MAT 535 Problem Set 5 Solutions

Similar documents
THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences FINAL EXAM - SPRING SESSION ADVANCED ALGEBRA II.

Graduate Preliminary Examination

Galois Theory TCU Graduate Student Seminar George Gilbert October 2015

ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008

GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2)

Homework 4 Algebra. Joshua Ruiter. February 21, 2018

Page Points Possible Points. Total 200

22M: 121 Final Exam. Answer any three in this section. Each question is worth 10 points.

Math 201C Homework. Edward Burkard. g 1 (u) v + f 2(u) g 2 (u) v2 + + f n(u) a 2,k u k v a 1,k u k v + k=0. k=0 d

Galois Theory and the Insolvability of the Quintic Equation

Algebra Qualifying Exam Solutions. Thomas Goller

Solutions of exercise sheet 6

1. Group Theory Permutations.

1 Rings 1 RINGS 1. Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism

The Kummer Pairing. Alexander J. Barrios Purdue University. 12 September 2013

MATH 101A: ALGEBRA I, PART D: GALOIS THEORY 11

AN INTRODUCTION TO GALOIS THEORY

Galois theory (Part II)( ) Example Sheet 1

Math 121 Homework 5 Solutions

ALGEBRA PH.D. QUALIFYING EXAM SOLUTIONS October 20, 2011

Notes on graduate algebra. Robert Harron

but no smaller power is equal to one. polynomial is defined to be

1 The Galois Group of a Quadratic

Algebra Exam Fall Alexander J. Wertheim Last Updated: October 26, Groups Problem Problem Problem 3...

22. Galois theory. G = Gal(L/k) = Aut(L/k) [L : K] = H. Gal(K/k) G/H

Contradiction. Theorem 1.9. (Artin) Let G be a finite group of automorphisms of E and F = E G the fixed field of G. Then [E : F ] G.

The following results are from the review sheet for the midterm.

Math 121 Homework 2 Solutions

GALOIS THEORY AT WORK

1 Spring 2002 Galois Theory

Fields and Galois Theory. Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory.

ALGEBRA QUALIFYING EXAM SPRING 2012

GALOIS THEORY AT WORK: CONCRETE EXAMPLES

ABSTRACT ALGEBRA 2 SOLUTIONS TO THE PRACTICE EXAM AND HOMEWORK

Solutions of exercise sheet 11

Math 429/581 (Advanced) Group Theory. Summary of Definitions, Examples, and Theorems by Stefan Gille

Finite Fields. [Parts from Chapter 16. Also applications of FTGT]

Algebra Ph.D. Preliminary Exam

The Galois group of a polynomial f(x) K[x] is the Galois group of E over K where E is a splitting field for f(x) over K.

Keywords and phrases: Fundamental theorem of algebra, constructible

FIELD THEORY. Contents

ORAL QUALIFYING EXAM QUESTIONS. 1. Algebra

Part II Galois Theory

Explicit Methods in Algebraic Number Theory

disc f R 3 (X) in K[X] G f in K irreducible S 4 = in K irreducible A 4 in K reducible D 4 or Z/4Z = in K reducible V Table 1

Galois Theory. This material is review from Linear Algebra but we include it for completeness.

7 Orders in Dedekind domains, primes in Galois extensions

Sample algebra qualifying exam

9. Finite fields. 1. Uniqueness

FACTORIZATION OF IDEALS

Ph.D. Qualifying Examination in Algebra Department of Mathematics University of Louisville January 2018


Galois theory of fields

Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition).

Galois Theory and Some Applications

1 Finite abelian groups

IUPUI Qualifying Exam Abstract Algebra

COURSE SUMMARY FOR MATH 504, FALL QUARTER : MODERN ALGEBRA

Fields and Galois Theory

38 Irreducibility criteria in rings of polynomials

Ohio State University Department of Mathematics Algebra Qualifier Exam Solutions. Timothy All Michael Belfanti

A SIMPLE PROOF OF KRONECKER-WEBER THEOREM. 1. Introduction. The main theorem that we are going to prove in this paper is the following: Q ab = Q(ζ n )

Algebra Exam, Spring 2017

g(x) = 1 1 x = 1 + x + x2 + x 3 + is not a polynomial, since it doesn t have finite degree. g(x) is an example of a power series.

3 Galois Theory. 3.1 Definitions and Examples

GALOIS THEORY. Contents

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory.

φ(xy) = (xy) n = x n y n = φ(x)φ(y)

Thus, the integral closure A i of A in F i is a finitely generated (and torsion-free) A-module. It is not a priori clear if the A i s are locally

Galois Theory, summary

arxiv: v1 [math.gr] 3 Feb 2019

Math 603, Spring 2003, HW 6, due 4/21/2003

RINGS: SUMMARY OF MATERIAL

Polynomial Rings. (Last Updated: December 8, 2017)

Notes on Field Extensions

Real Analysis Prelim Questions Day 1 August 27, 2013

List of topics for the preliminary exam in algebra

Fields. Victoria Noquez. March 19, 2009

A PROOF OF BURNSIDE S p a q b THEOREM

Abstract Algebra, Second Edition, by John A. Beachy and William D. Blair. Corrections and clarifications

NOTES ON FINITE FIELDS

SOLVING SOLVABLE QUINTICS. D. S. Dummit

Algebra Qualifying Exam, Fall 2018

Part II Galois Theory

Math 121. Fundamental Theorem and an example

GALOIS THEORY BRIAN OSSERMAN

Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism

Algebraic Number Theory

Q N id β. 2. Let I and J be ideals in a commutative ring A. Give a simple description of

Math 547, Exam 2 Information.

NOTES FOR DRAGOS: MATH 210 CLASS 12, THURS. FEB. 22

Algebra Exam Topics. Updated August 2017

Practice problems for first midterm, Spring 98

Math 553 Qualifying Exam. In this test, you may assume all theorems proved in the lectures. All other claims must be proved.

Algebra Questions. May 13, Groups 1. 2 Classification of Finite Groups 4. 3 Fields and Galois Theory 5. 4 Normal Forms 9

Some algebraic number theory and the reciprocity map

8430 HANDOUT 6: PROOF OF THE MAIN THEOREM

Extension fields II. Sergei Silvestrov. Spring term 2011, Lecture 13

Theorem 5.3. Let E/F, E = F (u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg f u.

Transcription:

Final Exam, Tues 5/11, :15pm-4:45pm Spring 010 MAT 535 Problem Set 5 Solutions Selected Problems (1) Exercise 9, p 617 Determine the Galois group of the splitting field E over F = Q of the polynomial f(x) = x 4 + 4x 1 () Exercise 19, p 618 Describe the Galois group of an irreducible quartic polynomial over Q with negative discriminant (3) Exercise 48, p 63 Determine the splitting field E and Galois group of the sextic polynomial f(x) = x 6 x 3 over Q (4) Exercise 19, p 638 Prove that a quadratic extension Q( D)/Q is contained in a degree 4 Galois extension of Q with cyclic Galois group if and only if D is a sum of two rational squares (5) Exercise 13, p 853 Prove that for simple, left R-modules M and N (R is a unital associative ring), every nonzero R-module homomorphism from M to N is an isomorphism Conclude that Hom R (M, M) is a division ring Solutions to Selected Problems Solution to (1) By Proposition 11 on p 308, if f(x) has a root then the root is ±1 But f( 1) equals 4 and f(1) equals 4 So if f(x) factors, it is a product of two irreducible, monic, quadratic polynomials By Gauss s lemma, the factors are in Z[x] And by considering the constant coefficient and the coefficient of x 3, the factorization must be (x + (ax + 1))(x (ax + 1)) = x 4 a x ax 1 But since the coefficient of x in f(x) is 0, there is no such factorization Thus f(x) is irreducible The resolvent cubic of f(x) is Notice that this factors, h(z) = z 3 + 4z + 16 h(z) = (z + )(z z + 8) = (z ( ))k(z), k(z) = z z + 8 = (z 1) + 7 Thus the discriminant of h(z) is Disc(h) = [k( )] Disc(k) = [ 4 ] ( 8) = 6 7 1

Final Exam, Tues 5/11, :15pm-4:45pm Spring 010 And the discriminant D of f(x) equals the discriminant of the resolvent cubic h(z) Observe that this is not a square Up to square factors, the discriminant is congruent to 7 Thus Q( D) equals Q( 7) The claim is that f(x) is irreducible in Q( 7) Denote by t one of the two square roots of 7 Then the Galois group is Aut(Q( 7)/Q) = {1, σ}, where σ(t) equals t Since f(x) is irreducible of degree 4 over Q, every root generates a field extension of degree 4 Since [Q( 7) : Q] equals, f(x) has no roots in Q( 7) So the only possible factors are irreducible quadratic factors If f(x) has an irreducible quadratic factor, then it has a monic irreducible quadratic factor, say q(x) Since f(x) is defined over Q, then also σ(q(x)) is an irreducible quadratic factor Since Q( 7)[x] is a UFD, it follows that f(x) = q(x)σ(q(x)) In particular, f(0) equals q(0)σ(q(0)) By direct computation we have, q(0) = a + bt, σ(q(0)) = a bt, q(0)σ(q(0)) = a b t = a + 7b for some elements a, b in Q Thus a + 7b equals f(0) = 1 But a and 7b are nonnegative, thus they cannot sum to the negative number 1 This contradiction proves that f(x) is irreducible in Q( 7) Thus, by the discussion on p 615, the Galois group of E over Q is isomorphic to a conjugate of the dihedral group D 8 as a subgroup of symmetric group S 4 Solution to () For every monic polynomial f(x) of degree d, in a splitting field K of f(x) the discriminant D equals ( ) (α i α j ) 1 i<j d where f(x) = (x α 1 ) (x α d ) Thus D is a square in K So K contains Q( D) Now let K be any Galois extension of Q By the fundamental theorem of algebra, there exists an embedding of K into C, say φ : K C Moreover, for every embedding φ : K C, there exists a unique element σ of Aut(K/Q) such that φ equals φ σ In particular, for complex conjugation τ : C C, τ φ equals φ τ K for some element τ K in Aut(K/Q) Since τ (τ φ) equals Id C φ equals φ, also (φ τ K ) τ K equals φ, ie, τ K τ K equals Id K Thus τ K is an element of Aut(K/Q) of order dividing, ie, of order 1 or order Also observe that since φ is only well-defined up to φ = φ σ, also τ K is only well-defined up to conjugation στ K σ 1 Moreover, τ K is the identity only if τ φ equals φ, ie, if and only if φ(k) is fixed by τ Since the fixed field of τ is R, τ K equals Id if and only if φ(k) is contained in R for one, and hence every, embedding of K into R Thus τ K is an element well-defined up to conjugation, which equals the identity if K is contained in R, and which has order if K is not contained in R Now assume that f(x) is an irreducible polynomial of degree 4 over Q And assume that the discriminant D is negative Then D is not contained in R Since Q( D) is contained in the splitting field K of f(x), K is not contained in R Thus τ K is an element of Aut(K/Q) of order Moreover, Q( D) is Galois over Q of order Thus Aut(Q( D)/Q) is the quotient of Aut(K/Q) by the normal subgroup Aut(K/Q( D)) This quotient group has order, thus is isomorphic to Z/Z

Final Exam, Tues 5/11, :15pm-4:45pm Spring 010 And clearly τ K restricts to a nontrivial element of order in Aut(Q( D)/Q), namely complex conjugation Thus τ K is an element of Aut(K/Q) of order whose image in Aut(Q( D)/Q) also has order But the group Z/4Z has a unique surjective homomorphism onto Z/Z, and the kernel is precisely the set of elements of order 1 and Since τ K has order and is not contained in the kernel of the quotient map, Aut(K/Q) cannot be isomorphic to Z/4Z A bit more generally, let D be a negative element of Q, and let K be a field containing Q( D) such that K/Q is Galois of degree 4 Then, as above, τ K is an element of order in Aut(K/Q) which maps to an element of order in the quotient Aut(Q( D)/Q) Thus, for the same reason as above, Aut(K/Q) is not cyclic of order 4 Solution to (3) The polynomial f(x) is irreducible of degree 6 by Eisenstein s criterion Moreover, for each of the roots β of g(y) = y y, the three roots of x 3 β are roots of f(x) Thus the splitting field contains Q(µ 3 ) as well as the splitting field Q( 3) of g(y) Notice that Q(µ 3 ) equals Q( 3) So the splitting field also contains 3/ 3, which is a square root of 1 Thus the splitting field contains Q(i, 3) In this field the roots of g(y) = (y 1) 3 are 1 ± 3 Thus the roots of f(x) are the cube roots of 1 ± 3 Now let α + be a root of f(x) with α 3 + equals 1 + 3 Since K contains primitive cube roots of 1, up to multiplication by such we may assume that α + is real Similarly let α be a real root of f(x) with α 3 equals 1 3 Then ( α + α ) 3 equals ( 1) 3 α 3 +α 3 equals ( 1)(1 + 3)(1 3) = Thus α + α is a real cube root of, ie, α + α equals Thus the splitting field E of f(x) contains Q(, i, 3) The polynomial t 3 is irreducible of degree 3 over Q by Eisenstein s criterion So every root generates an extension of Q of degree 3 And Q(i, 3) is a biquadratic extension of Q of degree 4 Thus Q(i, 3) contains no root of t 3 Since t 3 is a cubic polynomial with no root in Q(i, 3), it is irreducible over Q(i, 3) Thus the root field Q(, i, 3) is degree 3 over Q(i, 3) So [Q(, i, 3) : Q] equals 3 4 = 1 Denote by L the field Q(, i, 3) Then α 3 + equals 1+ 3, which is an element of L Since L contains a primitive cube root of 1, L(α + ) contains every cube root of 1 + 3, hence it is the splitting field of t 3 (1 + 3) So [L(α + ) : L] equals 3 if there is no cube root of 1 + 3 in L, and it equals 1 otherwise Moreover, α equals /α +, so L(α + ) contains L(α ) And then it contains all the roots ζ m 3 α + and ζ m 3 α of f(x), where ζ 3 is a primitive cube root of 1 and where m = 0, 1, So L(α + ) equals the splitting field E So [E : L] equals 3 if L contains no cube root of 1 + 3, and [E : L] equals 1 if L contains a cube root α + of 1 + 3 So [E : Q] equals 36 or 1 Now consider the element in K, Observe that α = α + + α α +α = 1, ( α + ) 3 = (1 + 3) = + 3, ( α ) 3 = (1 3) = 3 3

Final Exam, Tues 5/11, :15pm-4:45pm Spring 010 Thus, we have α 3 = [ ( ) α 3 ( ) + α 3 ] [ ] + + 3 α +α α + + α = 4 + 3α Therefore α is a root of the cubic polynomial k(x) = x 3 3x 4 By Proposition 11 on p 308, the only possible roots of k(x) in Q are ±1, ±, ±4 By direct computation, none of these are roots Therefore k(x) is irreducible over Q By direct computation, the discriminant equals D = 4( 3) 3 7( 4) = 4 7(1 4) = 3 4 So the splitting field contains the square root D, and thus also D/18 which equals 1 On the other hand, consider the extension L/Q This is a Galois extension, the compositum of the splitting field Q( 3, ) of t 3, which has Galois group S 3, and the quadratic extension Q(i), which has Galois group Z/Z By Corollary on p 593, the Galois group Aut(L/Q) equals Aut(Q( 3, )/Q) Aut(Q(i)/Q) = S 3 Z/Z This has 3 subgroups of index 3, ie, -Sylow subgroups By the Fundamental Theorem of Galois Theory, L/Q contains 3 subextensions which have degree 3 over Q But each of the three cube roots of generates a distinct degree 3 extension of Q Thus these are the only degree 3 subextensions of Q And for each such degree 3 subextension E/Q of L/Q, the Galois closure of E/Q is simply the splitting field of t 3, ie, E( 3) In particular, this does not contain i, since L = E( 3, i) has degree 4 over E, not So Q(α) cannot be one of the degree 3 subextensions E/Q of L/Q, since the Galois closure of Q(α) does contain i Since Q(α)/Q is a degree 3 extension, it follows that Q(α) is not contained in L Therefore α is not contained in L Since α is contained in K, K properly contains L Therefore K/L is a degree 3 extension and [K : Q] equals 36 By the argument above, K is the compositum of the two Galois extensions Q( 3, )/Q and Q(α, i)/q, each of which is a degree 6 extension with Galois group S 3 By Corollary 0 on p 59, it follows that these two extensions are linearly disjoint over Q, ie, their intersection equals Q And then by Corollary on p 593, the Galois group of the compositum equals the product of the Galois groups, Aut(K/Q) = Aut(Q( 3, )/Q) Aut(Q(α, i)/q) = S 3 S 3 To be explicit, Aut(Q( 3, )/Q) acts as the full symmetric group S 3 on the three roots,, 1 + 3, 1 3 of t 3 And Aut(Q(α, i)/q) acts as the full symmetric group S 3 on the three roots, of x 3 3x 4 α, α + α α, i, α α α i Nota Bene If char(e), 3, then for a monic cubic polynomial h(x) = x 3 +px +q in E[x] which has discriminant D = 4p 3 7q a square δ in E and which has one root α in E, then the other 4

Final Exam, Tues 5/11, :15pm-4:45pm Spring 010 two roots are in E and given by the formula α 6pα 9qα + 4p δ Solution to (4) Suppose first that D is a sum of two rational squares, D = s + t Since D is squarefree, both s and t are nonzero Thus ± D ± s D are four distinct elements And by direct computation, these are roots of the monic, quartic polynomial f(x) = x 4 Dx + t D = (x D) s D Each of these roots generates an extension of Q which contains Q( D) So the splitting field of f(x) contains Q( D), and none of the roots of f(x) lies in Q Thus if f(x) is reducible, it is a product of two irreducible quadratic factors Since f(x) has no cubic or linear term, the factorization would have to be f(x) = (x + ax + b)(x ax + b) = x 4 + (b a )x + b But then t D equals b, so that D is the rational square (b/t) This contradicts that D is squarefree Therefore f(x) is an irreducible quartic polynomial Let α + be a root of f(x) with Now (D + s D)(D s D) = t D so that Therefore, defining α + = D + s D D s D = ( t ) D α + α = t D = s + D α + t it follows that Q(α + ) contains a root α of f(x) with α = D s D Thus ±α + and ±α are the four roots of f(x) So Q(α + ) is a splitting field of f(x) So Q(α + )/Q is a Galois extension of degree 4 Let σ : Q(α + ) Q(α + ) be an automorphism with σ(α + ) equals α Then σ(α +) equals σ(α + ), which equals (α ) = D s D But α + equals D + s D Thus σ( D) equals D And thus we have σ(α ) = tσ( D) σ(α + ) α + = t( D) α = α + In particular, σ(σ(α + )) equals α + Thus σ does not equal the identity Since the order of σ divides #Aut(Q(α + )/Q) = [Q(α + ) : Q] = 4, it follows that σ is an element of order 4 Thus 5

Final Exam, Tues 5/11, :15pm-4:45pm Spring 010 Aut(Q(α + )/Q) is a cyclic group of order 4 Therefore, if D is a squarefree integer which is a sum of two rational squares, then Q( D) is contained in a degree 4, Galois extension of Q with cyclic Galois group Conversely, assume that K = Q( D) is contained in a degree 4, Galois extension L/Q with cyclic Galois group In particular, L/K is a degree extension By Kummer s Theorem, Proposition 37 on p 66, L/K is of the form L = K( u) for some element u = a + b D in K Since K/Q is a Galois extension, Aut(L/K) is a normal subgroup of Aut(L/Q), and the quotient is Aut(K/Q) In particular, there exists an element σ of Aut(L/Q) which maps to the nontrivial element of Aut(K/Q) And then we have (σ( u)) = σ( u ) = σ(u) = a b D Therefore v := uσ( u) is an element of L whose square equals v = u (σ( u)) = (a + b D)(a b D) = a b D Thus Q(v)/Q is a degree subextension of L/Q Since L/Q is Galois, degree subextensions are in bijection with index subgroups of Aut(L/Q) Since Aut(L/Q) is a cyclic group of order 4, it has a unique index subgroup Thus the degree subextension Q(v) must equal Q( D) So v is an element of Q( D) with w := v an element in Q By another part of Kummer s theorem, for every element v in Q( D) with w := v in Q, then either w = c or w = c D for some c in Q Now if w equals c, then v = ±c is in Q But then σ(u) = v/u implies that σ(σ(u)) equals v/σ(u) = u So σ fixes the generator u of Q(u) So σ is the identity, ie, the order of σ divides But since Aut(L/Q) is a cyclic group of order 4, and since σ is not in Aut(L/K), the unique subgroup of index, σ is a generator, ie, σ has order 4 This contradiction proves that w is not of the form c Therefore w is for the form c D And then since w := v also equals a b D, this implies the identity, D = ( ) bd + a ( ) cd a Therefore D is a sum of two rational squares Thus the quadratic extension Q( D)/Q is contained in a degree 4, Galois extension of Q with cyclic Galois group if and only if D is a sum of two rational squares In particular, by the same argument as in the solution of Exercise 10, p 58 on the previous problem set, 3 is not a sum of two rational squares Thus Q( 3) is not contained in a degree 4, Galois extension of Q with cyclic Galois group Similarly, since a negative real number cannot be a sum of two squares, for rational D < 0, the extension Q( D)/Q is not contained in a degree 4, Galois extension of Q with cyclic Galois group Solution to (5) Let f : M N be a nonzero R-module homomorphism Then Ker(f) is a left R-submodule of M which does not equal M Since M is simple, the only proper left R-submodule 6

Final Exam, Tues 5/11, :15pm-4:45pm Spring 010 of M is {0} Thus f is injective And Image(f) is a submodule of N which is isomorphic to M By definition, the zero module is not simple, thus M is nonzero, and so also Image(f) is nonzero Since N is simple, the only nonzero left R-submodule of N is all of N Thus Image(f) equals N Thus f is surjective Since f is injective and surjective, f is an isomorphism of left R-modules Now consider the case when N = M is a left R-module Then Hom R (M, M) is a ring under the usual addition, and with composition for multiplication The identity map is the multiplicative unit And it is associative since composition is associative Therefore Hom R (M, M) is a unital, associative ring Also for the center Z(R) of R, scaling by elements in Z(R) gives a ring homomorphism Z(R) Hom R (M, M) which makes Hom R (M, M) into a Z(R)-algebra, ie, the image of Z(R) is in the center of the ring Hom R (M, M) (but the center of Hom R (M, M) might be strictly larger than the center of R) Finally, if M is simple, then the argument above proves that every nonzero element of Hom R (M, M) is invertible in this ring Thus Hom R (M, M) is a division ring As one motivating example, when Q 8 is the quaternion group, when R equals R Q 8 is the group algebra of Q 8 over R, and when M is the simple R-module described in Example 8 on p 845, then the division ring Hom R (M, M) is the usual quaternion algebra H 7