATERIALS

5.62 Physical Chemistry II Spring 2008

Chapter 8: Electron Configurations and Periodicity

fiziks Institute for NET/JRF, GATE, IIT JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Modern Physics. Unit 5: Schrödinger s Equation and the Hydrogen Atom Lecture 5.6: Energy Eigenvalues of Schrödinger s Equation for the Hydrogen Atom

Chapter 7b Electron Spin and Spin- Orbit Coupling

E hf. hf c. 2 2 h 2 2 m v f ' f 2f ' f cos c

Constants and Conversions:

How can I control light? (and rule the world?)

Phys 446: Solid State Physics / Optical Properties. Lattice vibrations: Thermal, acoustic, and optical properties. Fall v =

Today. Wave-Matter Duality. Quantum Non-Locality. What is waving for matter waves?

There is an arbitrary overall complex phase that could be added to A, but since this makes no difference we set it to zero and choose A real.

fiziks Institute for NET/JRF, GATE, IIT JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics NUCLEAR AND PARTICLE PHYSICS NET/JRF (JUNE-2011)

Statistical Thermodynamics: Sublimation of Solid Iodine

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by:

Outline. Thanks to Ian Blockland and Randy Sobie for these slides Lifetimes of Decaying Particles Scattering Cross Sections Fermi s Golden Rule

ECE507 - Plasma Physics and Applications

Neutrino Mass and Forbidden Beta Decays

A coupled-channel calculation of the B 3 Σ u X 3 Σ g spectrum of S 2

Physics 2D Lecture Slides Lecture 12: Jan 28 th 2004

Where k is either given or determined from the data and c is an arbitrary constant.

Finite element discretization of Laplace and Poisson equations

The Matrix Exponential

1 Isoparametric Concept

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2014 Lecture 20: Transition State Theory. ERD: 25.14

Pair (and Triplet) Production Effect:

Physics 2D Lecture Slides Lecture 14: Feb 1 st 2005

Quasi-Classical States of the Simple Harmonic Oscillator

Addition of angular momentum

Lecture 19: Free Energies in Modern Computational Statistical Thermodynamics: WHAM and Related Methods

I. The Connection between Spectroscopy and Quantum Mechanics

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Introduction to the quantum theory of matter and Schrödinger s equation

the electrons. Expanding the exponential and neglecting the constant term Ze 2 λ, we have

Problem Set 4 Solutions Distributed: February 26, 2016 Due: March 4, 2016

AS 5850 Finite Element Analysis

(most) due to long range e m forces i.e. via atomic collisions or due to short range nuclear collisions or through decay ( = weak interactions)

Optics and Non-Linear Optics I Non-linear Optics Tutorial Sheet November 2007

APP-IV Introduction to Astro-Particle Physics. Maarten de Jong

EXST Regression Techniques Page 1

Structure of the Atom. Thomson s Atomic Model. Knowledge of atoms in Experiments of Geiger and Marsden 2. Experiments of Geiger and Marsden

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator.

4E : The Quantum Universe. Lecture 5, April 5 Vivek Sharma

Addition of angular momentum

Neutrino Probes of Dark Energy and Dark Matter

2008 AP Calculus BC Multiple Choice Exam

The Matrix Exponential

Studies of Turbulence and Transport in Alcator C-Mod Ohmic Plasmas with Phase Contrast Imaging and Comparisons with GYRO*

Brief Notes on the Fermi-Dirac and Bose-Einstein Distributions, Bose-Einstein Condensates and Degenerate Fermi Gases Last Update: 28 th December 2008

Spectra of Diatomic Molecules: From Cold to Hot

Atomic energy levels. Announcements:

λ = 2L n Electronic structure of metals = 3 = 2a Free electron model Many metals have an unpaired s-electron that is largely free

Principles of Humidity Dalton s law

Physics 2D Lecture Slides. Oct 21. UCSD Physics. Vivek Sharma

IYPT 2000 Problem No. 3 PLASMA

Chapter. 3 Wave & Particles I

Transcription:

Lctur : Rotational and Vibrational Spctra 1. Light-mattr intraction. Rigid-rotor modl for diatomic molcul 3. Non-rigid rotation 4. Vibration-rotation for diatomics

H O 1. Light-mattr intraction Possibilitis of intraction Prmannt lctric dipol momnt Rotation and vibration produc oscillating dipol (Emission/Absorption) HCl Enrgy ΔE Absorption = qd Emission What if Homonuclar? Elastic scattring (Rayligh), s = Inlastic scattring (Raman), s = / Virtual Stat v s m or as s < Inlastic scattring as >

1. Light-mattr intraction Elmnts of spctra: Lin position Lin strngth Lin shaps Intrnal Enrgy: E int = E lc (n)+e vib ()+ E rot (J) Lin position () is dtrmind by diffrnc btwn nrgy lvls What dtrmins th nrgy lvls? Quantum Mchanics! μ Rotation: Microwav Rgion (ΔJ) Elctric dipol momnt: + q r i i i E vib ΔE E rot μ x C O E μ x T rot 1/ν v s E lc Ar som molculs Microwav inactiv? YES,.g., H, Cl, CO Tim 3

1. Light-mattr intraction Elmnts of spctra: Lin position Lin strngth Lin shaps Intrnal Enrgy : E int = E lc (n)+e vib ()+ E rot (J) μ Rotation: Microwav Rgion (ΔJ) Vibration: Infrard Rgion (Δv, J) E vib ΔE E rot μ x C O δ+ δ- μ x t= v s E lc Htronuclar diatomic cas is IR-activ Ar som vibrations Infra-rd inactiv? Ys,.g., symmtric strtch of CO 4

1. Light-mattr intraction Summary E int = E lc (n)+e vib (v)+ E rot (J) ΔE rot < ΔE vib < ΔE lc E vib ΔE E rot Currnt intrst Enrgy lvls ar discrt Optically allowd transitions may occur only in crtain cass Absorption/mission spctra ar discrt Rotation Rigid Rotor Non-rigid Rotor E lc Vibration Simpl Harmonic Oscillator (SHO) Anharmonic Oscillator (AHO) 5

. Rigid-Rotor modl of diatomic molcul Rigid Rotor Axs of rotation m 1 m C + - ~ 10-13 cm r 1 r C: r Cntr of mass C 1 m 1 = r m r 1 +r = r ~ 10-8 cm Assum: Point masss (d nuclus ~ 10-13 cm, r ~ 10-8 cm) r = const. ( rigid rotor ) Rlax this latr 6

. Rigid-Rotor modl of diatomic molcul Classical Mchanics Momnt of Inrtia I miri r m1m rducd mass m m 1 -body problm changd to singl point mass Rotational Enrgy 1 1 1 h Erot Irot Irot J J 1 J J 1 I I 8 I Convntion is to dnot rotational nrgy as F(J), cm -1 F E hc h 8 Ic 1 rot J cm J J 1 BJ J 1, Quantum Mchanics Valu of ω rot is quantizd I rot J 1 h / J Rot. quantum numbr = 0,1,, E rot is quantizd! hc Not : E, J h hc(, cm -1 ) so (nrgy,cm -1 ) = (nrgy,j)/hc 7

. Rigid-Rotor modl of diatomic molcul Rotational spctrum Schrödingr s Equation: Transition probability d m dx m d n E U x x 0 J 1 Slction Ruls for rotational transitions (uppr) (lowr) ΔJ = J J = +1 Rcall: F J BJ J 1 Wav function Complx conjugat Dipol momnt.g., J 1 FJ 0 B 0 B J 1 J 0 F 8

. Rigid-Rotor modl of diatomic molcul Rotational spctrum Rmmbr that: F J BJ J 1 E.g., J 1 FJ 0 B 0 B J 1 J 0 F J F 1 st diff = ν nd diff = spacing 1B 3 0 0 1 B 6B 3 1B 4 0B B 4B 6B 8B B B B Lins vry B! 6B B F=0 B 4B 6B 1 J=0 In gnral: J 1 J J ' J " BJ" 1J " BJ" J" 1 J ' J ", cm 1 B J" 1 Lt s look at absorption spctrum 9

. Rigid-Rotor modl of diatomic molcul Rotational spctrum 1B Rcall: E.g., F J BJ J 1 0 FJ 1 FJ 0 B 0 B J 1 J 3 1.0 6B B F=0 B 4B 6B 1 J=0 T λ Htronuclar molculs only! λ J =0 ~.5mm rot for J=0 1 ~10 11 Hz (frquncis of rotation) 0.0 0 1 3 4 5 6 7 J 0 1 3 4 5 6 ν/b=j +1 Not: 1. Uniform spacing (asy to idntify/intrprt). B CO ~ cm -1 λ J =0 = 1/ν = ¼ cm =.5mm (microwav/mm wavs) rot,j=1 = c/λ = 3x10 10 /0.5 Hz = 1.x10 11 Hz (microwav) 10

. Rigid-Rotor modl of diatomic molcul Usfulnss of rotational spctra Masurd spctra Lin spacing = B Physical charactristics of molcul h B I r r Accuratly! 8 Ic Exampl: CO B = 1.9118 cm -1 r CO = 1.187 Å 10-6 Å = 10-16 m! 11

. Rigid-Rotor modl of diatomic molcul Intnsitis of spctral lins Equal probability assumption (crud but usful) Abs. (or miss.) probability pr molcul is (crudly) indpndnt of J Abs. (or miss.) spctrum varis w/ J lik Boltzmann distribution Rcall: J 1xp E kt N J J / N Q E J k hcf k Partition function: J Q rot Dgnracy is a QM rsult associatd w/ possibl dirctions of Angular Momntum vctor rot hc BJ J k 1 kt hcb hc k Dfin rotational T: K B r 1 J 1xp J J 1 r J 1 T r J 1 Symmtric no. (ways of rotating to achiv sam orintation) = 1 for microwav activ T r / r / T CO: σ=1 microwav activ! N : σ= microwav inactiv! 1

. Rigid-Rotor modl of diatomic molcul Intnsitis of spctral lins Rotational Charactristic Tmpratur: K Spcis θ rot [K] O.1 N.9 NO.5 Cl 0.351 N J J 1 xp r J J 1 / T N T / r Strongst pak: occurs whr th population is at a local maximum dn J / N 1/ 0 J T / 1/ f T / dj max rot r B hc k hc k 1.44K / cm rot 1 13

. Rigid-Rotor modl of diatomic molcul Effct of isotopic substitution h Rcall: B 8 Ic Changs in nuclar mass (nutrons) do not chang r 0 r dpnds on binding forcs, associatd w/ chargd particls Can dtrmin mass from B Thrfor, for xampl: B B 1 13 C C 16 16 O O 1.9118 1.83669 m m 13 C 13.0007 1 1.00 C Agrs to 0.0% of othr dtrminations 14

3. Non-Rigid Rotation Two ffcts; follows from B 1/ r Vibrational strtching r(v) v r B Cntrifugal distortion r(j) J r B Effcts shrink lin spacings/nrgis Nots: Rsult: J ", v v v 3 4B 1. But D is small; whr D B sinc J B J J 1 D J J 1 F v v v D B NO J" 1 4D J" 3 J ' B 1 B 4 4 1.7 1900 Cntrifugal distribution constant 310 6 D/B smallr for stiff/hi-frq bonds 15

3. Non-Rigid Rotation Nots: E.g., NO B 6 1. D is small;.g., D B. v dpndnc is givn by 1 3 4B D B B 1.7 6 4 4 310 1900 D/B smallr for stiff/hi-frq bonds NO 0.0178 / D ~ 0. 001 D 1.7046cm 5.810 0.0014D 1904.03 x 13.97cm ;1903.68 1/ 1 1/ ~ 810 / B 9 cm 1 ~ 0.01 3/ B D v v Asid: B D v v 8 x 1/ 1/ / D 3 B 4B Hrzbrg, Vol. I 5 1 dnots valuatd at quilibrium intr-nuclar sparation r 16

4. Vibration-Rotation Spctra (IR) (oftn trmd Rovibrational) 1. Diatomic Molculs Simpl Harmonic Oscillator (SHO) Anharmonic Oscillator (AHO). Vibration-Rotation spctra Simpl modl R-branch / P-branch Absorption spctrum 3. Vibration-Rotation spctra Improvd modl 4. Combustion Gas Spctra Vibration-Rotation spctrum of CO (from FTIR) 17

4.1. Diatomic Molculs Simpl Harmonic Oscillator (SHO) Δ/ r min m 1 m r Molcul at instant of gratst comprssion Equilibrium position (balanc btwn attractiv + rpulsiv forcs) i.. min nrgy position As usual, w bgin w. classical mchanics + incorporat QM only as ndd 18

4.1. Diatomic Molculs Simpl Harmonic Oscillator (SHO) Classical mchanics Forc k r - Linar forc law / Hook s law Fundamntal Frq. Potntial Enrgy Quantum mchanics v = vib. quantum no. = 0,1,,3, Vibration nrgy G=U/hc G Slction Ruls: s r 1 v, cm v / cv 1/ v v' v" 1 vib only! 1 1 vib k s /, cm / c 1 U kr r Parabola cntrd at distanc of min. potntial nrgy Equal nrgy spacing ral Zro nrgy = diss. nrgy 19

4.1. Diatomic Molculs Anharmonic Oscillator (AHO) SHO AHO 1 1 Gv, cm v 1/ Gv, cm v 1/ x v 1/... H. O. T. Dcrass nrgy spacing 1 st anharmonic corrction ral Δν=+1 Fundamntal Band (.g., 1 0, 1) 1 10 G 1 G 0 1x 1 4x Δν=+ 1 st Ovrton (.g., 0,3 1) 0 1 3x Δν=+3 nd Ovrton (.g., 3 0,4 1) 30 3 1 4x In addition, brakdown in slction ruls 0

4.1. Diatomic Molculs Vibrational Partition Function hc hc Qvib 1 xp xp kt kt Or choos rfrnc (zro) nrgy at v=0, so Gv v thn Vibrational Tmpratur Q vib 1 hc 1 xp kt 1 Th sam zro nrgy must b usd in spcifying molcular nrgis E i for lvl i and in valuating th associatd partition function hc k vibk N N vib g vib xp xp v Q v T vib vib vib / T 1 xp T whr g vib vib 1 Spcis θ vib [K] θ rot [K] O 70.1 N 3390.9 NO 740.5 Cl 808 0.351 1

4.1. Diatomic Molculs Som typical valus (Banwll, p.63, Tabl 3.1) Gas Molcular Wight Vibration ω [cm -1 ] Anharmonicity constant x Forc constant k s [dyns/cm] Intrnuclar distanc r [Å] Dissociation nrgy D q [V] CO 8 170 0.006 19 x 10 5 1.13 11.6 NO 30 1904 0.007 16 x 10 5 1.15 6.5 H 4395 0.07 16 x 10 5 1.15 6.5 Br 160 30 0.003.5 x 10 5.8 1.8 Not IR-activ, us Raman spctroscopy! k / m / for homonuclar molculs D / 4x larg k, larg D Wak, long bond loos spring constant low frquncy

4.1. Diatomic Molculs Som usful convrsions Enrgy Forc Lngth 1cal 4.1868 J 1cm -1.8575 cal/mol 1V 8065.54 cm 1 N 10 1A o 5 0.1nm dyns 3.0605 kcal/mol 1.601910 1 19 J How many HO lvls in a molcul? (Considr CO) D o 56 kcal N no. of HO lvls 56 kcal/mol 1.86 cal/mol cm 170 cm 1 41 Actual numbr is?greater as AHO shrinks lvl spacing 3

4.. Vib-Rot spctra simpl modl Born-Oppnhimr Approximation Vibration and Rotation ar rgardd as indpndnt Vibrating rigid rotor Enrgy: Slction Ruls: Lin Positions: v'=1 v"=0 P R T v, J RR SHO FJ Gv BJ J 1 v 1/ v 1 J 1 T ' T" T J'=J"+1 J'= J" J'= J"-1 J"+1 J" v', J ' T v", J" Transition Probabilitis P branch Two Branchs: P (ΔJ = -1) R(ΔJ=+1) Asid: Nomnclatur for branchs Branch O P Q R S ΔJ - -1 0 +1 + Null Gap R() ΔJ = J' - J" R branch R(0) P(1) o -8-6 -4-0 4 6 B 4

4.. Vib-Rot spctra simpl modl R-branch R 1 J", cm G v' Gv" BJ" 1J " BJ" J" 1 R v o o (SHO)... 1 x 1 4x J" 0 BJ" 1 = Rotationlss transition wavnumbr (AHO,1 0) (AHO, 1) Not: spacing = B, sam as RR spctra P-branch P J" 0 BJ" Not: ω o =f(v")foraho v'=1 P R J'=J"+1 J'= J" J'= J"-1 P-R Branch pak sparation _ 8BkT hc v"=0 J"+1 J" Largr nrgy 5

4.. Vib-Rot spctra simpl modl Absorption spctrum (for molcul in v" = 0) Width, shap dpnds on masuring instrumnt and xprimntal conditions Transition Probabilitis Null Gap R() P branch R branch Lin (sum of all lins is a band ) R(0) P(1) o -8-6 -4-0 4 6 B Hight of lin amount of absorption N J /N Equal probability approximation indpndnt of J (as with RR) What if w rmov RR limit? Improvd tratmnt 6

4.3. Vib-Rot spctra improvd modl Brakdown of Born-Oppnhimr Approximation Allows non-rigid rotation, anharmonic vibration, vib-rot intraction T v, J Gv Fv, J B(v) v 1/ x v 1/ B J J 1 D J J 1 R-branch P-branch SHO Anharm. corr. RR(v) Cnt. dist. trm v", J" v" Bv ' 3Bv ' Bv" J" Bv ' Bv" J" v", J" v" B ' B " J" B ' B " J R o P o v v v v v " Bv B v 1/ Bv ' B ' v' 1/ B " " v" 1/ Transition Probabilitis P branch B v v B ' B " v 0 Null Gap P(1) R(0) R() v B ' B " v v Spacing on P sid, on R sid R branch -8-6 -4-0 4 6 o B 7

4.3. Vib-Rot spctra improvd modl Bandhad Transition Probabilitis P branch Null Gap R() P branch R branch R(0) P(1) -8-6 -4-0 4 6 J" R branch 4 Bandhad 3 1 o B dr dj J -4-3 - -1 3B' B" B' B" J" 0 B' E.g., CO B o 0 1 3 4 B B J" 1.9 0.018 106 ' bandhad B not oftn obsrvd Incrasing spacing Dcrasing spacing 8

4.3. Vib-Rot spctra improvd modl Finding ky paramtrs: B, α, ω, x 1 st Approach: Us masurd band origin data for th fundamntal and first ovrton, i.., ΔG 1 0, ΔG 0, to gt ω, x nd Approach: G G 10 0 G G 1 G0 1 x G0 1 3x Fit rotational transitions to th lin spacing quation to gt B and α B' B v' 1/ B" B v" 1/ o V V B' B" m B' B" m m J 1 in R - branch m J in P - branch B', B", x B, α 9

4.3. Vib-Rot spctra improvd modl Finding ky paramtrs: B, α, ω, x 3 rd Approach: Us th mthod of common stats v' v" ΔE P(J+1) R(J-1) J'= J" J'= J"-1 J"+1 J" J"- 1 Common uppr-stat In gnral E F R B FJ BJ J 1 J 1 FJ 1 J 1 PJ 1 " J 1J B" J 1J E B" 4J B" v' ΔE P(J) R(J) J'=J"+1 J'= J" J'= J"-1 E E F B J 1 FJ 1 ' J 1J B' J 1J B' 4J B' B, v" J"+1 J" Common lowr-stat 30

4.3. Vib-Rot spctra improvd modl Isotopic ffcts 1 B I ks 1 1 Lin spacing changs as μ changs Band origin changs as μ changs 1 st Exampl: CO Isotop 13 C 16 O 13 1 C C 16 16 O O 1.046 B 13 C 13 16 C O 16 O B 13 C 16 O 1.046 13 C 16 O 1.046 1 B 0.0463.88 0.17cm 0.046 00 / 50cm 1 31

4.3. Vib-Rot spctra improvd modl Isotopic ffcts CO fundamntal band Not vidnc of 1.1% natural abundanc of 13 C 3

4.3. Vib-Rot spctra improvd modl Isotopic ffcts 1 B I ks 1 1 Lin spacing changs as μ changs Band origin changs as μ changs nd Exampl: HCl Isotop H 35 Cl and H 37 Cl 35 37 H Cl 3H Cl / 35 37.1/ 38 35.1/ 36 37 1.0015 Shift in ω is.00075ω =.cm -1 Small! 33

4.3. Vib-Rot spctra improvd modl Isotopic ffcts HCl fundamntal band Not isotropic splitting du to H 35 Cl and H 37 Cl 34

4.3. Vib-Rot spctra improvd modl Hot bands Whn ar hot bands (bands involving xcitd stats) important? v v g xp Nv T v v v xp 1 xp N Q vib T T 10 N 1 0 @300K E.g. v, CO 3000K 1 1 N 1 0.3 @3000K Hot bands bcom important whn tmpratur is comparabl to th charactristic vibrational tmpratur hc / kt 1 Gas 01 cm N1/ N0 300K 1000K H 4160..16 x 10-9.51 x 10-3 HCl 885.9 9.77 x 10-7 1.57 x 10 - N 330.7 1.40 x 10-5 3.50 x 10 - CO 143. 3.43 x 10-4 4.58 x 10 - O 1556.4 5.74 x 10-4 1.07 x 10-1 S 71.6 3.14 x 10-3.54 x 10-1 Cl 566.9 6.9 x 10-4.49 x 10-1 I 13.1.60 x 10-1 7.36 x 10-1 35

4.3. Vib-Rot spctra improvd modl Exampls of intnsity distribution within th rotation-vibration band B = 10.44cm -1 (HCl) B = cm -1 (CO) 36

4.4. Absorption Spctra for Combustion Gass TDL Snsors Provid Accss to a Wid Rang of Combustion Spcis/Applications Small spcis such as NO, CO, CO, and H O hav discrt rotational transitions in th vibrational bands Largr molculs,.g., hydrocarbon fuls, hav blndd spctral faturs 37

Nxt: Diatomic Molcular Spctra Elctronic (Rovibronic) Spctra (UV, Visibl)