Feedback Transimpedance & Current Amplifiers

Similar documents
Amplifiers, Source followers & Cascodes

Systematic Design of Operational Amplifiers

Stability of Operational amplifiers

Preamplifier in 0.5µm CMOS

Design of crystal oscillators

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Exact Analysis of a Common-Source MOSFET Amplifier

ECE 546 Lecture 11 MOS Amplifiers

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

Lecture 37: Frequency response. Context

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

CMOS Cross Section. EECS240 Spring Today s Lecture. Dimensions. CMOS Process. Devices. Lecture 2: CMOS Technology and Passive Devices

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

CMOS Cross Section. EECS240 Spring Dimensions. Today s Lecture. Why Talk About Passives? EE240 Process

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier I & Step Response

Homework Assignment 08

University of Toronto. Final Exam

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

Circuit Topologies & Analysis Techniques in HF ICs

Advanced Current Mirrors and Opamps

ECE 497 JS Lecture - 12 Device Technologies

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

ECEN 610 Mixed-Signal Interfaces

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

55:041 Electronic Circuits The University of Iowa Fall Final Exam

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

VLSI GATE LEVEL DESIGN UNIT - III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

Frequency Detection of CDRs (1)

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there.

Sample-and-Holds David Johns and Ken Martin University of Toronto

Electronic Circuits Summary

CMOS Analog Circuits

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

The current source. The Active Current Source

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

Lecture 04: Single Transistor Ampliers

Chapter 9 Frequency Response. PART C: High Frequency Response

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

CE/CS Amplifier Response at High Frequencies

6.012 Electronic Devices and Circuits Spring 2005

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier II Multi-Stage Designs

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

MICROELECTRONIC CIRCUIT DESIGN Second Edition

Electronics II. Final Examination

Stability and Frequency Compensation

At point G V = = = = = = RB B B. IN RB f

Homework Assignment 09

EECS 105: FALL 06 FINAL

ECE 6412, Spring Final Exam Page 1

Last Name _Di Tredici_ Given Name _Venere_ ID Number

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

Practice 7: CMOS Capacitance

Lecture 4, Noise. Noise and distortion

RIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIB-R T7. Detailed Explanations. Rank Improvement Batch ANSWERS.

ECEN 326 Electronic Circuits

The transistor is not in the cutoff region. the transistor is in the saturation region. To see this, recognize that in a long-channel transistor ifv

Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005

Bipolar junction transistors

LECTURE 130 COMPENSATION OF OP AMPS-II (READING: GHLM , AH )

DISCRETE SEMICONDUCTORS DATA SHEET. BLF245 VHF power MOS transistor

Operational Amplifiers

Low Noise Amplifiers. Prepared by: Heng Zhang. ECEN 665 (ESS) : RF Communication Circuits and Systems

ECE 3050A, Spring 2004 Page 1. FINAL EXAMINATION - SOLUTIONS (Average score = 78/100) R 2 = R 1 =

4.5 (A4.3) - TEMPERATURE INDEPENDENT BIASING (BANDGAP)

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Circle the one best answer for each question. Five points per question.

EMC Considerations for DC Power Design

Guest Lectures for Dr. MacFarlane s EE3350

ESE319 Introduction to Microelectronics. Feedback Basics

A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

Maxim Integrated Products 1

Lecture 06: Current Mirrors

Lecture 140 Simple Op Amps (2/11/02) Page 140-1

DISCRETE SEMICONDUCTORS DATA SHEET. BLF145 HF power MOS transistor

CMOS Comparators. Kyungpook National University. Integrated Systems Lab, Kyungpook National University. Comparators

Electronics and Communication Exercise 1

DISCRETE SEMICONDUCTORS DATA SHEET. BLF246 VHF power MOS transistor Oct 21. Product specification Supersedes data of September 1992

ELEN 610 Data Converters

EECS 141: FALL 05 MIDTERM 1

D is the voltage difference = (V + - V - ).

Advantages of Using CMOS

55:041 Electronic Circuits The University of Iowa Fall Exam 2

Investigation of the Thermal Noise of MOS Transistors under Analog and RF Operating Conditions

1. The MOS Transistor. Electrical Conduction in Solids

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

24.2: Self-Biased, High-Bandwidth, Low-Jitter 1-to-4096 Multiplier Clock Generator PLL

Transcription:

Feedback Transimpedance & Current Amplifiers Willy Sansen KULeuven, ESATMICAS Leuven, Belgium willy.sansen@esat.kuleuven.be Willy Sansen 1005 141

Table of contents Introduction Shuntshunt FB for Transimpedance amps. Shuntseries FB for Current amplifiers Transimpedance amplifiers for low noise and high frequencies Willy Sansen 1005 14

Input & output impedances 1 H = Output Shunt Series Input R OUT = R OUTOL 1LG R OUT = R OUTOL (1LG) Shunt R IN = R INOL 1LG = A R i OUT = A I Series R IN = R INOL (1LG) v IN = A V i OUT v IN = A G Willy Sansen 1005 143

Table of contents Introduction Shuntshunt FB for Transimpedance amps. Shuntseries FB for Current amplifiers Transimpedance amplifiers for low noise and high frequencies Willy Sansen 1005 144

Shuntshunt FB configuration R IN v IN A 0 v IN A 0 10 4 10 6 R OUT R O << R NP >> A R = = R IN 0 R OUT 0 Willy Sansen 1005 145

Shuntshunt FB : loop gain A 0 v IN v INLG = 0 v IN R O << LG LG = LG v INLG R NP >> A vol A 0 10 4 10 6 Willy Sansen 1005 146

Shuntshunt FB : input resistance R IN v IN A 0 v IN A 0 10 4 10 6 R OUT R O << R IN = v IN = R INOL 0 LG R NP >> Open Loop R INOL = R IN (A v = 0) = R NP //( R O ) Willy Sansen 1005 147

Shuntshunt FB : output resistance = 0 v IN A 0 v IN A 0 10 4 10 6 R OUT R O << Open Loop R OUTOL R OUT = 0 LG R NP >> R OUTOL = R OUT (A v = 0) = R O //( R NP ) R O Willy Sansen 1005 148

Shuntshunt FB pair V DD M1 M A R = = LG = g m1 r o1 R IN = 0? LG 1/g m R OUT = 0 LG Willy Sansen 1005 149

Shuntshunt FB pair with resistors v IN M3 M1 R 1 V DD M v IN M M3 R M1 V DD R 1 vout1 A R = = A R1 = A R = R 1 R R Ref.Cherry, Proc. IEE, Feb.63, 375389; Holdenried, JSSC Nov.04, 19591967 Willy Sansen 1005 1410

Current detector with voltage amp. R L Q Q 3 = Q 1 R E C L = 360 Ω f T = 40 GHz r B = 0 Ω BW = 10 GHz I TOT = 10 ma Ref.Baureis, JSSC June 1993, 701706 Willy Sansen 1005 1411

Shuntshunt FB triple M1 M M3 M4 V DD LG = A v1 A v A v3 A vi = g mi r oi A R = R IN = 0 LG 1/g m4 R OUT = 0 LG Willy Sansen 1005 141

Shuntshunt FB triple: easier biasing V DD A R = M3 LG = A v1 A v A v3 M M4 A vi = g mi r oi M1 R IN = 0 LG 1/g m4 R OUT = 0 LG Willy Sansen 1005 1413

CMOS preamplifier for optical communications Two stages possible if fully differential! 0 kω 500 Ω tracking of R1 & Rf Ref.Phang, Johns, CASII July 1999 Willy Sansen 1005 1414

Differential shuntshunt FB pair A R = LG = A v1 A v A v1 = g m1 r o1 A v = g m r o R IN = 0 LG /g m3 R OUT = 0 LG Willy Sansen 1005 1415

Current detector with voltage amplifier R IN = v IN = A 1 A C p R L A A R = LG = A 1 A = A 1 =g m R L A f 3dB = 1 π R IN C p Willy Sansen 1005 1416

Single MOST with shuntshunt FB V DD A R = (if >> 1/ g m ) LG = g m r o R R IN = F r o 0? LG r o R OUT = 0? LG Ref.Cherry, Proc. IEE, Feb.63, 375389 Willy Sansen 1005 1417

Single bipolar transistor with shuntshunt FB V DD A R = (if >> 1/ g m ) Far from ideal!! Output loading : r π r o reduces the LG!! LG = g m r o r π r o r π ( r o ) // r π R IN = 0? LG r R OUT = o // ( r π ) 0? LG Willy Sansen 1005 1418

Cascode with shuntshunt FB V DD A R = LG = g m1 r o1 g m r o r R IN = OUT 1 M 0 LG g m1 M1 r OUT = r o1 g m r o r OUT R OUT = 0 LG 1 g m1 Willy Sansen 1005 1419

MOST Shuntshunt FB triple V DD A R = M3 LG = A v1 A v A v3 M1 M A vi = g mi r oi r o3 R IN = 0 LG r o3 R OUT = 0 LG Willy Sansen 1005 140

Bipolar Transistor Shuntshunt FB triple V DD A R = LG = A v1 A v A v3 Q1 Q Q3 A v1 = g m1 (r o1 //r π ) A v = g m (r o //r π3 ) A v3 = g m3 R OUTOL R OUTOL = r o3 //( r π1 ) R OUT = R OUTOL 0 LG Output loading : r π3 r o3 reduces the LG!! (R R IN = F r o3 ) //r π1 0 LG Willy Sansen 1005 141

Shuntshunt FB with nonideal current source R IN = R G R IN RG A 0 RS A 0 A R = A R = if R S > A0 LG = A 0 LG = A 0 R IN = A 0 R G = A0 R IN = R G // R S Willy Sansen 1005 14

Shuntshunt FB with voltage source R IN RG R IN R G RS A 0 R v S OUT v IN A0 A R = if R S > A0 A R = if R S > A0 LG = A 0 LG = A 0 R G = A0 R IN = R G //R S R G = A0 R IN = R G R S Willy Sansen 1005 143

Shuntshunt feedback : Gain and ROUT R v IN R 1 LG = A A 0 10 4 10 6 0 R A A R = R if R 1 > 0 A0 v IN = v IN 1 A v = A R R 1 ROUT = R OUTOL LG R A v = R1 Willy Sansen 1005 144

Shuntshunt FB pair with with voltage source R G V DD A R = A v = R S v IN R S M1 M LG = g m1 r o1 R IN = R S R G R G = = 0 LG g m1 r o1 if R S > A0 1/g m R OUT = 0 LG Willy Sansen 1005 145

Shuntshunt FB pair with input loading V DD A R = Q1 Input loading : r π1 Q LG = g m1 r o1 R R IN = F // r π1 0 LG R OUTOL R OUT = 0 LG 1 R OUTOL = g m r π1 r π1 r o1 β = gm1 r o1 Willy Sansen 1005 146

Shuntshunt FB pair with voltage source R B R L V DD A R = A v = R S v IN R S Q1 Q R E LG = g m1 R L r π1 r π1 //r π1 R B = 0 LG R IN = R S R B Input loading : r π1 R OUTOL R OUT = 0 LG 1 R OUTOL = g m R L β Willy Sansen 1005 147

Nonideal singletransistor shuntshunt FB R B R S R L V DD A R LG g m r olf R IN = R S R B A v R S v IN r π //( r ol ) R B 0 LG r olf R OUT 0?? LG Output loading : r ol r ol = r o //R L r olf = r o //R L // Input loading : r π Willy Sansen 1005 148

Nonideal singletransistor Feedback R L V DD A R = LG =? A v = R S R S R IN =? v IN R E R OUT =? Output loading : r ol r ol = r o //R L Input loading : r π Willy Sansen 1005 149

Shuntshunt feedback in Rightleg drive i B i B d R A A 0 vb R P v B R B A 0 R P i B 10 µa RMS for 0 V RMS (50 Hz) through 150 pf v B i B = R P R B A 0 1 Willy Sansen 1005 1430

Table of contents Introduction Shuntshunt FB for Transimpedance amps. Shuntseries FB for current amplifiers Transimpedance amplifiers for low noise and high frequencies Willy Sansen 1005 1431

Shuntseries feedback : Gain, RIN & ROUT V DD LG = A 0 R IN A 0 R i OUT R OUT R //R E i OUT R E A I = 1 R R E R IN = R * LG 0 R OUTOL = r o (1 g m R E ) R OUT =R OUTOL LG R E > 1/g m R > 1/g m R * = R R E /(1g m R E ) R Willy Sansen 1005 143

Shuntseries feedback with load RL R IN A 0 R E > 1/g m R R L R > 1/g m R E R OUTT V DD R OUT LG = A 0 A I = 1 R R E AR =A I R L R R IN = 0 LG R OUT =R OUTT //R L R L R OUTT =R OUTTOL LG R OUTTOL = r o (1 g m R E ) Willy Sansen 1005 1433

Ideal current buffer i OUT A I = 1 R IN A 0 R OUT 0 R E LG = A 0 1/g m R IN = 0 LG R OUTOL = r o (1 g m R E ) R E > 1/g m R OUT =R OUTOL LG Willy Sansen 1005 1434

Ideal current mirror R IN M1 V ref 0. V A 0 1 : B i OUT = B A I = B R OUT M R INOL LG = g m1 r o1 A 0 R IN = = 0 LG R INOL = r o1 1 g m1 A 0 R OUT = r o Willy Sansen 1005 1435

Gain boosting V B A gb I B v out LG = A gb v in M M1 C L 1/g m R E = 0 LG R OUTOL = r o (1 g m r o1 ) A v = A gb (g m r DS ) 1 (g m r DS ) R OUT =R OUTOL LG Hosticka, JSSC Dec.79, pp. 11111114; Sackinger, JSSC Febr.90, pp. 8998; Bult JSSC Dec.90, pp. 13791384 Willy Sansen 1005 1436

Differential current amplifier Ref. Umminger, JSSC Dec.95, 1381390 Willy Sansen 1005 1437

Linear laser diode driver i D v IN R 1 A 0 g m i OUT Opt. fiber i OUT = k = k v IN R 1 i D = i OUT k LG = g m A 0 k Willy Sansen 1005 1438

Table of contents Introduction Shuntshunt FB for Transimpedance amps. Shuntseries FB for Current amplifiers Transimpedance amplifiers for low noise and high frequencies Willy Sansen 1005 1439

Optical receiver : Current or voltage amplifier I IN I IN A v A R = I IN = A R I IN Willy Sansen 1005 1440

Current detector with voltage amplifier v IN = A 1 A 1 C 1 R P F A s 1 A C P =C D C GS R L A 1 =g m R L A=A 1 A A T = = 1 C 1 R P F A s 1 A A 1 A 1 RF C P s Noise matching : C D = C GS A R BW (THzΩ) = A 1 A π C P Willy Sansen 1005 1441

Current detector with voltage amplifier v IN R = F 1 R L C L s A 1 as bs 1 A R L C L A=A 1 A A a = C P A 1 A b = C P R L C L A 1 A C P =C D C GS A 1 =g m R L No peaking if R L < 4g m A C P C L 1 = 1 as bs Willy Sansen 1005 144

BW in voltage/current amplifier R L M M1 M M1 R E R E R S R S >> 1/g m1 BW = A v1 π (C GS1 C D ) BW = 1 π (C GD C DB1 ) Willy Sansen 1005 1443

Current detector with input cascode BW = A v R L1 R L π //R L1 C T M1 M M3 CT = CGS Av CGD A v = g m R L R S R E C L = Z IN independent of f! R S >> 1/g m1 R OUT = 1/g m3 Av Vanisri, etal, JSSC June 95, pp. 677685 Willy Sansen 1005 1444

Current detector with regulated cascode 5 V 17 ma C D = 0.5 pf = 800 Ω BW = 1 GHz g mb = 3 g m1 BW independent of C D! Current noise : R S & // R 1 Park, JSSC Jan. 04, 1110 Willy Sansen 1005 1445

Noise sources of detector voltage amplifier di R di D dv A i i R L C L di D = qi D df 4kT di R = df dv A = 4kT ( /3 ) df g m Willy Sansen 1005 1446

Noise density of detector voltage amplifier di ieq i i R L CL dv A di ieq = di D di R di D di R if > /3 g m Willy Sansen 1005 1447

Noise sources of detector current amplifier di D di A i i C L di D = q I D df di A = 4kT g m df 3 Willy Sansen 1005 1448

Noise density of detector current amplifier di ieq di A i i C L di ieq = di D 4kT g m df is transistor noise! 3 Willy Sansen 1005 1449

Comparison of noise densities Voltage amp.: i IN = di 4kT R = df Current amp.: i IN = di A = 4kT g m df 3 Voltage amplifier better when > 3 1 g m Willy Sansen 1005 1450

Comparison of integrated noise Large I D : i IN = di π D (BW ) Small I D : Voltage amp.: i IN = di π R (BW ) = kt R L R ( L ) g m C P Current amp.: i IN = di π A (BW ) = 3 kt g m C L Voltage amplifier better when > 3 4 R L Willy Sansen 1005 1451

CMOS photodiode amplifier M M1 M3 150 kω x 10 MHz = 18 THzΩ 0.5 pa/ Hz 450 MHz per cell Ref.Ingels, JSSC Dec 1994, 1551559 Willy Sansen 1005 145

CMOS wideband amplifier cell M I DS M 1 & M 3 : same V GS & V DS K n K p All L are L min M1 M3 A v = g m1 g m g m3 g m = K n I DS W/L I DS1 = λ I DS I DS3 = (1 λ) I DS V GS1 = V GS3 : W 3 = W 1 1 λ λ Willy Sansen 1005 1453

CMOS wideband amplifier : gain and bandwidth 10 8 A v λ 1 λ W ( 1 ) λw 1 6 4 0 BW 0 0. 0.4 0.6 0.8 1 λ BW = g m3 π C n (1 λ) λw ~ 1 W 1 ( λ) λw W 1 = W = 4 C n = C DB1 C GS3 C DB3 C DB C DB C GS kw k ff/µm Willy Sansen 1005 1454

Integrated resistor M? Poly R : large size : large L distributed C : 45 o phase shift at 100 MHz M1 M3 f 3dB = 1 π.43 R S C 0 L R S = sheet res. (Ω / ) C 0 = unit cap. (F/cm ) MOST : W = 1.3 µm & L = 1 µm allows dynamic compression Glaser; IC Engineering Add.Wesley, p.13 Willy Sansen 1005 1455

Gain compression F Willy Sansen 1005 1456

1 Gb/s 1 kω transimpedance stage pmost vs nmost : nmost R increases for larger diode currents! pmost gives compression! C d = 0.8 pf C GS Capacitive noise matching! BW = 500 MHz 5 ma (5V) 0.7 µm CMOS Ref.Ingels, JSSC July 1999, 971977 Willy Sansen 1005 1457

Highfrequency Resistance RF R 4 R = = R 3 R 1 R 1 R = 00 kω R 3 R 4 = 4 kω 0.5 pf sees 1/g m1 Poly = 00 kω would cut off around 67 MHz! C d = 0.1 pf 180 kω 380 MHz 68 THzΩ 14 ma (5 V) 0.6 µm BiCMOS Seidl, ISSCC 04, 470471 Willy Sansen 1005 1458

BICMOS transimpedance amplifier 178 MHz 8 kω 178 MHz 1 pa/ Hz Ref.Meyer, JSSC June 1994, 701706 Willy Sansen 1005 1459

BICMOS transimpedance amplifier R A v = 1 //.. 5 kω = = 15 1 1/g m4 1 8 1 R i = = 40 Ω 1 A v C i = (1 A v ) C = 4 pf di 4kT i = qi B1 df df 1 = (0.4 0.6)10 4 10 4 A /Hz 8 kω 178 MHz 1 pa RMS / Hz 178 MHz Ref.Meyer, JSSC June 1994, 701706 Willy Sansen 1005 1460

Lowvoltage transimpedance amplifier I B1 I B I B1 I B M1 M1 M1 M1 If > 1/g m1 : = Ref.Phang, Johns, ISSCC 001, 1819 Willy Sansen 1005 1461

75 Mb/s optical receiver in CMOS C d = 1 pf (40 µa).4 kω 45 MHz 75 Mb/s 11 pa RMS / Hz 0.35 µm CMOS 1 V (1 ma) Ref. Phang, ISSCC 001 1819 Willy Sansen 1005 146

GaAs 10 Gb/s receiver HP GaAs MODIC : depletion nmost s 560 V/W flipchip PD : 3 db at 7. GHz 10 pa/ Hz wire bond : 3 db at 4. GHz 0 pa/ Hz Willy Sansen 1005 1463

Table of contents Introduction Shuntshunt FB for Transimpedance amps. Shuntseries FB for Current amplifiers Transimpedance amplifiers for low noise and high frequencies Willy Sansen 1005 1464