The$Par(cle$Beam$Physics$Lab$(PBPL):$ Research$at$the$Intersec(on$of$ Rela(vis(c$Beam$and$Plasma$Physics$

Similar documents
X-ray Free-electron Lasers

Linac Driven Free Electron Lasers (III)

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam

New Electron Source for Energy Recovery Linacs

Electron Linear Accelerators & Free-Electron Lasers

Greenfield FELs. John Galayda, SLAC Kwang-Je Kim, ANL (Presenter) James Murphy, BNL

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

The VISA II Experiment

Observation of Ultra-Wide Bandwidth SASE FEL

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

O rion. The ORION Facility at SLAC. Bob Siemann AAC Workshop, June 15, 2000

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory

Beam-plasma Physics Working Group Summary

Pushing the limits of laser synchrotron light sources

Research Topics in Beam Physics Department

An Adventure in Marrying Laser Arts and Accelerator Technologies

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Opportunities and Challenges for X

Research with Synchrotron Radiation. Part I

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

Echo-Enabled Harmonic Generation

LCLS Commissioning Status

The UCLA/LLNL Inverse Compton Scattering Experiment: PLEIADES

Overview of accelerator science opportunities with FACET ASF

Characterization of an 800 nm SASE FEL at Saturation

Compressor and Chicane Radiation Studies at the ATF. Gerard Andonian, UCLA High Power Workshop January 14-16, 2009 UCLA

Reinventing the accelerator for the high-energy frontier

Beam Echo Effect for Generation of Short Wavelength Radiation

NON LINEAR PULSE EVOLUTION IN SEEDED AND CASCADED FELS

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Accelerator Activities at PITZ

Generation and characterization of ultra-short electron and x-ray x pulses

SLAC National Accelerator Laboratory. Persis S. Drell Director August 30, 2010

4 FEL Physics. Technical Synopsis

Free Electron Laser. Project report: Synchrotron radiation. Sadaf Jamil Rana

SCSS Prototype Accelerator -- Its outline and achieved beam performance --

Optimum beam creation in photoinjectors using spacecharge expansion II: experiment

SINBAD. Ralph W. Aßmann Leading Scientist, DESY. LAOLA Collaboration Meeting, Wismar

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem

The VISA II Experiment

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Wakefield in Structures: GHz to THz

Emittance Compensation. J.B. Rosenzweig ERL Workshop, Jefferson Lab 3/20/05

Introduction to Free Electron Lasers and Fourth-Generation Light Sources. 黄志戎 (Zhirong Huang, SLAC)

Electron Acceleration in a Plasma Wakefield Accelerator E200 FACET, SLAC

Fundamental and Harmonic Microbunching Measurements in a High-Gain, Self-amplified, Spontaneous Emission Free-Electron Laser

Status of the Project PLASMONX and the Experiment LILIA

Inverse Compton Scattering Sources from Soft X-rays to γ-rays

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg,

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004

Towards a Low Emittance X-ray FEL at PSI

Lecture 1 August 29

Trends in X-ray Synchrotron Radiation Research

Generation and application of sub fs, ultra high brightness, multi GeV electron beams

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ

S.Y. Lee Bloomington, Indiana, U.S.A. June 10, 2011

Start-to-End Simulations

Emergency information

Experimental Path to Echo-75 at NLCTA

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Short Wavelength SASE FELs: Experiments vs. Theory. Jörg Rossbach University of Hamburg & DESY

ATTOSECOND X-RAY PULSES IN THE LCLS USING THE SLOTTED FOIL METHOD

γmy =F=-2πn α e 2 y or y +ω β2 y=0 (1)

Plasma Wakefield Acceleration Presented by: Bob Siemann On behalf of: The E157, E162, E-164, E-164X, E167 Collaborations

Results of the Energy Doubler Experiment at SLAC

arxiv: v1 [physics.acc-ph] 1 Jan 2014

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab.

4GLS Status. Susan L Smith ASTeC Daresbury Laboratory

Plasma-based Acceleration at SLAC

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE

Beam Dynamics in a Hybrid Standing Wave- Traveling Wave Photoinjector

Simulations of the IR/THz source at PITZ (SASE FEL and CTR)

U SEFUL AS THEY ARE these facilities have. X-ray Free-Electron Lasers. by CLAUDIO PELLEGRINI & JOACHIM STÖHR. With advances.

X-ray free-electron lasers: An introduction to the physics and main characteristics

A 6 GeV Compact X-ray FEL (CXFEL) Driven by an X-Band Linac

Femto-second FEL Generation with Very Low Charge at LCLS

Lecture 4: Emittance Compensation. J.B. Rosenzweig USPAS, UW-Madision 6/30/04

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012

Generation of high-brightness electron beams from a needle cathode and their application to make channeling xrays

Introduction to electron and photon beam physics. Zhirong Huang SLAC and Stanford University

Accelerator R&D Opportunities: Sources and Linac. Developing expertise. D. Rubin, Cornell University

Chan Joshi UCLA With help from Weiming An, Chris Clayton, Xinlu Xu, Ken Marsh and Warren Mori

Transverse emittance measurements on an S-band photocathode rf electron gun * Abstract

UCLA Neptune Facility for Advanced Accelerator Studies

SL_COMB. The SL_COMB experiment at SPARC_LAB will operate in the so-called quasinonlinear regime, defined by the dimensionless charge quantity

E164. High Gradient Plasma-Wakefield Acceleration Using Ultrashort. Electron Bunches

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ

Measuring very low emittances using betatron radiation. Nathan Majernik October 19, 2017 FACET-II Science Workshop

Cooled-HGHG and Coherent Thomson Sca ering

Introduction to Particle Accelerators & CESR-C

Overview of FEL injectors

A Helical Undulator Wave-guide Inverse Free- Electron Laser

UCLA Neptune Ramped Bunch Experiment. R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004

3. Synchrotrons. Synchrotron Basics

Generation of Ultra-Short, High Brightness Electron Beams for Single Spike SASE FEL Operation

Vertical Polarization Option for LCLS-II. Abstract

Harmonic Lasing Self-Seeded FEL

Transcription:

The$Par(cle$Beam$Physics$Lab$(PBPL):$ Research$at$the$Intersec(on$of$ Rela(vis(c$Beam$and$Plasma$Physics$ James$Rosenzweig$ Director,$PBPL$ UCLA$Dept.$of$Physics$and$Astronomy$ PlasmaFest$2015$MM$9/22/15$

Par(cle$beamMbased$discovery$of$the$very$ small$demands$high$energy$(tev$scale)$$ Enabled$by$accelerators) Resolve at scale λ~hc/u Exponen(al$growth$in$t$in$ available$energy$u$$ Livingston$plot:$ Moore s$law $ for$accelerators$ Now$beams$are$at$TeV$ $Expensive$success$story $ LHC$(Higgs$discovery)$~$$10B$ To$go$to$100$TeV$(FCC),$cost$greater& 1930 1940 1950 1960 1970 1980 1990 2000 Moore s law for HEP discovery 2$ 2$

Accelerators$started$small$now$dominate$science,$ industry,$medicine $ An adventure in innovation for nearly a century, from betatron To the largest machines ever built. The U=1 MeV betatron (1940) 3$

Unitary$limits$in$R/$$reached$ 27 km circumference S(ll$a$compelling$field!$ Impera(ve:$miniaturize$ Costly, and complex as a moon shot 4$

Modern&light&source:&& X3ray&Free3Electron&Laser&(FEL)& Large$linear$accelerator$(kmMscale,$E=15$GeV)$ Introduces$XMray$$coherence,$and$fs$resolu6on$ UCLA$played$essen(al$role$in$development$$ SLAC <2000: Dedicated to HEP The first X-ray FEL at SLAC: Coherent X-rays! SLAC >2010: Dedicated to FEL Note use of to HEP linac Light sources before: HEP spin-off, now big science (>$1B). 5$ XFEL provides much motivation for accelerator research

XMray$FEL$schema(cally$ Undulator period ~ few cm, through 3-wave instability gives Doppler shifted coherent light, hard X-rays and beyond Feedback$yields$instability,$then$coherence$and$very$high$power$

UCLA Particle Beam Physics Lab: PBPL Group (Musumeci+Rosenzweig) built on 3 research thrusts Ultra-high field acceleration New light sources (FEL,etc.) High brightness electron beams Strong connections between all areas Common themes: multi-disciplinary, high energy density (relativistic) interactions, ultra-fast systems Fundamental beam (plasma) physics and advanced technology underpins other two areas Now moving to cutting edge applications (femto-second resolved imaging, THz, etc.)

PBPL Experimental Facilities State-of-the-art accelerator/laser labs Keck-SAMURAI Lab (Rosenzweig) >65 <MeV, FEL, advanced acceleration PEGASUS High Brightness Beam Lab (Musumeci) Off-campus (PBPL aided in construction) BNL ATF; SLAC NLCTA, FACET; INFN/LNF SPARC Coherent$Ti:Sa$ Laser$ M$100$mJ$ M 40$fsec$ SAMURAI$Keck$ Pegasus$lab$$(Knudseon$Hall)$

Essen(al$ingredient$in$beamMbased$discovery:$$ high$brightness$electron$beam$ High$phase$space$density$(cold,&focusable,&intense)$ Measure:$beam&brightness& $$ SpaceMcharge$(dense,$cold$plasma)$effects$strong$ $$in$high$brightness$beams,$challenging$physics$ Phase space Density map B e = 2I ε x 2 The secret: RF photoinjector (UCLA expertise) Area=ε x emittance Area (temperature) small Peak density large Neede for FELs and HEP linear collider (very high high B e ) 9$

Electron$Source$Physics$and$Technology$ Advanced$approaches$ Cryogenics,$plasmonics$ Physics$of$rela(vis(c$plasmas$ under$violent$accelera(on$ a!! "0.105, t"2.0mm, Cryo# " 2# 45K150ns# slctdm a!! "0.105, t"2.0mm, # " 1150ns t"2.0mm, Clamped# Ag# " 3150ns# slctd Cryogun$EM$design$ Breakdown Probability [1/pulse/meter] 10 0 10-1 10-2 10-3 10-4 10-5 10-6 UltraMhigh$ brightness$em$ from$>250$ MV/m$fields$ 10-7 100 200 300 400 500 600 700 Peak Electric Field [MV/m] Nonlinear$plasma$oscilla(ons$observed$ in$accelera(ng$embeam$i(musumeci)$

BeamsMasMplasmas$to$beams$in$plasmas$ Plasma$wakefield$accelera(on$(PWFA)$in$extreme$ nonlinear$blowout$regime,$n b >>n p$ >1$TVm$accelera(ng$fields$in$$ UCLA$FACET$II$PWFA$experiment$ PWFA,$with$high$brightness$eMbeam$driver$ Excellent$beam$proper(es$ Like$linac$structure$moving$at$c$ UltraMstrong$(MT/m)$ion$focusing$ Up$to$TV/m$foreseen$ F/m e cω p ee m e cω p 1.5 1 0.5 0-0.5 FE. r r H φ F E z z -1-1.5 k p r 0 0.5 1 1.5 2 2.5 k r

Trojan$Horse $PWFAMbased$eM$Source$$ Extreme$high$brightness$beam$from$ plasma$ photominjector ;$300$MV/mM>30$G/m$ Experiments$underway$at$SLAC$FACET$ LaserMelectron$femtosec$(ming$at$20$GeV$ IR$laser$ e+$beam$ ElectroMop(c$signal$for$100$fs$(ming$$

Exploring$Nonlinear$Plasma$Response$ Resonant$excita(on$needed,$but$rela(vis(c$plasma$ response$is$anharmonic$ High$brightness$beam$permits$n b >>n p$ without$ nonlinearity$ $quasi;nonlinear$regime$ 1 st $experiments$at$bnl$atf$(na(onal$user$fac.)$ d)& Full$beam$ Pulse$train$

Next$genera(on$experiments$at$Frasca($ Matching $to$gv/m$pwfa;$adiaba(c$lens$for$hep$ Eminance$preserva(on$for...$freeMelectron$laser$ Simula(on$of$beam$focusing$and$eminance$evolu(on$in$INFNMLNF$$ (Frasca()$experiments.$(Right)$plasma$discharge$source.$$

Advanced$plasma$source$work:$ MicroMDense$Plasma$Focus$ DARPA$ICONS$(Intense$COmpact$Neutron$Source)$$ Miniaturiza(on$of$dense$plasma$focus,$enable$array$ MEMS$of$gated$neutron$eminers$for$imaging$$

GeV/m$Dielectric$Wakefield$Accelera(on$ GeV/m$accelerator$without$plasma;$THz$dielectric$wakes$ Recently$observed$ 2&GeV/m&deceleraBon&(metallic$coa(ng)$ Witness$beam$accelera(on,$~80%&efficiency& Wakefield$mapping,$highMfieldMinduced$damping$$

Advances in FEL: Demonstration of Orbital Angular Momentum FEL SLAC NLCTA facility Follow-on to UCLA experiments (Neptune)! Undulator radiation from helically-bunched beam! Analyze with phase retrieval (coherent imaging, J. Miao: helical phase (OAM) E.$Hemsing,$et$al.,$Nature$Physics$$9,$549$$(2013).$$

Using$the$laser$as$undulator:$Inverse$ Compton$Scanering$(ICS)$ BNL$ATF$experiments$ a 0 <0.25$$ a 0 ~0.6$$ KMedge$filtered$XMrays,$redshiped$$ by$large$a 0.$ Harmonics$revealed$at$$a 0 =0.6 $ 2 nd $$ 3 rd $$ 2 nd $$ 3 rd $$ First$demonstra(on$of$ nonlinear$redship$ First$demonstra(on$of$3 rd $ harmonic$radia(on$ Single$shot$Bragg$diffrac(on$ Single$shot$doubleMdifferen(al$ spectrum$ Calculated$harmonic$ angular$panerns$ x y x y x y Curve$indicates$$ offmaxis$redship$

IFEL:&the&FEL&in&reverse& High$quality$beam$ accelerated$(double$u)$ Next:$ICS$based$on$IFEL all$op(cal$light$source$ Inspires$ultraMefficient$ FEL$based$on$tapering...$ J.$Duris$et$al,$$ Nature$Comm.$5,$$ 4928,$2014$

Future directions SAMURAI (Spontaneous Amplified Micro-Undulator Radiation And Interactions). FEL and advanced accelerators Soft-X-ray Raman (plasma dominated) FEL with MEMS undulator 800 um period, 2 m long SASE FEL, λ r 26 nm with 63 MeV beam Collaboration with P. Musumeci, R. Candler Low energy PWFA for space radiation simulation (exponential energy spectrum, killer electrons) Uniquely enabled by advanced photoinjector giving 100 fs, ka e- beams 200 μm 10 4 10 3 Exponen(al$eM$spectrum$$ from$pwfa$ f(p) 100 MEMs$undulator$$ 10 Radia(on$belt$ simulator$ 1 0 2 4 6 8 10 12 p (MeV/c)