Identification and Quantitation of Pesticides in Chamomile and Ginger Extracts Using an Agilent 6460 Triple Quadrupole LC/MS system with Triggered MRM

Similar documents
Rapid Screening and Confirmation of Melamine Residues in Milk and Its Products by Liquid Chromatography Tandem Mass Spectrometry

Macrolides in Honey Using Agilent Bond Elut Plexa SPE, Poroshell 120, and LC/MS/MS

Analytical determination of testosterone in human serum using an Agilent Ultivo Triple Quadrupole LC/MS

Agilent 6460 Triple Quadrupole LC/MS System with an Agilent 1290 Infinity LC For Multi-Plant Growth Regulator Analysis in Grapes

Determination of pesticides in baby food by UHPLC/MS/MS using the Agilent 1290 Infinity LC system and the Agilent 6460 triple quadrupole LC/MS

Maximizing Triple Quadrupole Mass Spectrometry Productivity with the Agilent StreamSelect LC/MS System

Sensitive Femtogram Determination of Aflatoxins B 1 , B 2 , G 1. and G 2. in Food Matrices using Triple Quadrupole LC/MS. Authors.

Determination of Hormones in Drinking Water by LC/MS/MS Using an Agilent InfinityLab Poroshell HPH Column (EPA 539)

LC/MS/MS qua ntitation of β-estradiol 17-acetate using an Agilent 6460 Triple Quadrupole LC/MS working in ESI negative ion mode

High Sensitivity HPLC Analysis of Perchlorate in Tap Water Using an Agilent 6460 Triple Quadrupole LC/MS System

New Dynamic MRM Mode Improves Data Quality and Triple Quad Quantification in Complex Analyses

Analysis of Low-Calorie Sweeteners by Liquid Chromatography-Tandem Mass Spectrometry

Screening and Quantitation of 240 Pesticides in Difficult Food Matrixes Using the Agilent 6545 Q-TOF LC/MS System

Aminoglycosides in Milk Using Agilent Bond Elut Plexa SPE, Agilent Poroshell 120, and LC/Tandem MS

Determination of Beta-Blockers in Urine Using Supercritical Fluid Chromatography and Mass Spectrometry

Applying MRM Spectrum Mode and Library Searching for Enhanced Reporting Confidence in Routine Pesticide Residue Analysis

Using UHPLC-Triple Quadrupole MS/MS to Detect the Presence of Bark Extract and Yohimbine Adulteration in Dietary Supplements and Botanicals

Application Note. Abstract. Authors. Environmental

Analysis of Stachydrine in Leonurus japonicus Using an Agilent ZORBAX RRHD HILIC Plus Column with LC/ELSD and LC/MS/MS

The Quantitation and Identification of Coccidiostats in Food by LC-MS/MS using the AB SCIEX 4000 Q TRAP System

Rapid method development to study plasma stability of diverse pharmaceutical compounds using Rapid Resolution LC and triple quadrupole MS

LC/MS/MS of Fungicides and Metabolites in Orange Juice with Agilent Bond Elut Plexa and Poroshell 120

LC/MS/MS of Fungicides and Metabolites in Apple Juice with Agilent Bond Elut Plexa and Poroshell 120

Determination of Chlorinated Acid Herbicides in Soil by LC/MS/MS Application Note

Rapid and Accurate Forensics Analysis using High Resolution All Ions MS/MS

Highly Sensitive and Rugged GC/MS/MS Tool

Rapid Pesticide Screening and Identification Using the High Resolution All Ions MS/MS Technique

MS n Analysis With Fast Polarity Switching in the Agilent 1100 Series LC/MSD Trap SL. Application Note. Christine Miller Agilent Technologies

Accurate Mass Analysis of Hydraulic Fracturing Waters: Identification of Polyethylene Glycol Surfactants by LC/Q-TOF-MS

Multi-residue analysis of pesticides by GC-HRMS

Routine Multiresidue Pesticide Analysis using the Agilent 6470 Triple Quadrupole Mass Spectrometer

All Ions MS/MS: Targeted Screening and Quantitation Using Agilent TOF and Q-TOF LC/MS Systems

High-Throughput Protein Quantitation Using Multiple Reaction Monitoring

EPA Method 535: Detection of Degradates of Chloroacetanilides and other Acetamide Herbicides in Water by LC/MS/MS

Validation Report 18

Plasma Metanephrines and 3-Methoxytyramine by LC/MS/MS Using Agilent SimpliQ WCX SPE, 1290 Infi nity LC, and 6460 Triple Quadrupole LC/MS

Separation of Enantiomers of Amphetamine-Related Drugs and Their Structural Isomers

Extraction of Aflatoxins and Ochratoxin from Dried Chili Using ISOLUTE. Myco Prior to LC-MS/MS Analysis

Anaylsis of Pesticide Residues in Rice Using Agilent Bond Elut QuEChERS AOAC Kit by LC-MS/MS Detection

EPA Method 535: Detection of Degradates of Chloroacetanilides and other Acetamide Herbicides in Water by LC/MS/MS

László Tölgyesi LC/MS scientist EFSC Demo Group. International Symposium on Food Safety and Quality: Applications of Nuclear and Related Techniques

Identification and Quantitation of PCB Aroclor Mixtures in a Single Run Using the Agilent 7000B Triple Quadrupole GC/MS

SAMHSA-Compliant LC/MS/MS Analysis of Phencyclidine in Urine with Agilent Bond Elut Plexa PCX and Agilent Poroshell 120

Determination of Pesticide Residues in Oats by Automated. QuEChERS and LC/QQQ. Application Note. Abstract. Introduction

Multi-residue analysis of pesticides in crude food extracts using a simple extraction technique and LC/MS/MS

Quantitative Analysis of Water-Soluble B-Vitamins in Cereal Using Rapid Resolution LC/MS/MS. Application. Authors. Abstract.

LC/Q-TOF Workflows for Comprehensive Micropollutant Analysis

Using TOF for Screening and Quantitation of Sudan Red Colorants in Food Application

Agilent 6495 Triple Quadrupole LC/MS System EXPERIENCE A NEW LEVEL OF CONFIDENCE

Determination of Pharmaceuticals in Water by SPE and LC/MS/MS in Both Positive and Negative Ion Modes Application

Application Note. Author. Abstract. Food Testing & Agriculture. Edgar Naegele Agilent Technologies, Inc. Waldbronn, Germany

The Analysis of Fluoroquinolones in Beef Kidney Using HPLC Electrospray Mass Spectrometry Application

Liquid Chromatography Mass Spectrometry. Shimadzu Corporation, UK; 2 Phytocontrol, France; 3 Shimadzu France, France. Trimesium S + CH 3 ETU

LC/MS/MS Analysis of Pesticide Residues in Apples Using Agilent Chem Elut Cartridges

PesticideScreener. Innovation with Integrity. Comprehensive Pesticide Screening and Quantitation UHR-TOF MS

Application Note. Author. Abstract. Food Safety. Syed Salman Lateef Agilent Technologies, Inc. Bangalore, India

Analysis of Biomarkers in Crude Oil Using the Agilent 7200 GC/Q-TOF

Fast and Reliable Method for the Analysis of Methylmalonic Acid from Human Plasma

Pesticides Analysis Using the Agilent 5977A Series GC/MSD

Accelerating the Metabolite Identification Process Using High Resolution Q-TOF Data and Mass-MetaSite Software

Signal, Noise, and Detection Limits in Mass Spectrometry

Quantification of growth promoters olaquindox and carbadox in animal feedstuff with the Agilent 1260 Infinity Binary LC system with UV detection

Accurate Mass Measurement for Intact Proteins using ESI-oa-TOF. Application Note. Donghui Yi and Christine Miller Agilent Technologies

Quantitation of Ethyl Glucuronide and Ethyl Sulfate in Urine using LC-MS/MS

Agilent ESI and APCI sources: for polar to non-polar compounds

Increasing Speed of UHPLC-MS Analysis Using Single-stage Orbitrap Mass Spectrometer

Highly sensitive quantitative estimation of genotoxic impurities from API and drug formulation using LC/MS/MS

Simultaneous analysis for forensic drugs in human blood and urine using ultra-high speed LC-MS/MS


Taking Full Advantage of UHPLC with Agilent 6460A Triple Quadrupole MS. Outline

Quantitation of Cystine and Identification of Related Metabolites in White Blood Cells Using a High Resolution Accurate Mass LC/MS Approach

Agilent s New Weak Anion Exchange (WAX) Solid Phase Extraction Cartridges: SampliQ WAX

Application Note. Gas Chromatography/Mass Spectrometry/Food Safety. Abstract. Authors

Sensitive and Repeatable Analysis of Pesticides in QuEChERS Extracts with APGC-MS/MS

Agilent 6400 Series Triple Quadrupole Users Workshop. MH QQQ Users workshop 2/21/2014 1

Yun W. Alelyunas, Mark D. Wrona, Russell J. Mortishire-Smith, Nick Tomczyk, and Paul D. Rainville Waters Corporation, Milford, MA, USA INTRODUCTION

Quantitative Analysis of EtG and EtS in Urine Using FASt ETG and LC-MS/MS

Quantitative Analysis of EtG and EtS in Urine Using FASt ETG and LC-MS/MS

Agilent 1200 Infinity Series HDR DAD Impurity Analyzer System for the Quantification of Trace Level of Genotoxic Impurity

Supporting Information

OF ANALYSIS FOR DETERMINATION OF PESTICIDES RESIDUES IN FOOD (CX/PR 15/47/10) European Union Competence European Union Vote

Analysis of Cannabinoids and Amphetamines in Serum by RRLC/Triple Quadrupole Mass Spectrometry Using a Multimode Ion Source. Application.

Sensitive Detection of 2-MIB and Geosmin in Drinking Water

Ultrafast Analysis of Methadone and Metabolite EDDP in Urine by the Agilent RapidFire High-Throughput Mass Spectrometry System

Analysis of Illegal Dyes in Food Matrices using Automated Online Sample Preparation with LC/MS

Accurate Mass Analysis of Hydraulic Fracturing Waters

DETERMINATION OF PESTICIDES IN FOOD USING UPLC WITH POLARITY SWITCHING TANDEM QUADRUPOLE LC/MS/MS

Extraction of Methylmalonic Acid from Serum Using ISOLUTE. SAX Prior to LC-MS/MS Analysis

Improved Screening for 250 Pesticides in Matrix using a LC-Triple Quadrupole Mass Spectrometer

Application Note. Abstract. Authors. Food Safety and Environmental

High-Resolution Sampling 2D-LC for Pharmaceutical Impurity Analysis

Amphetamines, Phentermine, and Designer Stimulant Quantitation Using an Agilent 6430 LC/MS/MS

Application Note. David A. Weil Zoltan Timar Michael Zumwalt Edgar Naegele. Abstract

Ultrafast Analysis of Buprenorphine and Norbuprenorphine in Urine Using the Agilent RapidFire High-Throughput Mass Spectrometry System

Determination of Total Volatile Organic Compounds in Indoor Air Using Agilent 7667A mini TD and 7820A GC

Highly sensitive and rapid analysis of synthetic dyes in sea food by LC/MS/MS

AB SCIEX SelexION Technology Used to Improve Mass Spectral Library Searching Scores by Removal of Isobaric Interferences

Application Note. Edgar Naegele. Abstract

Fully automated QuEChERS clean-up and LC/MS-QQQ analysis of pesticides in fruits and vegetables.

MassHunter TOF/QTOF Users Meeting

Transcription:

Identification and Quantitation of Pesticides in Chamomile and Ginger Extracts Using an Agilent 646 Triple Quadrupole LC/MS system with Triggered MRM Application Note Authors Thomas Glauner Agilent Technologies, Inc. Waldbronn, BW Germany Tiffany Payne Agilent Technologies, Inc. Santa Clara, CA USA Guenther Kempe, Stefan Kittlaus, Daniela Goermer State Laboratory for Health and Veterinary Affairs Saxonia, Pesticide Department Dresden, Germany Abstract This application note describes the use of triggered MRM (tmrm) for the analysis of pesticide residues applied to chamomile and ginger extracts. The analysis is performed using the Agilent 9 LC system coupled to a 646 Triple Quadrupole LC/MS with tmrm acquisition. Two examples of false positive identifi cations were explored: tebuthiuron in chamomile and tebufenpyrad in ginger. Both compounds were quantitated and confi rmed with library matching in a single analytical run. False positive identifi cation was avoided by using library matching and tmrm acquisition.

Introduction Modern multiresidue methods for pesticide analysis typically cover hundreds of compounds of different chemical classes. This same method is also typically applied to different matrices. Commonly, this type of analysis is performed using a fast scanning instrument usually a triple quadrupole which is set up to acquire two MRM transitions (one quantitative and one confirmatory transition) for each of the chosen analytes. In Europe, the analysis of pesticides in food products is based on commission regulation (EC) No 96/5 and its annexes which specify the maximum residue limits for pesticides in different products. As of March, 8 there are maximum residue limits (MRLs) defined for more than 7, matrixpesticide combinations by the European Union. Guideline SANCO/684/9 sets criteria for method validation and quality control procedures for pesticide residue analysis in food and feed. For LC/MS triple quadrupole analysis, the identification criteria include retention time, m/z value, and abundance data. In addition, the retention time of the analytes must not vary beyond.5 %. Multiple reaction monitoring with or more product ions and a constant ion ratio have specified tolerances of ± % to 5 % depending on their relative intensity to the base peak. In this application note, 5 pesticides were analyzed using tmrm acquisition with an Agilent 646 triple quadrupole LC/MS. We examined two pesticides in particular for which there have been reports of false positives in the past: tebuthiuron (a broad spectrum herbicide recently reported for a chamomile sample), and tebufenpyrad (a pyrazole acaricide and insecticide reported falsely for ginger). These two pesticides exemplify two common analytical scenarios under the applied method conditions. Tebuthiuron is well resolved from the neighboring endogenous matrix interference showing both primary MRM transitions in a similar ratio. Tebufenpyrad co-elutes with an endogenous ginger compound which shares the same primary MRM transitions. For both analytes in a conventional MRM analysis, the endogenous compounds in the matrix may result in a false positive result. However, tmrm analysis was able to differentiate the endogenous compound in ginger from tebufenpyrad contamination using eight additional product ions for the observed contaminant to perform library confirmation. In addition to the retention time for tebuthiuron, which can be influenced by the sample matrix, tmrm analysis allowed the unambiguous identification of tebuthiuron offering an enhanced level of confirmation. The power of tmrm acquistion comes from its ability to provide quantitative and qualitative data in a single analytical injection. The tmrm analysis starts with a MRM scan of the designated primary MRM transitions for each compound, covering a range of possible target analytes. When the signal for a given primary transition reaches a userdefined threshold, the secondary transitions are triggered automatically. Each compound is allowed a total of MRM transitions in tmrm mode. These transitions include the primary and secondary MRM transitions in any combination (one primary and nine secondary MRMs, two primary and eight secondary, etc). This type of acquisition maximizes the dwell time for all possible target analytes in the primary MRM screening phase, and then acquires sufficient MRM data for the detected analytes to compose a product ion spectrum. The generated product ion spectra can be used for library searching, so that at the end of the tmrm analysis rigorous quantitative data and a product ion spectrum with the accompanying confirmatory library match are acquired. By applying the optimized collision energy and dwell time for each product ion, tmrm is significantly more sensitive than conventional product ion scanning.

Experimental Sample Preparation Samples have been prepared according to 64 LFGB QuEChERS without modifi cation. Ten g of homogenized ginger sample were extracted with ml of acetonitrile. For the chamomile extract, the sample amount was reduced to g and samples were diluted with ml water before extraction. MgSO 4, NaCl, and sodium citrate were added and then centrifuged for 5 min at rpm. Clean up was performed by dispersive SPE. Six ml of the supernatant was transferred to a d-spe tube with 9 mg MgSO 4 and 5 mg PSA. For the chamomile sample, 45 mg of graphitized carbon black was also added. After centrifugation, 5 ml of the supernatant were stabilized with 5 µl of 5 % formic acid in acetonitrile. LC/MS Analysis Instrumentation The Agilent 9 Infinity LC system is coupled to an Agilent 646 triple quadrupole LC/MS (Figure ). LC Conditions Table shows the LC parameters used for analysis of pesticides in ginger and chamomile extracts using tmrm acquisition. MS Conditions Table shows the MS parameters used for the analysis. Figure. Agilent 9 LC system and 646 Triple Quadrupole LC/MS. Table. LC Conditions LC column ZORBAX Eclipse Plus C-8 RRHD column x. mm,.8 µm @ C Mobile phase A = 5 mm ammonium formate in water B = 5 mm ammonium formate in methanol Gradient program 5 % B for. minutes; ramp up to % B over minutes; ramp up to % B over 8. minutes; hold for.5 minutes; bring to 5% B; hold for minutes Flowrate.5 ml/min Injection volume µl Table. MS Conditions Ionization mode Agilent Jet Stream positive and negative mode API drying gas 7 L/min @ C API nebulizing gas 5 psi Sheath gas L/min @ 75 C Nozzle voltage +/-5 V Capillary voltage +5/- V Cycle time 5 ms Interscan delay.5 ms Total number of MRMs 9 Maximum number of concurrent MRMs 84 Minimum dwell time.64 ms Maximum dwell time 46.5 ms

Results and Discussion This LC/MS method separated and detected 5 pesticides. While the tmrm experiment allowed a total of MRM transitions per compound, the compounds in this analysis utilized two primary transitions and up to seven secondary transitions per compound. Figure shows the overall TIC and EIC chromatograms for a quality control standard of all of the pesticides included in this method at the minimum reporting level (MRL). In order to acquire qualitative and quantitative information in a single analytical run, tmrm acquisition was used. x 5.4..8.6.4. x 4 7 6 5 4 A B 4 5 6 7 8 9 4 5 6 7 8 9 The first analyte of interest was tebuthiuron in chamomile extract. Chamomile contains an endogenous compound which shares the same mass and a similar retention time to tebuthiuron. Figure shows two chromatograms: the one on the left represents a tebuthiuron standard injection at 5 ppb and the one on the right represents an injection of a blank chamomile extract (one that was known not to contain tebuthiuron). The data showed excellent peak shape and signal for tebuthiuron, and that there are no co-eluting target analytes in our mix of 5 pesticide compounds of interest. Fortunately, the native compound (although very similar in mass to charge ratio and retention time to tebuthiuron) fell beyond the acceptable SANCO retention time variance guidelines for this type of pesticide analysis, but still could be mistakenly identified as tebuthiuron. Figure. Total Ion Chormatogram (A) and Extracted Ion Chromatogram (B) for 5 pesticides at the minimum reporting level ( ng/ml). x 4 x 4 6.69.5 QC 5 ppb Blank Chamomile Extract 6.65 594 544 RT 6.69 min RT 6.65 (+.8%) Qual/Quant ratio.5% Calc.Conc..6 µg/kg Qual/Quant ratio 4.7% (89.9%).5 x 5.4..8.6.4. 6.69 479 5.9 6 6. 6. 6. 6.4 6.5 6.6 x4.5 6.6 6978.5.5.5 5.9 6 6. 6. 6. 6.4 6.5 6.6 Figure. Primary MRM traces for tebuthiuron in 5 ppb quality control standard (left) and in a blank chamomile extract (right). The top chromatograms represent the fi rst qualifi er traces for tebuthiuron (m/z 9. > 6.) and the bottom chromatograms represent the quantifi er traces (m/z 9. > 7.). 4

The retention time for the native compound had a.8 % difference from the tebuthiuron standard (.5 % is the maximum deviation allowed), and the qualifier to quantifier ion ratio was 89.9 % of the expected ion ratio for tebuthiuron ( % of the expected value is the SANCO cutoff). While the native chamomile extract compound in this case was similar to tebuthiuron, it would likely be rejected as a match by applying the SANCO guidelines. In this case, tmrm analysis gave definitive proof that the endogenous compound is not tebuthiuron, beyond the fact that the retention time for these two compounds differed enough to force rejection by SANCO guidelines. tmrm analysis was able to definitively identify the endogenous chamomile compound by library matching. In addition, tmrm analysis was able to qualitatively confirm that the endogenous chamomile compound was not tebuthiuron. However, quantitative analysis was performed on tebuthiuron spiked into a blank chamomile extract in order to demonstrate that in addition to qualitative confirmation, tmrm acquisition is able to acquire reliable quantitative data that one would expect from a high performance triple quadrupole mass spectrometer. Even though these compounds elute relatively close to one another, and triggered the acquisition of secondary transitions in both cases, a blank chamomile extract spiked with tebuthiuron generated a linear calibration curve with an R value equal to.9997 (see Figure 4). Five replicate injections of tebuthiuron at ppb spiked into chamomile extract had a %RSD value of.94. Five replicate injections of the entire 5 pesticide mix spiked into chamomile extract at ppb had a %RSD value of.. This method was found to produce linear and reproducible quantitative results. x 6 R =.9997.9.8.7 Responses.6.5.4... 4 5 6 7 8 9 Concentration (ng/ml) Figure 4. Calibration curve for tebuthiuron in a blank chamomile extract from ppb to ppb. The R value for the calibration curve is.9997. 5

In the case of tebufenpyrad in ginger extract, tmrm analysis was critical in avoiding a false positive result for tebufenpyrad, even if SANCO guidelines were applied. Figure 5 shows the chromatograms for the primary MRM transitions for tebufenpyrad in a 5 ppb quality control standard (on the left) versus an injection of a blank ginger extract which did not contain tebufenpyrad (on the right). In this case, the endogenous ginger compound (shown on the right in Figure 5) only varied in retention time from the tebufenpyrad standard by.47 % (well within regulatory guidelines). The qualifier to quantifier ion ratio of the endogenous ginger compound was. % of the expected ion ratio for tebufenpyrad, and % is the regulatory cutoff set by SANCO guidelines. This endogenous compound was very similar to tebufenpyrad, and would most likely give a false positive result using standard acquisition techniques. However, tmrm acquisition gave valuable qualitative data which could be used in library matching for definitive confirmation. 9.66 x 4 QC 5 ppb 489 x 4 RT 9.66 min Qual/Quant ratio 89.8 %.5 x 4 9.66 79 x 4 4 9.68 589 9.69 6689 Blank Ginger Extract RT 9.68 min (-.47 %) Calc. Conc. 85 µg/kg Qual/Quant ratio.6 % (. %).5 9.45 9.5 9.55 9.6 9.65 9.7 9.75 9.8 9.45 9.5 9.55 9.6 9.65 9.7 9.75 9.8 Figure 5. Prim ary MRM traces for tebufenpyrad in 5 ppb quality control standard (left) and in a ginger extract (right). The top chromatograms represent the quantifi er traces for tebufenpyrad (m/z 4. > 7.) and the bottom chromatograms represent the fi rst qualifi er traces (m/z 4. > 45.). 6

Figure 6 shows the library search results for the native ginger compound with similar retention time, quantifier, and qualifier ions to tebufenpyrad. The bottom window shows the stored library spectrum and the upper window shows the spectrum which has been acquired for the native ginger compound. The mirrored spectra in the central window allowed for a simple comparison of the acquired vs. the library spectrum. While this co-eluting compound would commonly give a false positive result in typical quantitative MRM analyses, we see here that there are many peaks present in the tebufenpyrad tmrm library spectrum which were missing from the native ginger compound spectrum. As a result, the library match score was only 7.4 out of, and we were able to confidently reject the native compound as tebufenpyrad. x 8 6 4 x 9. 7. 45. Comparison Acquired vs. tmrm Library Spectrum - x.5 76 9. 5. 9. 7. 7 7. 76 9.. 5. 45. 45 45 7. 7. Acquired tmrm Spectrum Native Ginger Compound tmrm Library Spectrum Tebufenpyrad N N 8 4 6 8 4 6 8 4 H C H C CH NH O Cl H C CH 4. 4. 4. Figure 6. Library match result for the native ginger compound searched against the tmrm library spectrum for tebufenpyrad yielded a library match score of 7.4, allowing rejection of the native compound as tebufenpyrad and avoiding a positive result. 7

Conclusions The analyses of pesticides in chamomile and ginger extracts with tmrm acquisition achieved accurate quantitative analysis with the confidence of library matching in a single analytical run. Tebuthiuron and tebufenpyrad were successfully distinguished from nearby or co-eluting endogenous compounds, and false positives were successfully averted with the inclusion of qualitative analysis with library matching. tmrm acquisition is a data dependent scan mode capable of providing quantitative and qualitative data on a single instrument, in a single injection. References. Regulation (EC) No 96/5 of the European Parliament and of the Council of February 5 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 9/44/ EEC (including amendments as of 8 March 8).. European Guideline SANCO/684/9: Method validation and quality control procedures for pesticide residues analysis in food and feed.. Official collection of test procedures according to 64 law on food and animal feed (LFGB), Beuth-Verlag. www.agilent.com/chem/qqq Information, descriptions, and specifi cations in this publication are subject to change without notice. Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. Agilent Technologies, Inc. Published in the U.S.A., July, 599-846EN