The TT Deformation of Quantum Field Theory

Similar documents
arxiv: v4 [hep-th] 19 May 2018

Aspects of integrability in classical and quantum field theories

A Solvable Irrelevant

Renormalisation Group Flows in Four Dimensions and the a-theorem

Holography with Shape Dynamics

Lecture 8: 1-loop closed string vacuum amplitude

Topologically Massive Gravity and AdS/CFT

Quantum Fields in Curved Spacetime

Entanglement entropy and the F theorem

Sphere Partition Functions, Topology, the Zamolodchikov Metric

Entanglement in Quantum Field Theory

A Brief Introduction to AdS/CFT Correspondence

A semiclassical ramp in SYK and in gravity

Quantum Gravity and the Renormalization Group

Three-Charge Black Holes and ¼ BPS States in Little String Theory

Quantum Gravity in 2+1 Dimensions I

Entanglement Entropy for Disjoint Intervals in AdS/CFT

8.821 String Theory Fall 2008

Three-Charge Black Holes and ¼ BPS States in Little String Theory I

Stochastic Loewner Evolution: another way of thinking about Conformal Field Theory

ds/cft Contents Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, Lecture Lecture 2 5

Liouville Theory and the S 1 /Z 2 orbifold

Properties of the boundary rg flow

Asymptotic Symmetries and Holography

Approaches to Quantum Gravity A conceptual overview

10 Interlude: Preview of the AdS/CFT correspondence

Towards solution of string theory in AdS3 x S 3

8.821 String Theory Fall 2008

QGP, Hydrodynamics and the AdS/CFT correspondence

Chapter 2: Deriving AdS/CFT

HIGHER SPIN CORRECTIONS TO ENTANGLEMENT ENTROPY

Anomalies and SPT phases

RG Limit Cycles (Part I)

BMS current algebra and central extension

Holographic Lattices

SPACETIME FROM ENTANGLEMENT - journal club notes -

Holographic Entanglement Entropy

D.Blanco, H.C., L.Y.Hung, R. Myers (2013)

Scale without conformal invariance

Holographic Wilsonian Renormalization Group

Exercise 1 Classical Bosonic String

One-loop renormalization in a toy model of Hořava-Lifshitz gravity

Applications of AdS/CFT correspondence to cold atom physics

Introduction to String Theory ETH Zurich, HS11. 9 String Backgrounds

κ = f (r 0 ) k µ µ k ν = κk ν (5)

One Loop Tests of Higher Spin AdS/CFT

Finite Temperature Field Theory

LQG, the signature-changing Poincaré algebra and spectral dimension

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Classical AdS String Dynamics. In collaboration with Ines Aniceto, Kewang Jin

Rényi Entropy in AdS 3 /CFT 2

Asymptotically safe Quantum Gravity. Nonperturbative renormalizability and fractal space-times

Thomas Klose Uppsala University J u n e, S t r i n g s , U p p s a l a

Large N fermionic tensor models in d = 2

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Outline 1. Introduction 1.1. Historical Overview 1.2. The Theory 2. The Relativistic String 2.1. Set Up 2.2. The Relativistic Point Particle 2.3. The

20 Entanglement Entropy and the Renormalization Group

Holographic Cosmology Beyond Inflation? Mark Trodden! University of Pennsylvania

8.821 F2008 Lecture 18: Wilson Loops

Time-dependent backgrounds of compactified 2D string theory:

Duality and Emergent Gravity in AdS/CFT

Critical exponents in quantum Einstein gravity

The Uses of Ricci Flow. Matthew Headrick Stanford University

Towards a manifestly diffeomorphism invariant Exact Renormalization Group

Entanglement in Quantum Field Theory

Gauge / gravity duality in everyday life. Dan Kabat Lehman College / CUNY

A Supergravity Dual for 4d SCFT s Universal Sector

Non-relativistic holography

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Non-Equilibrium Steady States Beyond Integrability

Non-relativistic AdS/CFT

1 Polyakov path integral and BRST cohomology

Heterotic Torsional Backgrounds, from Supergravity to CFT

Holographic Lattices

Entanglement Entropy in 2+1 Chern-Simons Theory

Quark-gluon plasma from AdS/CFT Correspondence

Holography and the cosmological constant

Local RG, Quantum RG, and Holographic RG. Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis

On higher-spin gravity in three dimensions

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford

Yun Soo Myung Inje University

Lecture 7 SUSY breaking

String Theory in a Nutshell. Elias Kiritsis

Eric Perlmutter, DAMTP, Cambridge

8.821 String Theory Fall 2008

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter

Holographic relations at finite radius

Holographic renormalization and reconstruction of space-time. Kostas Skenderis Southampton Theory Astrophysics and Gravity research centre

Holography for 3D Einstein gravity. with a conformal scalar field

Seminar in Wigner Research Centre for Physics. Minkyoo Kim (Sogang & Ewha University) 10th, May, 2013

Hamiltonian approach to Yang- Mills Theories in 2+1 Dimensions: Glueball and Meson Mass Spectra

5. a d*, Entanglement entropy and Beyond

4 4 and perturbation theory

A sky without qualities

Spatially Modulated Phases in Holography. Jerome Gauntlett Aristomenis Donos Christiana Pantelidou

Why we need quantum gravity and why we don t have it

Holographic entanglement entropy

New Phenomena in 2d String Theory

Scattering Theory and Currents on the Conformal Boundary

Lecture A2. conformal field theory

Transcription:

The TT Deformation of Quantum Field Theory John Cardy University of California, Berkeley All Souls College, Oxford ICMP, Montreal, July 2018

Introduction all QFTs that we use in physics are in some sense effective field theories, valid over only some range of energy/length scales if they are (perturbatively) renormalizable, this range of scales may be very large and they have more predictive power, but eventually new physics should enter if they are non-renormalizable (the action involves operators with dimension > d) they may still be useful up to some energy scale UV cut-off Λ even so they may still make sense at higher energies if they have a UV completion, eg. if they flow from a non-trivial RG fixed point asymptotic safety

However another possibility is that the UV limit is not a conventional UV fixed point corresponding to a local QFT, but is something else (eg string theory): IR UV?

The of 2d QFT is an example of a non-renormalizable deformation of a local QFT for which, however, many physical quantities make sense and are finite and calculable in terms of the data of the undeformed theory. However this deformation is very special this has been termed asymptotic fragility, which could be used as a constraint on physical theories.

What is TT? consider a sequence of 2d euclidean field theories T (t) (t R) in a domain endowed with a flat euclidean metric η ij, each with a local stress-energy tensor T (t) ij (x) δs (t) /δg ij (x) T (0) is a conventional local QFT (massive, or massless (CFT)) deformation is defined formally by S (t+δt) = S (t) δt det T (t) d 2 x equivalently by inserting det T (t) d 2 x into correlation functions note that this uses T (t), not T (0)

det T = 1 2 ɛik ɛ jl T ij T kl T zz T z z T 2 z z in complex coordinates for a CFT this is T zz T z z TT since this has dimension 4, we would expect det T Λ 4 Zamolodchikov (2004) pointed out that by conservation i T ij = 0 that ɛ ik ɛ jl T ij (x)t kl (x + y) = ɛ mk ɛ jl T ij (x)t kl (x + y) y m x i so that in any translationally invariant state ɛ ik ɛ jl T ij (x)t kl (x) = ɛ ik ɛ jl T ij (x)t kl (x + y) finite, and calculable in terms of matrix elements of T ij so the deformation is in some sense solvable

TT as a topological deformation In this talk I ll describe a different approach which also works in non-translationally invariant geometries e (δt/2) ɛ ik ɛ jl T ij (x)t kl (x)d 2x = [dh ij ]e (1/2δt) ɛ ik ɛ jl h ij (x)h kl (x)d 2 x+ h ij T ij d 2 x h ij = O(δt) may be viewed as an infinitesimal change in the metric g ij = η ij + h ij in 2d we can always write h ij = a i,j + a j,i + δ ij Φ where a i is an infinitesimal diffeomorphism x i x i + a i (x) and e Φ 1 + Φ is the conformal factor

however, at the saddle point h = h [T] (which is sufficient since the integral is gaussian) T ij ɛ ik ɛ jl h kl conservation i T ij = 0 then implies that Φ = 0, so the metric is flat Φ can be absorbed into the diffeomorphism moreover we can take a i,j = a j,i

the action is then (2/δt) ɛ ik ɛ jl ( i a j )( k a l )d 2 x 2 ( i a j )T ij d 2 x = (2/δt) i (ɛ ik ɛ jl a j k a l )d 2 x 2 i (a j T ij )d 2 x and so is topological: for a simply connected domain only a boundary term for a closed manifold, only contributions from nontrivial windings of a i only h ij = 2a i,j needs to be single valued

Torus L L+L 0 L torus made by identifying opposite edges of a parallelogram with vertices at (0, L, L, L + L ) in C saddle point is translationally invariant ) h ij = δt ɛ ik ɛ jl T kl (0) = δt ɛ ik ɛ jl (1/A) (L k Ll + L k L log Z (t) l (A = L L = area) change in log Z (t) is T ij (x)h ij [T] c d 2 x = (δt)ɛ ik ɛ jl ( L i Lj + L i L j ) T kl (0)

Evolution equation for partition function ( ) ) t Z(t) (L, L ) = ɛ ik ɛ jl L k Ll + L k L l (1/A) (L k Ll + L k L Z (t) (L, L ) l In terms of Z (t) Z (t) /A t Z = ( L L )Z simple linear PDE, first order in t if log Z f t A, t f t = f 2 t f t = f 0 1 + f 0 t no new UV divergences in the vacuum energy

interpretation as a stochastic process t Z = ( L L )Z is of diffusion type, where Z (t) is the pdf for a Brownian motion (L t, L t) in moduli space with E [ (L t1 L t2 ) (L t 1 L t 2 ) ] = t 1 t 2 In particular the mean area E[L t L t] t as t +, with, however, absorbing boundary conditions on L L = 0. The relation between the two approaches is [ ] Z (t) (L 0, L 0) = E Z (0) (L t, L t)

Finite-size spectrum L L+L 0 H P L Z(L, L (R Im τ)ĥ(r)+i(r Re τ)ˆp(r) ) = Tr e = n e (R Im τ)e(t) n (R)+i(R Re τ)p n(r) where R = L, τ = L /L and Ĥ, ˆP are the energy and momentum operators for the theory defined on a circle of circumference R. PDE for Z (t) then leads after some algebra to [Zamolodchikov 2004] t E (t) n (R) = E (t) n (R) R E (t) n (R) P 2 n/r For P n = 0 this is the inviscid Burgers equation.

If T (0) is a CFT, E (0) n (R) = 2π n /R where n = n c/12 Solution is then (with P n = 0) E (t) n (R) = R 2t 1 1 8π n t R 2 energies with n > 0 become singular at some finite t > 0 energies with n < 0 become singular at some finite t < 0

Thermodynamics identifying R β = 1/kT, E (t) 0 (β) = βf t(β), where f t = free energy per unit length for fixed t < 0 there is a transition at finite T 1/( ct) 1/2 this is of Hagedorn type where the density of states grows exponentially if T (0) is a free boson, then E (t) n (R, P) is the spectrum of the Nambu-Goto string [Caselle et al. 2013] which is known to have a Hagedorn transition as a world sheet theory on the other hand for t > 0 the free energy is analytic but the energy density E is finite as T, suggesting another branch with negative temperature

S-matrix if T (0) is a massive QFT, the single particle mass spectrum M is not affected by the deformation the 2-particle energies for MR 1 have the expected form E = 2 M 2 + P 2 where however P is quantized according to PR + δ(p) 2πZ, where δ (t) (P) is the scattering phase shift consistency with the evolution equation then requires δ (t) = δ (0) t M 2 sinh θ where P = M sinh(θ/2) this is equivalent to a CDD factor in the 2-particle S-matrix [Smirnov-Zamolodchikov 2017] S (t) (θ) = e itm2 sinh θ S (0) (θ)

if T (0) is integrable, so is T (t), and applying Thermodynamic Bethe Ansatz to the deformed S-matrix yields the expected form for E (t) n (R) [Cavaglià et al. 2016] in fact this dressing of the S-matrix works for non-integrable theories as well: [Dubovsky et al. 2012, 2013] S (t) ({p}) = e i(t/8) a<b ɛ ij p i ap j b S (0) ({p}) it corresponds to the dressing of the original theory by Jackiw-Teitelboim [1985, 1983] (topological) gravity: S (t) = S(g ij, matter) + g(φr Λ)d 2 x where Λ t 1 the torus partition function of this theory has been computed and shown to satisfy the PDE of the TT deformed theory [Dubovsky et al. 2017, 2018]

Simply connected domain boundary action is (1/8δt) ɛ jl (a j k a l )ds k 2 ɛ ik a j T ij ds k λ a k ds k λ = lagrange multiplier enforcing a k ds k = 0 fermion on boundary: coupling to T simplifies with conformal boundary condition T = 0 gaussian integration then gives δ log Z δt G(s s ) T (s)t (s ) c ɛ kl ds k ds l s s <l/2 where l = perimeter and G(s s ) = 1 2 sgn(s s ) (s s )/l

for a disk x < R, we may decompose into modes a (θ) = n a ne inθ the n = 0 mode gives the evolution equation where R = perimeter/2π t Z = (1/4π)( R 1/R) R Z corresponds to the stochastic (Bessel) process t R = 1 4πR + η(t), η(t )η(t ) = 1 2π δ(t t ) curvature driven dynamics as in 2d coarsening

Other directions in the holographic AdS/CFT correspondence, deforming the boundary CFT with t > 0 has been argued to be equivalent to going into the bulk of AdS 3 by a distance O( t) [McGough et al. 2016] in Minkowski space CFT, adding TT to the action corresponds to soft left-right scattering: t > 0 (resp. < 0) corresponds to attractive (repulsive) interaction and superluminal (subliminal) propagation of light signals in a background with finite energy density [Cardy 2016] TT has also been argued to lead to the formation of shocks in the hydrodynamic effective theory [Bernard-Doyon 2015]

Summary the TT (more properly, det T) deformation of a local 2d QFT gives a computable example of a nonlocal UV completion of an effective field theory many physical quantities (partition functions, spectrum, S-matrix) are UV finite, but local operators do not appear the make sense it is solvable because in a sense it is topological, and it also appears to be related to a dressing of the theory by (topological) gravity it would be interesting to find similar deformations in higher dimensions