Symmetry-protected topological phases of alkaline-earth ultra-cold fermionic atoms in one dimension

Similar documents
Topological phases of SU(N) spin chains and their realization in ultra-cold atom gases

Chiral Haldane-SPT phases of SU(N) quantum spin chains in the adjoint representation

Symmetry protected topological phases in quantum spin systems

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling

Classification of Symmetry Protected Topological Phases in Interacting Systems

Topological Phases in One Dimension

Haldane phase and magnetic end-states in 1D topological Kondo insulators. Alejandro M. Lobos Instituto de Fisica Rosario (IFIR) - CONICET- Argentina

Quantum many-body systems and tensor networks: simulation methods and applications

Cenke Xu. Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem 许岑珂

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

3 Symmetry Protected Topological Phase

Valence Bonds in Random Quantum Magnets

SU(N) magnets: from a theoretical abstraction to reality

Symmetry Protected Topological Phases of Matter

SU(N) Magnetism with Cold Atoms and Chiral Spin Liquids

Structure and Topology of Band Structures in the 1651 Magnetic Space Groups

Emergent SU(4) symmetry and quantum spin-orbital liquid in 3 α-zrcl3

Chiral spin liquids. Bela Bauer

Frustration-free Ground States of Quantum Spin Systems 1

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

Stability of semi-metals : (partial) classification of semi-metals

Gapless Spin Liquids in Two Dimensions

Frustration-free Ground States of Quantum Spin Systems 1

Spin liquids on ladders and in 2d

Bosonic Symmetry Protected Topological States: Theory, Numerics, And Experimental Platform. Zhen Bi University of California, Santa Barbara

Quantum Entanglement in Exactly Solvable Models

Matrix product states for the fractional quantum Hall effect

Frustration without competition: the SU(N) model of quantum permutations on a lattice

Quantum Phase Transitions

Quantum spin systems - models and computational methods

Quantum Convolutional Neural Networks

Nonlinear Sigma Model(NLSM) and its Topological Terms

Fermionic topological quantum states as tensor networks

Generalized Lieb-Schultz-Mattis theorems from the SPT perspective Chao-Ming Jian

Topological Obstructions to Band Insulator Behavior in Non-symmorphic Crystals

SPT: a window into highly entangled phases

Conformal Field Theory of Composite Fermions in the QHE

Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices

Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN. Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France

Quantum Choreography: Exotica inside Crystals

Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo

Design and realization of exotic quantum phases in atomic gases

Braid Group, Gauge Invariance and Topological Order

Dimerized & frustrated spin chains. Application to copper-germanate

Topology and many-body physics in synthetic lattices

Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Magnets, 1D quantum system, and quantum Phase transitions

Integer quantum Hall effect for bosons: A physical realization

Intoduction to topological order and topologial quantum computation. Arnau Riera, Grup QIC, Dept. ECM, UB 16 de maig de 2009

Quantum Spin-Metals in Weak Mott Insulators

5 Topological insulator with time-reversal symmetry

Nematic quantum paramagnet in spin-1 square lattice models

(Effective) Field Theory and Emergence in Condensed Matter

Symmetric Surfaces of Topological Superconductor

Understanding Topological Order with PEPS. David Pérez-García Autrans Summer School 2016

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

4 Matrix product states

Unusual ordered phases of magnetized frustrated antiferromagnets

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Deconfined Quantum Critical Points

Quantum correlations and entanglement in far-from-equilibrium spin systems

Strongly correlated Cooper pair insulators and superfluids

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h.

The uses of Instantons for classifying Topological Phases

Universal phase transitions in Topological lattice models

Fermionic tensor networks

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Golden chain of strongly interacting Rydberg atoms

First Program & Quantum Cybernetics

Symmetry Protected Topological Phases

Spin liquid phases in strongly correlated lattice models

arxiv: v3 [hep-th] 27 Apr 2013

Phases of strongly-interacting bosons on a two-leg ladder

Bose-Hubbard model with random and Fibonacci potentials

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005.

Tensor network simulations of strongly correlated quantum systems

Lecture 2: Deconfined quantum criticality

Topological Defects inside a Topological Band Insulator

Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions. Leonardo Fallani

arxiv: v1 [cond-mat.str-el] 6 May 2010

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato

Introduction to Recent Developments on p-band Physics in Optical Lattices

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Spinon magnetic resonance. Oleg Starykh, University of Utah

Vacuum degeneracy of chiral spin states in compactified. space. X.G. Wen

Topological Insulators

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Nematicity and quantum paramagnetism in FeSe

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato

Detecting signatures of topological order from microscopic Hamiltonians

Neural Network Representation of Tensor Network and Chiral States

Floquet Topological Insulators and Majorana Modes

Introductory lecture on topological insulators. Reza Asgari

Transcription:

June 14, 2013 talk @ EQPCM (ISSP) Symmetry-protected topological phases of alkaline-earth ultra-cold fermionic atoms in one dimension Keisuke Totsuka Yukawa Institute for Theoretical Physics, Kyoto University 1. Introduction 2. Symmetry-protected topological order in 1D 3. Alkaline-earth cold atom & SU(N) Hubbard model 4. SU(N) symmetry-protected topological phase 5. Summary Ref: Nonne et al. Phys.Rev.B 82, 155134 (2010) Euro.Phys.Lett. 102, 37008 (2013), and work in progress

Collaborators Sylvain Capponi (IRSAMC, Univ. Toulouse) Marion Moliner (LPTM, Univ. Cergy-Pontoise) Philippe Lecheminant (LPTM, Univ. Cergy-Pontoise) Héroïse Nonne (U-Cergy Dept. Phys. Technion)

Symmetry and Phase Transitions Landau picture of phase transitions (from L.L. vol. 5) 1.... the transition between phases of different symmetry... cannot occur in a continuous manner 2.... in a phase transition of the second kind... the symmetry of one phase is higher than that of the other.. phase transitions: spontaneous breaking of symmetry G (original) H (subgroup) ex) G=SO(3), H=SO(2) for (collinear) magnetic order Order Parameters classification in terms of SSB patterns of G

Challenges from quantum systems fractional quantum-hall systems Laughlin wave function... ψm (ν=1/m) describes featureless uniform ground states, no symmetry breaking (locally) Nevertheless, different phases for different m quantum spin liquids (Z2/chiral-SL, quantum dimer,...) no magnetic LRO, no translation SSB,... global (topological) properties (e.g. γtop) ( boring paramagnet) 1983-- 1987-- a new paradigm?? topological order (Wen 89) the new holy bible

(1+1)D Topological Order in 1D Q-information tells us: any gapped states can be approximated by MPS only short-range entanglement in 1D (i.e. γtop=0) Hastings 07 Verstraete et al. 05 can be smoothly deformed to trivial product state No (genuine) topological order in 1D!! but... still possible to define featureless topological phases protected by some symmetry symmetry-protected topological (SPT) order Gu-Wen 09, Chen et al. 11 protecting sym. trivial phase trivial phase topological

Topological Order in 1D Phases-I... long-range entanglement (LRE): genuine topological phases in (2+1)D, (3+1)D w/ symmetries, possible to have topological order + SSB ( symmetry-enriched etc.) Phases-II... short-range entanglement (SRE) wo/ symmetries, only a single trivial product state w/ protecting symmetries, various topological phases

Topological Order in 1D Paradigmatic example: Haldane phase 1D integer-s spin chain featureless non-magnetic state w/ exponentially-decaying cor. existence of edge states (cf. ESR) Haldane 83, Affleck et al. 88 Miyashita -Yamamoto 93 Non-local (string) order parameters: Z2 Z2 symmetry relation to SPT order Kennedy-Tasaki 92 Pollmann-Turner 12, Hasebe-KT 13 O z string O x string " D Xj 1 lim Si z exp i i j %1 k=i " D jx lim Si x exp i i j %1 S z k k=i+1 # S x k S z j # E S x j E.

Topological Order in 1D Matrix-Product States (MPS): p 0ii 2 1ii p2 1ii 0i i : S=1 VBS convenient rep. for generic gapped states in 1D (w/ SRE) physical state existence of edge states (α,β) featureless in the bulk special structure ( edge states ) localized at boundaries cf. FQHE, topological insulators bulk Kintaro Ame

Topological Order in 1D edge states & symmetry fractionalization : symmetry operation on MPS : Perez-Garcia et al. 08 edge states = obey projective representation classifying topological phases = classifying possible edge states V does not necessarily follow group-multiplication rule: V (g 1 )V (g 2 )=!(g 1,g 2 )V (g 1 g 2 ) catalogue of gapped symmetry-protected topological phases in 1D (in terms of proj. rep.) symmetry fractionalizes Pollmann et al. 10, 12 Chen-Gu-Wen 11, Schuch et al. 11

Topological Order in 1D Motivation... Given a protecting symmetry zoo of symmetry-protected topological (SPT) phases Realization of topological phases existence of (many) symmetry-breaking perturbations in real systems (fine-tuning necessary to have high sym.) SPT phases protected by high symmetry unlikely?? How to realize SPT phases in realistic systems??

Alkaline-earth cold atoms... a realistic system bearing SPT phases alkaline-earth atoms: two electrons in the outer shell 1 S0 (G.S.) 3 P0 forbidden J=0 for both G.S. (1 S0) and (metastable) excited state ( 3 P0) decoupling of nuclear spin I from electronic states I-independent scattering length SU(N) (N=2I+1) symmetry (to a very good approx.) Gorshkov et al 10 171 Yb (I=1/2, SU(2)), 173 Yb (I=5/2, SU(6)), 87 Sr (I=9/2, SU(10)),... Takahashi group 10-12 DeSalvo et al. 10

Alkaline-earth cold atoms... a realistic system bearing SPT phases alkaline-earth atoms: two electrons in the outer shell 1 S0 (G.S.) 3 P0 p-band model... another way of introducing 2-orbitals 1D optical lattice confinement in (xy) not too strong fill s-band only z // chain Kobayashi et al. 12

Alkaline-earth cold atoms... Mott insulating phase (expt.) alkaline-earth atoms ( 173 Yb, I=5/2): SU(6) Mott phase optical lattice, large-u: Mott phase (w/ n=1) charge gap, doublon, compressibility But... still in high-t region (i.e. SU(N) paramagnet) Taie et al. 12

2-orbital SU(N) Hubbard model ingredients charge... a minimal model nuclear-spin multiplet (I z = I,...,+I, N=2I+1, α=1,...,n) orbitals: ground state g, excited state e (m=1,2) cf. 2-orbitals px, py in p-band model Hubbard-like Hamiltonian: Gorshkov et al 10 Nonne-Moliner-Capponi-Lecheminant-KT 13 H G = t X i,m + V G X c m,i c m, i c m, i+1 +h.c. n g, i n e, i + V e-g ex i Coulomb between g - e X i, Machida et al. 12 X µ G n i + X i i c g, i c e, i c g, ic e, i e - g exchange X m=e,g U G 2 n m, i(n m, i 1) : creation op. for orbital =m, nuclear-spin=α Hubbard-like int. within e & g generic symmetry: U(1) c SU(N) s U(1) o

SU(N) Hubbard model... simpler case quench e -orbital (single-band) SU(N) Hubbard insulating phases: 1/N-filling: MIT@U=Uc charge: gapped, SU(N)-spin : gapless Lieb-Wu 68, Assaraf et al. 99 Manmana et al. 11 charge: gap, spin : critical TLL charge: gap, spin : critical Uc=0 N=2 Uc>0 N >2 (BKT) deep inside Mott phase: SU(N)-Heisenberg (typically, U /t >11) Sutherland 75, Affleck 88 Manmana et al. 11 for other commensurate fillings... f=p/q?? Sutherland 75 Affleck 88 Assaraf et al. 99

SU(N) Hubbard model... simpler case single-band SU(N) Hubbard For other commensurate fillings... f=p/q q > N: gapless charge/ spin, C1S(N-1) (c=n) critical phase Szirmai et al. 05, 08 q < N: full gap (C0S0), spatially non-uniform insulating phase No featureless fully-gapped phase possible to have fully-gapped uniform states?? SU(5) Hubbard@comm.fillings Szirmai et al. 05, 08 in realistic interacting models...

Phases of 2-orbital SU(N) Hubbard plan of attack: 2-orbital ( g & e ), SU(N)-fermion, @half-filling Maximal filling: 2N fermions/site (2N boxes) ex) half-filling = N fermions/site (N boxes out of 2N) Mathods: 1. weak-coupling (RG + duality) low-energy field theory: 4N Majorana fermions (+ int.) 2. strong-coupling (approach from Mott sides) effective spin/orbital models 3. numerical DMRG

Phases of 2-orbital SU(N) Hubbard... N=2, half-filling 4 Mott phases wo/ G.S. degeneracy: spin-haldane orbital- g orbital- e Sspin=1 rung-singlet orbital large-d charge-haldane orbital-haldane Sorb=1 charge orbital spin (a) spin-haldane gapped local singlet spin-1 Haldane (b) rung-singlet gapped Tz=0 (large-d) local singlet (c) charge-haldane gapped singlet/triplet local singlet (d) orbital-haldane gapped spin-1 Haldane local singlet Kobayashi et al. 12 Della Torre et al. 06 Nonne et al. 10

Phases of 2-orbital SU(N) Hubbard... N=2, half-filling (weak-coupling) 4 Mott phases + 3 phases w/ degenerate G.S.: CDW (2kF) spin-haldane Sspin=1 ( RT ) rung-singlet orbital large-d ( RS ) degenerate ODW (2kF) non-degenerate, Mott-like charge-haldane ( HC ) orbital-haldane Sorb=1 ( HO ) weak-coupling phase diag. Nonne et al. 10 V ex = 0.03t V ex =0.01t

Phases of 2-orbital SU(N) Hubbard... N=2, half-filling (numerical) 4 Mott phases + 3 insulating phases w/ degenerate G.S.: weak-coupling phase diag. V ex = 0.03t V ex =0.01t DMRG Nonne et al. 10 V ex = t V ex = t

2-orbital SU(N) (N>2) Hubbard... half-filling weak-coupling: (very) complicated, but still doable... g 1 = N 4 g2 1 + N 8 g2 2 + N 16 g2 3 + N +2 4 g2 7 + N 2 2 g2 8 + N 2 4 g2 9 g 2 = N 2 g 1g 2 + N 2 4 4N g 2g 3 + 1 2 g 3g 4 + 1 2 g 2g 5 + N g 7g 8 + N 2 g 3 = N 2 g 1g 3 + N 2 4 4 N g2 2 + 1 g 2g 4 + N g 7g 9 + N 2 g8 2 g 4 = 1 2 g 4g 5 + N 2 1 2 N 2 g 2(N 1) 2g 3 + g 8 g 9 N g 5 = N 2 1 2 N 2 g2 2 + 1 2 g2 4 + 2(N 1) g8 2 N g 6 = N +1 4 N g2 7 + N 1 2 N g2 8 + N 1 4N g2 9 g 7 = N 2 + N 2 2N g 8 = N +1 g 9 = N +1 g 1 g 7 + 2 g 6g 7 + N 1 4 g 3g 9 + N 1 2 g 2g 8 4 g 2g 7 + N 2 N 2 4N 4 g 3g 7 + 2 g 6g 9 + N 2 N 2 2N g 8 g 9 g 2 g 9 + 2 g 6g 8 + N 2 N 2 g 1 g 8 + 1 2N 2 g 5g 8 + 1 g 1 g 9 + 1 g 4g 8 + N 2 N 2 g 2 g 8 2N RG-flow pattern different from N=2 SP 2kF-CDW orbital-heisenberg (S=N/2) regardless of N 2 g 4g 9 + N 2 N 2 g 3 g 8 4N Nonne et al. 13

2-orbital SU(N) (N>2) Hubbard... half-filling (very) schematic phase diagram for N=even: 2X NX H H = c m, i c m, i+1 +h.c. n i + U X 2 t X i + J X i m=1 =1 X (Ti x ) 2 +(T y i )2 + J z (Ti z ) 2, i µ X i i n 2 i J = V e-g ex, J z = U G V G, U = U G + V G 2, µ = U G + Vex e-g 2 spin-peierls (SP) CDW orbital T=N/2 SU(2) HAF SU(N) HAF SU(N) Heisenberg (N=even) + µ G Nonne et al. 13 magic line J/t U/t pseudo-spin=n/2 Heisenberg

2-orbital SU(N) (N>2) Hubbard Magic line : N=even... SU(4) SPT phase (new!) J z = J, J= 2NU N +2 strong-coupling effective Hamiltonian: H e = NX 2 1 A=1 S A i S A i+1 generalize AKLT-idea: ex) SU(4) VBS parent Hamiltonian: H VBS = J s X i N/2 rows, 2 columns Nonne et al. 13 N=2 N=4 S A i S A i+1 + 13 108 (SA i S A i+1) 2 + 1 216 (SA i S A i+1) 3 N=6 N=4 hs A (j)s A (j + n)i = ( 12 5 1 5 n n 6= 0 4 5 n =0 NB) consistent w/ DMRG sim. N=6 Nonne et al. 13

SU(4) VBS 2-orbital SU(N) (N>2) Hubbard... SU(4) SPT phase (new!) H VBS = J s X 6-fold degenerate edge states one of N(=4) SPT phases (protected by SU(N)) i S A i S A i+1 + 13 108 (SA i S A i+1) 2 + 1 216 (SA i S A i+1) 3 Duivenvoorden-Quella 12, 13 When U, QPT out to ( spin -orbital entangled) SP phase (univ. class SU(N)2) N=4 (DMRG, L=36) N=4 QPT: top SP N=6 edge states (nα) Nonne et al. 13

Comparison: N=3 and N=4 cases... numerics (DMRG) 20 10 drastic difference between N=odd / even (preliminary) DMRG results: L=36 sites order parameter & edge states N=3 phase diag. based on L=36 DMRG (Nf=3*L) J CDW SP critical J=6U/5 cf. Nonne et al. 13 15 10 2kF-CDW SU(4) topological 5 J 0-10 U J/t 0-5 CDW SP HO topo J=4U/3 S=3/2 Heisenberg (gapless) -20-6 -4-2 0 2 4 6 U -10-6 -4-2 0 2 4 6 U/t N=3 N=4 3 phases (2 gapped, 1 gapless) SU(4)-topSP QPT orbital-haldane

Summary Symmetry-protected topological order in 1D SU(N) Hubbard model with 2-orbitals (N=2I+1) alkalline-earth Fermi gas in optical lattice (@half-filling) phase diagram depends on N=even / odd symmetry-protected topological phases for N=even (I=1/2,3/2,..) stable topological phases for N/2=odd, i.e. I=1/2 ( 171 Yb), 5/2 ( 173 Yb), 9/2 ( 87 Sr),... Mott core Outlook: Effects of trap (SPT phase & Mott core)? quantum-optical detection of topological order?? Kobayashi et al. 12 higher-d???