Centro de Estudos de Fenómenos de Transporte, FEUP & Universidade do Minho, Portugal

Similar documents
F. T. Pinho. Centro de Estudos de Fenómenos de Transporte, Universidade do Porto & Universidade do. Minho, Portugal

A k-! LOW REYNOLDS NUMBER TURBULENCE

Development of a Low-Reynolds-number k-ω Model for FENE-P Fluids

SOME DYNAMICAL FEATURES OF THE TURBULENT FLOW OF A VISCOELASTIC FLUID FOR REDUCED DRAG

PERFORMANCE OF THE k-ε AND REYNOLDS STRESS MODELS IN TURBULENT FLOWS WITH VISCOELASTIC FLUIDS.

DEVELOPMENT OF A REYNOLDS STRESS MODEL TO PREDICT TURBULENT FLOWS WITH VISCOELASTIC FLUIDS

Turbulence Modeling I!

TURBULENCE MODELING FOR POLYMER SOLUTIONS

Outline: Phenomenology of Wall Bounded Turbulence: Minimal Models First Story: Large Re Neutrally-Stratified (NS) Channel Flow.

Modelling of turbulent flows: RANS and LES

HEAT TRANSFER OF SIMPLIFIED PHAN-THIEN TANNER FLUIDS IN PIPES AND CHANNELS

Introduction to Fluid Mechanics

Model-based analysis of polymer drag reduction in a turbulent channel flow

A Simple Turbulence Closure Model

Introduction to Turbulence and Turbulence Modeling

Polymer stress tensor in turbulent shear flows

STRESS TRANSPORT MODELLING 2

Explicit algebraic Reynolds stress models for boundary layer flows

Events of High Polymer Activity in Drag Reducing Flows

Several forms of the equations of motion

XIIIth International Workshop on Numerical Methods for non-newtonian Flows. Hôtel de la Paix, Lausanne, 4-7 June 2003 PROGRAMME

A Simple Turbulence Closure Model. Atmospheric Sciences 6150

Dept. Engineering, Mechanical Engineering, University of Liverpool Liverpool L69 3GH, UK,

2. Conservation Equations for Turbulent Flows

Exercise 5: Exact Solutions to the Navier-Stokes Equations I

Turbulence Solutions

SOME THOUGHTS ON DIFFERENTIAL VISCOELASTIC MODELS AND THEIR NUMERICAL SOLUTION

Fundamentals of Fluid Dynamics: Elementary Viscous Flow

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

Interpretation of the mechanism associated with turbulent drag reduction in terms of anisotropy invariants

Elements of Rock Mechanics

Chapter 9: Differential Analysis

Stability of Shear Flow

Advances in the Analysis and Prediction of Turbulent Viscoelastic Flows

PEAT SEISMOLOGY Lecture 2: Continuum mechanics

Chapter 9: Differential Analysis of Fluid Flow

On the role of pressure in elasto-inertial turbulence

Euclidean invariance and weak-equilibrium condition for the algebraic Reynolds stress model

Turbulence Modeling. Cuong Nguyen November 05, The incompressible Navier-Stokes equations in conservation form are u i x i

Maximum drag reduction asymptotes and the cross-over to the Newtonian plug

CHAPTER 11: REYNOLDS-STRESS AND RELATED MODELS. Turbulent Flows. Stephen B. Pope Cambridge University Press, 2000 c Stephen B. Pope y + < 1.

HYBRID LES-RANS: Inlet Boundary Conditions for Flows With Recirculation

Explaining and modelling the rheology of polymeric fluids with the kinetic theory

Reynolds stress budgets in Couette and boundary layer flows

Turbulence - Theory and Modelling GROUP-STUDIES:

J. Szantyr Lecture No. 4 Principles of the Turbulent Flow Theory The phenomenon of two markedly different types of flow, namely laminar and

Wall turbulence with arbitrary mean velocity profiles

Numerical Heat and Mass Transfer

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

FOUR-WAY COUPLED SIMULATIONS OF TURBULENT

Victor S. L vov, Baku, January 21, Turbulent Drag Reduction by Dilute Solution of Polymers

Governing Equations for Turbulent Flow

Les Houches School of Foam: Rheology of Complex Fluids

AE/ME 339. Computational Fluid Dynamics (CFD) K. M. Isaac. Momentum equation. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

Polymer maximum drag reduction: A unique transitional state

5 The Oldroyd-B fluid

Getting started: CFD notation

M E 320 Professor John M. Cimbala Lecture 10

The Polymers Tug Back

Atmospheric Boundary Layer Studies with Unified RANS-LES and Dynamic LES Methods

Mechanics PhD Preliminary Spring 2017

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations

Outline. Motivation Governing equations and numerical methods Results: Discussion:

Anisotropic grid-based formulas. for subgrid-scale models. By G.-H. Cottet 1 AND A. A. Wray

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

Continuum Mechanics. Continuum Mechanics and Constitutive Equations

arxiv: v1 [physics.flu-dyn] 16 Nov 2018

NONLINEAR CONTINUUM FORMULATIONS CONTENTS

Fundamentals of Linear Elasticity

Numerical Simulation of Turbulent Buoyant Helium Plume by Algebraic Turbulent Mass Flux Model

Modeling Complex Flows! Direct Numerical Simulations! Computational Fluid Dynamics!

Christel Hohenegger A simple model for ketchup-like liquid, its numerical challenges and limitations April 7, 2011

CHAPTER 4 BOUNDARY LAYER FLOW APPLICATION TO EXTERNAL FLOW

Uniformity of the Universe

Basic concepts in viscous flow

Elliptic relaxation for near wall turbulence models

1. Introduction, tensors, kinematics

Chapter 1. Continuum mechanics review. 1.1 Definitions and nomenclature

Probability density function (PDF) methods 1,2 belong to the broader family of statistical approaches

Generation of initial fields for channel flow investigation

arxiv: v1 [physics.flu-dyn] 11 Oct 2012

Chapter 5. The Differential Forms of the Fundamental Laws

Application of a Volume Averaged k-ε Model to Particle-Laden Turbulent Channel Flow

A dynamic global-coefficient subgrid-scale eddy-viscosity model for large-eddy simulation in complex geometries

Comparison of Turbulence Models in the Flow over a Backward-Facing Step Priscila Pires Araujo 1, André Luiz Tenório Rezende 2

Lecture 3: 1. Lecture 3.

Last update: 15 Oct 2007

UNIVERSITY OF WALES INSTITUTE OF NON-NEWTONIAN FLUID MECHANICS CONFERENCE ON INDUSTRIAL RHEOLOGY. Hoole Hall Hotel, Chester 5-7 April 2004 PROGRAMME

Turbulentlike Quantitative Analysis on Energy Dissipation in Vibrated Granular Media

Preliminary Study of the Turbulence Structure in Supersonic Boundary Layers using DNS Data

Strategy in modelling irregular shaped particle behaviour in confined turbulent flows

7. TURBULENCE SPRING 2019

DYNAMIC STABILITY OF NON-DILUTE FIBER SHEAR SUSPENSIONS

An Introduction to Theories of Turbulence. James Glimm Stony Brook University

Rheology of Soft Materials. Rheology

Skin-Friction Drag Reduction by Dilute Polymer Solutions in Turbulent Channel Flow

n i,j+1/2 q i,j * qi+1,j * S i+1/2,j

Mathematical Theory of Non-Newtonian Fluid

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request.

Transcription:

DEVELOPING CLOSURES FOR TURBULENT FLOW OF VISCOELASTIC FENE-P FLUIDS F. T. Pinho Centro de Estudos de Fenómenos de Transporte, FEUP & Universidade do Minho, Portugal C. F. Li Dep. Energy, Environmental and Chemical Engineering, Washington University of St. Louis, St Louis, MO, USA B. A. Younis Dep. Civil and Environmental Engineering, University of California, Davis, USA R. Sureshkumar Dep. Energy, Environmental and Chemical Engineering, Washington University of St. Louis, St Louis, MO, USA Acknowledgments:FCT (POCI/EQU/56342/24), Gulbenkian Foundation Conference on Whither rheology? 2 nd -4 th April 27 Lake Vyrnwy Hotel, Mid Wales, UK

Summary Relevance: some facts about drag reduction Governing equations for FENE-P in RANS form Reynolds decomposition of FENE-P equations Closure needs and analysis of DNS case (LDR) A simplified closure with a priori testing of DNS data Some concerns regarding limiting cases Some preliminary results Conclusions 2

Relevance: drag reduction in turbulent pipe flow 1-1 f Blasius eq. 6 u + 5.125% PAA Re=429.25% CMC Re= 166.3% CMC Re=43.9/.9% CMC/XG Re=453 4 1-2 3 2.125% PAA.2% PAA.25% CMC.2% XG.9%/.9% CMC/XG Virks MDRA asymptote 1 1-3 1 3 1 4 Re 1 5 1 1 1 1 2 1 3 - Reduction of shear Reynolds stress (DR) - Increase of normal streamwise Reynolds stress - Dampening of normal radial and tangential Reynolds stress Deficit of Reynolds stress y + Escudier et al JNNFM (1999) 3

Time-average governing equations: turbulent flow & FENE-P Continuity:!U i!x i = Momentum balance:! "U i "t ^- instantaneous Overbar or capital letter- time-average or small letter- fluctuations "U +!U i k = # "p " +$ 2 U i s # " (!u i u "x k "x i "x k "x k "x k )+ "% ik, p k "x k Rheological constitutive equation: FENE-P! ij = 2" s S ij +! ij, p ˆ! ij, p = " p & # f ( Ĉ kk )Ĉij $ f ( L )% ( ij ) $ f ( Ĉ kk )Ĉij +! "Ĉij "Ĉij +Ûk # "t "x Ĉ "Ûi "Û # jk k "x Ĉik j & ) = f (L) ij % k "x k ( # % $!Ĉij!t +Ûk!Ĉij!x k " Ĉ jk!ûi!û "!x Ĉik j k!x k & ) ( = Ĉij = " ˆ ij, p + p 4

DNS case: LDR DNS, DR=18% (LDR) Fully-developed channel flow u 2,y 1,x 2h We! = 25, Re! = 395 " =.9, L 2 = 9 We! = "u 2! Re #! = hu! " 5

Reynolds decomposition of conformation tensor ˆB = B + b where b = Time average polymeric stress Function: f ( C kk ) = L2! 3 L 2! C kk! ij, p = " p & # f ( C kk )C ij $ f ( L)% ij ( ) + " p # f ( C + c kk kk )c ij Time average conformation tensor equation f c ij Neglected (see slide) " + #c %! C ij+! ij #u uk $ c i #u - kj + c j ik #x,- k & #x k #x k (. )/ = $ +, f ( C kk )C ij $ f ( L)1 ij + f ( C kk + c kk )c ij. /! "c ij $ "u C ij + uk # c i "u j kj + c ik "x & k % "x k "x k ) ( = # ij, p + p CT ij NLT ij 6

Simplifying assumptions: justification from DNS. -.5 2 times smaller -.1 -.15 -.2 -.25 -.3 c 12 /[L 2 -(C kk +c kk )] C 12 /[L 2 -(C kk )] -.35.1 1 1 1 1 2 y + f ( C kk )C 12 >> f c 12 = f ( C kk + c kk )c 12 = ( L 2! 3) c 12 ( ) L 2! C kk + c kk 7

Polymer stress 15 1 (a) xx component CT NLT M D S= -! p xx xy 1 5 (b) xy component CT NLT M D S = -! p 5-5 -5 6 (c) yy component -1-1 1-1 1 1 1 1 2 4 y + CT NLT M D S= -! p -15 1-1 1 1 1 1 2 y + 2 yy CT(J) aver -2-4 1-1 1 1 1 1 2 y + Housiadas et al (25) Li et al (26) JNNFM 8

Modeling requirements! $ ij, p %c & = #C ij # ij %u uk + c i %u kj + c j ik " p %x ( k %x k %x k ) + M ij NLT ij : originates in Oldroyd derivative not negligible, must be modeled What about: CT ij 1) Reynolds stresses? 2) Turbulent kinetic energy? : originates in advective term, it is negligible no need for modeling DNS: Housiadas et al (25), Li et al (26) JNNFM 3) Dissipation of turbulent kinetic energy or of Reynolds stresses? 9

Transport equation for the Reynolds stresses and k! "u i u j "t "u +!U i u j k = P ij +Q ij +Q V ij + D ij,n + # ij $!% N V ij $!% ij "x k Q V ij =! ( u i " jk, p + u j " ) ik, p!x k! V ij = 1 % " # jk, p & $u i + # ik, p $x k $u j $x k Viscoelastic turbulent transport due to fluctuations polymeric stresses ( ) Viscoelastic work of polymer chains: dissipation of energy plus stored free energy (< ou >)! Dk Dt +!u "U i "k iu k = #!u i # "pu i " 2 k "u +$ s #$ i "u i s + "% ik, p # % ik, p "x k dx i "x i "x i "x i "x k "x k "x k u i "u i "x k ε Ν Q V! V 1

Transport equation of ε Ν "u 2! i " $ # Du i s & "x m "x m % Dt )+ 2! s ( "u i "x m " $ & % "x m #uk "U i "x k "u )+ 2! i " $ # "u u i k s & ( "x m "x m % "x k " #"p& "ui 2 " #" & 2 " #"+ "ui ui "ui +2! s % () 2! s % () 2! ik, p % 2 s "x m "x m $ "x i "x m "x m $ "x k "x m "x m $ "x k ) ( & ( = New term As for Newtonian fluids, the whole equation will be approximated 11

Budget of Reynolds stress.4.3.2.1 (a) uu Budget Pxx Q N xx Q V xx D N xx!xx " N xx " V xx.15.1.5 (c) vv Budget Pyy Q N yy Q V yy D N yy!yy " N yy " V yy -.1 -.5 -.2 -.3.1 1 1 1 y+ -.1.1 1 1 1 y+ - Need to model viscoelastic stress work - Need to model pressure strain (effect of elasticity)- Advanced mod. - Viscoelastic turbulent transport is not so important 12

Viscoelastic work! V " 1 # $ ik, p %u i = & ( p %x k # C f C + c ik mm mm ) ( ) %u i ( ) %u i %x k + c ik f C mm + c mm %x k + -, 35 Assumption: (same reasons) C ik f ( C mm + c mm )!u i < c ik f ( C mm + c mm )!u i!x k!x k 3 C kk 2 c kk 25 2 15 C kk > 2 c kk! V " # p $% f C &u ( mm )c i ik = C &x! V k # p $% f ( C mm ) NLT nn 2 1 5 1 1 1 y + C! V = 1.76 (from DNS- next slide) Needs model 13

Performance of the viscoelastic work model 1 5 (e)! V > Negative sign: different definitions -5-1! ( V + Re " ) 2-15 -2! V (DNS) -1.7f(C kk )NLT kk /2 versus f ( C kk ) NLT ij -25.1 1 1 1 1 2 y + 1 3

Modeling NLT ij 1 Key ideas: 1) Write down exact equation- complex 4 lines long 2) Get inspiration from it: physical insight, trial-and-error, luck 3) Make assumptions 4) Do a priori testing of each term 5) Select appropriate combination and dimensional homogeneity 6) Try in code - under investigation f ( C mm ) NLT ij!!c kj!c kj!c kj u i u m + u i u m " Coef # u i u m!x m!x m!x m $ = function S ij,w ij,c ij," N ij, #u iu j, #C ij, #NLT ij &, M ij,u i u j % #x k #x k #x n ) ( f ( C mm ) NLT ij! #u = f µ1 C k u n #C ij "1 + C u 2 E3 $ C 2 kk u i u j + C & ) 14 u i u k W kn C nj + u j u k W kn C ni + u k u i W jn C nk ( #x n #x k % % ( ), + 15

Model for NLT ij 2 Blue model Red model C E3 =.4;C! 1 = 3;C "14 =.15 C E3 =.35;C! 1 = ;C "14 =.15 3 3 25 2 f(ckk)nltxy f(ckk)nltii Pred f(ckk)nltxy Pred f(ckk)nltii f(ckk)nltyy Pred f(ckk)nltyy 25 2 f(ckk)nltxy f(ckk)nltii Pred f(ckk)nltxy Pred f(ckk)nltii f(ckk)nltyy Pred f(ckk)nltyy 15 15 1 1 5 5-5 -5-1.1 1 1 1 y + 1-1.1 1 1 1 y + 1 f µ1 = ( 1! exp (! y + 26.5) ) 2 16

Viscoelastic turbulent transport Q V! "# ik, pu i = $ p "x k % " & C ik f ( C mm + c mm )u i + c ik f ( C mm + c mm )u i "x k ( ) C kk > f 2 c kk ( Ĉ ) mm = L 2! 3 ( ) L 2! C mm + c mm Weak coupling between c kk and c ij, u i C ik f ( C mm + c mm )u i < c ik f ( C mm + c mm )u i Neglect of this term is irrelevant because non-neglected term is modeled Q V =! p " # #x $% f ( C mm )CU iik & k Needs model General case ( CU ) ijk 17

Model for CU ijk - Same modelling approach as with NLT ij 4 f ( C mm )CU ijk! + % $C = f µ2 "C #1 u i u kj $C m + u j u ik ( m " C # - 7 & $x m $x m )! f C mm, ( ) + ± u 2 C ± u 2 C j ik i jk,-.. / / 3 2 QFii2 Pred QFii2 C!1 =1.3;C!7 =.37 " % f µ2 = 1! exp $! y+ # 26.5 & 1-1 -2 1 1 1 y + 18

Final equations: low Re k-ε type model for channel flow Momentum: d % dy! s & du dy + " # $uv ( p,xy # dp ) dx =! xy, p = " p # f ( C kk )C xy du f ( C kk )C xy =!C yy dy +!NLT xy f ( C kk )C yy =!NLT yy +1 du f ( C kk )C xx = 2!C xy dy +!NLT xx +1 f ( C kk )C zz =!NLT zz +1 f ( C kk ) = L 2! 3 ( ) L 2! C xx + C yy + C zz Reynolds stress: du!"uv = "# T with dy! = C f T µ µ k 2!" N 19

k and ε transport equations = d + % dy! + "# ( T s dk. d + - + P k 1 "!2 N 1 "D +! p -,& $ k ) dy/ dy, f ( C mm ) 3 CU nny 2 " d k %! N =! N + D N D N = 2! s $ # dy & ( ). / 1! f C mm p 3 2 NLT nn 2 = d,& dy! + "# T.( s - $ % ) + d!% N dy /!% N 1+ " f 1 C %1 k P k " 2 " f C % N 2 2 % 2 k + "E + E 3 p E =! s " # T 1$ f µ % ( ) d 2 U & dy 2 ( ) 2 f 1 = 1 f 2 = 1!.3exp ( 2!R ) T ( " % + f µ = 1! exp $!y+ - ) # 26.5 &, 2 based on Newtonian model of Nagano & Hishida (1984) 2

Some results 1: Re τ = 395; We τ = 25; β=.9, L 2 =9 3 u + 25 2 Virk s asymptote X DNS Black: Newtonian! =! s +! p! =! wall! =! wall ;same!q;re " = 443 15 1 5 Newtonian log law FENE-P simulations C!1 = 1.3;C! 7 =.37;C "14 = 1.5 # 1 $4 C! V = 1.76 With! p C E 3 = 1.93 " 1 #4.1 1 1 1 y + Without! p C E 3 = 2.86 " 1 #4 21

Some results 2: Re τ = 395; We τ = 25; β=.9, L 2 =9 5 k + k + uv + 1 uv + 4.8 3.6 2.4 1.2.1 1 1 1 y +.2.4.6.8 y 1 22

Some results 3: Re τ = 395; We τ = 25; β=.9, L 2 =9 25 NLT ii 2 NLT ii 35 NLT xy 3 NLT xy 15 25 1 2 15 5 1 5-5.1 1 1 1 y +.1 1 1 1 y + 23

Some results 4: Re τ = 395; We τ = 25; β=.9, L 2 =9 NLT xx NLT yy 15 5 NLT xx NLT yy 1 4 5 3 2-5 1-1.1 1 1 1 y +.1 1 1 1 y + 24

Some results 5: Re τ = 395; We τ = 25; β=.9, L 2 =9 C xy C yy 25 C xy C yy -1 2-2 15-3 1-4 5-5.1 1 1 1 y +.1 1 1 1 y + 25

Some results 6: Re τ = 395; We τ = 25; β=.9, L 2 =9 5 C xx 1 Stresses + C xx 4 Stresses +.8 -uv + +! p,xy +! s,xy SUMSTRESS+ 3.6 2.4 1.2.1 1 1 1 du f ( C kk )C xx = 2!C xy dy +!NLT +1 xx y + -1 -.8 -.6 -.4 -.2 y 26

Some results 7: Re τ = 395; We τ = 25; β=.9, L 2 =9 8 + CU iiy CU ii2 + 6 4 2-2 -4.1 1 1 1 y + 27

Conclusions - Developed simplified k-ε model: code and closures are working - Viscoelastic stress power well modeled by NLT ij - Viscoelastic turbulent transport (CU ijk ) is not that relevant at 18% - NLT ij is also required for C ij -Closure for NLT ij has deficiencies and needs significant improvement - Excessive dissipation of turbulence - Need to model viscoelastic turbulence production close to wall - Isotropic turbulence does not allow a good model - Need to consider anisotropic turbulence: anisotr. k-ε and RSM - Closure for CU ijk is fair but also needs improvement: small impact 28