CSE590B Lecture 4 More about P 1

Similar documents
Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Camera Models class 8

CAMERA GEOMETRY. Ajit Rajwade, CS 763, Winter 2017, IITB, CSE department

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

PHY 213. General Physics II Test 2.

Lecture 18: Kinetics of Phase Growth in a Two-component System: general kinetics analysis based on the dilute-solution approximation

Orthotropic Materials

KINEMATICS OF RIGID BODIES

Lecture 22 Electromagnetic Waves

Topic 4a Introduction to Root Finding & Bracketing Methods

Control Volume Derivation

ME 141. Engineering Mechanics

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

Cosumnes River College Principles of Macroeconomics Problem Set 1 Due January 30, 2017

KINGS UNIT- I LAPLACE TRANSFORMS

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

11.2 Proving Figures are Similar Using Transformations

MECHANICS OF MATERIALS Poisson s Ratio

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf " #, # $ work function.

6.003 Homework #9 Solutions

CMSC 425: Lecture 5 More on Geometry and Geometric Programming

So, if we are finding the amount of work done over a non-conservative vector field F r, we do that long ur r b ur =

3D Coordinate Systems. 3D Geometric Transformation Chapt. 5 in FVD, Chapt. 11 in Hearn & Baker. Right-handed coordinate system:

Let us start with a two dimensional case. We consider a vector ( x,

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

6.003 Homework #9 Solutions

r cos, and y r sin with the origin of coordinate system located at

Computer Propagation Analysis Tools

Chapter Finite Difference Method for Ordinary Differential Equations

Relative and Circular Motion

PHYS PRACTICE EXAM 2

Overview. Overview Page 1 of 8

System Processes input signal (excitation) and produces output signal (response)

CSE 5365 Computer Graphics. Take Home Test #1

, on the power of the transmitter P t fed to it, and on the distance R between the antenna and the observation point as. r r t

The Production of Polarization

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V

Projection of geometric models

HW Solutions # MIT - Prof. Please study example 12.5 "from the earth to the moon". 2GmA v esc

One-Dimensional Kinematics

Faraday s Law (continued)

Review: Electrostatics and Magnetostatics

! Frequency Response of LTI Systems. " Magnitude Response. " Phase Response. " Example: Zero on Real Axis. ! We can define a magnitude response

Kinematics of Wheeled Robots

This is an example to show you how SMath can calculate the movement of kinematic mechanisms.

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

Lecture 7: Angular Momentum, Hydrogen Atom

Physics 121 Hour Exam #5 Solution

Lecture 17: Kinetics of Phase Growth in a Two-component System:

Integral Control via Bias Estimation

PHYSICS 102. Intro PHYSICS-ELECTROMAGNETISM

Answers to test yourself questions

Q1) [20 points] answer for the following questions (ON THIS SHEET):

Feedback Couplings in Chemical Reactions

Version 1.0. klm. General Certificate of Education June Mathematics. Mechanics 2B. Mark Scheme

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

Homework sheet Exercises done during the lecture of March 12, 2014

Chapter 5. Long Waves

JURONG JUNIOR COLLEGE Physics Department Tutorial: Electric Fields (solutions)

COORDINATE TRANSFORMATIONS - THE JACOBIAN DETERMINANT

Elements of Computer Graphics

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can.

CS-184: Computer Graphics. Today

Final Exam. Tuesday, December hours, 30 minutes

A Crash Course in (2 2) Matrices

Linear Algebra Primer

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr.

Math 2263 Solutions for Spring 2003 Final Exam

Projection of geometric models

Mechanics Physics 151

ME 3600 Control Systems Frequency Domain Analysis

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

Physics 1C Fall 2011: Quiz 1 Version A 1

û s L u t 0 s a ; i.e., û s 0

Two-Pion Exchange Currents in Photodisintegration of the Deuteron

Module 4: Time Response of discrete time systems Lecture Note 2

The sphere of radius a has the geographical form. r (,)=(acoscos,acossin,asin) T =(p(u)cos v, p(u)sin v,q(u) ) T.

Some Basic Information about M-S-D Systems

156 There are 9 books stacked on a shelf. The thickness of each book is either 1 inch or 2

Graphs of Sine and Cosine Functions

GCSE MATHEMATICS FORMULAE SHEET HIGHER TIER

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr.

Two-dimensional Effects on the CSR Interaction Forces for an Energy-Chirped Bunch. Rui Li, J. Bisognano, R. Legg, and R. Bosch

Numerical Integration

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

Pseudosteady-State Flow Relations for a Radial System from Department of Petroleum Engineering Course Notes (1997)

Polar Coordinates. a) (2; 30 ) b) (5; 120 ) c) (6; 270 ) d) (9; 330 ) e) (4; 45 )

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?

LAPLACE TRANSFORM AND TRANSFER FUNCTION

NMR Spectroscopy: Principles and Applications. Nagarajan Murali 1D - Methods Lecture 5

Consider a Binary antipodal system which produces data of δ (t)

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ...

Physics 221 Lecture 41 Nonlinear Absorption and Refraction

Mark Scheme (Results) January 2008


= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

Anyone who can contemplate quantum mechanics without getting dizzy hasn t understood it. --Niels Bohr. Lecture 17, p 1

Transcription:

SE590 Lece 4 Moe abo P 1 Tansfoming Tansfomaions James. linn Jimlinn.om h://coses.cs.washingon.ed/coses/cse590b/13a/

Peviosly On SE590b

Tansfomaions M M w w w w w

The ncion w w w w w w 0 w w 0 w 0 w

The Phase Sace of M M M M M M M d M M M M M M 0 M M M M 0 Possible nmeic signaes singla d lso a valid mai Niloen d an d, 1

New oodinae Sysem E G H G H E E E G H G H E H G E 4 d 4 G H 1 4 1 4 E H G E d H G

Plo in EGH sace H G 0 1 E E E H/E H G d 0 E E E G/E 0 lane a infiniy omae wih Q vesion /E /E /E

Roadma of M oaions singla ideniy Niloen d = 0 Single eigenvale Involions (ace=0)

nd Now

inding Real Eigenvales ind sch ha de MI 0 Linea combo of M and I is singla I singla M Oside cone (ed,ble): Two inesecions on line M Inside cone (geen): No inesecions on line

Tansfomaion of Tansfomaions * T T v s v s v v s s sv vv ss sv s v s v s s s v s v s v v v vv

Tansfomaion of Tansfomaions s s s v s v s v v v vv E G H G H E 1 1 0 0 E 1 1 0 0 0 0 1 1 G 0 0 1 1 H E v s 0 0 0 E 0 v s s v s v 1 1 G 0 sv ss vv ss vvg 1 1 H 0 sv ss vv ss vvh

isill wih Roaion Tansfom E v s 0 0 0 E v s s v s v sv ss vv ss vv G sv ss vv ss vv H cos sin 0 s v sin cos 1 1 G 0 1 1 H 0 E 1 0 0 0 E 0 cos sin 0 G 0 sin cos 0 G H 0 0 0 1 H Simila o wha we did wih Q: E E

Roaion Tansfom Roae o make G zeo E 1 0 0 0 E 0 cos sin 0 0 0 sin cos 0 G H 0 0 0 1 H Noe: No dividing by E ye E H 1 4 d H H H = 0 0 d = 0 1 E ~ H d = 0 ~ E

Roaion Tansfom Roae o make G zeo E 1 0 0 0 E 0 cos sin 0 0 0 sin cos 0 G H 0 0 0 1 H Pojec ono ni shee E H 1 4 d H H H 1 E H d E

Maings Qadaic Polys (3) /E oae E ojec /E E Tansfomaion m (4) H oae [E,,G,H] ojec E

Sign lis Roaing 90 degees flis (,G) sign E 1 0 0 0 E 0 1 0 1 0 0 1 0 G 0 0 1 0 G H 0 0 0 1 H Scaling by -1 in flis (E,) signs E 1 0 0 0 E 1 0 0 1 0 0 0 1 G 0 0 1 0 G H 0 0 0 1 H Echanging,w flis (E,G) signs d E H E 1 0 0 0 E 0 1 0 1 0 0 1 0 G 0 0 1 0 G H 0 0 0 1 H

Sign lis H Echanging,w flis (E,G) signs E 1 0 0 0 E 0 1 0 1 0 0 1 0 G 0 0 1 0 G H 0 0 0 1 H d E

Sign li effec on angle ange +180 o -180 o +90 o -90 o 0 o E H +170 o -90 o -10 o 0 o E +90 o H +10 o 10 / 10 170 10

he ansfom ha kees G=0 d E H E v s 0 0 E 0 v s s v 1 G 0 sv ss vv H 1 H 0 sv ss vv sv 0 ss vv 0 s s o v v = iagonal scale

Effec of iagonal Scale E 0 0 E 0 H 0 H d 4 4E H E E H H H E E H H d d E 0 d E H

Effec of iagonal Scale =0 0 d de H H 0 0 d E lane H 0 0 d E H cone along ais 0 0 inesecing lanes 0 0 d E H cone along H ais neg 0 0 d E lane neg singla d 0 E Niloen d

iagonal Scale o ge o H zeo E 0 0 E 0 H 0 H H, discim H H H H, discim H If osiive can make =0 If osiive can make H=0 H H

d=0 case E 0 0 E 0 H 0 H H E 0 E 0 0 E 0 H E 0 E 0 0 E 0 H H

isilled EGH Sace H 1 0 0 1 0 0 E E 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 E H H E 1 0 0 0

Phase gm and isilled M M 0 M M M M 0 E 0 1 0 0 1 0 E Niloen singla d 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 0 H M M M M M M E H H E d M M M M

Phase gm and isilled Q M M 0 M M M M 0 E 0 1 0 0 1 0 E I E Niloen singla M M M M M M d 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 isingish beween 1 1 0 1 1 1 1 V R H 1 1 0 0 1 1 0 d M M M M M V R H V R M V R M M V R

Phase gm and isilled M M 0 M M M M 0 E 0 1 0 0 1 0 E Niloen singla d 1 1 1 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 0 H M M M M M M d M M M M M V R H Use if d 0

Inenal Sce

Using oe odcs o make M M = k n 1 0 0 1 1 0 0 1

Wie k,n in ems of, M = k n k = a + b n = c + d M = a b c d

Tansfomaion T* M T = a T* T b T* c T* T d T* T T T* T T ~ T = ~ T = ~ ~ M = a ~ ~ b ~ ~ c ~ ~ d ~ ~

Pick nice, = 0 1 = 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 + M ~ ~ ~ + ~ ~ ~ ~ ~ ~

Niloen E 0 1 0 0 1 0 E 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 H isilled: E G H 1 1 G H E 1 1 E 0 1 G 0 H 1 an Tansfom o: E G H 0 1 G H E 0 0 E 0 0 G 1 H 1

Niloen 0 1 0 0 N N N w w a N a N H d

Idemoen 0 0 0 1 H a a 0 w w d

n Ideniy H/E ^ I G/E /E

Geneal Scales (Eigenvecos) w E 0 E 0 w M = (E+) +(E) M = (E+) w M = + (-E) w E/H G/H H/E G/E H /H /E d

Scale Involion (Eigenvecos) w E 0 0, E 0 E w V S = + M = M = E/H H/E G/H G/E H /E /H d

Roaion w E H H E E w + H E ^I + H H d

Roaion Involion E H, E 0 H E + H w w H d

Single eigenvale d = 0 w 1 1 0 1 w ^I H d

Pe & Mied Tensos - Relaion Q T /E /E Q T =0 1,w a,b Q Q Q a,b a,b Q T I Roos of Q ae Eigenvales of T

Eemlay Tansfomaions

Eemlay Tansfomaion ~ ~ ~ T w w

onsc T given Eigenvecos Wan T = T = asic nswe T = a b How i woks fo T = a b

Wan onsc T given wo diffeen o oins T = ~ T = ~ asic nswe T = a ~ b ~ Woks fo and T = a ~ T = b ~

Thid oin T = ~ T = a ~ b ~ T = a ~ b ~ Pick a and b o make ~ = a ~ b ~ ~ ~ ~ = + ~ ~ ~ ~ ~

The answe a = ~ ~ b= ~ ~ T = ~ ~ ~ + ~ ~ ~

How i woks T = ~ ~ ~ + ~ ~ ~ T = ~ ~ ~ + ~ ~ ~ T = ~ ~ ~ + ~ ~ ~ T = ~ ~ ~ + ~ ~ ~

How i woks T = ~ ~ ~ + ~ ~ ~ T = ~ ~ ~ + ~ ~ ~ T = ~ ~ ~ + ~ ~ ~ T = ~ ~ ~ + ~ ~ ~ ~ ~ = ~

Ne T = ~ ~ ~ + ~ ~ ~ T = ~ ~ ~ T = ~ ~ ~ T = ~ ~ ~

eeminan T = ~ ~ ~ + ~ ~ ~ T T = ~ ~ ~ ~ ~ ~ eeminan is negaive eacly when necessay fo ode evesal n invaian of he oins,, Geomeic meaning of sign

Highe imensions T ~ ~ b d ~ b ~ d

Highe imensions T ~ ~ s ~ ~ s s T = a ~ + b ~ s g ~ s Woks fo,,s Now find a,b,g o make i wok fo

Highe imensions T ~ ~ s ~ s s s s s s s s T = ~ ~ + ~ ~ ~ ~

o Poins in P 1 w

Ineleaving of o Poins Same ineleaving w iffeen ineleaving w

Thee ossible ineleavings w w w

iagams fo o Poins w w w w 1 V V 3 V

iagams fo o Poins V1 V V 3 0 V1 V V3 0

oss Raio bsole Invaian V V 3 old ick any of V V V V V V 1,, 3 3 1 as coss aio Relaionshi beween V V 1 V V 1 V V V 1 3 1 V V V V V 3 1 1 1 1 1

3 view of invaian sace V1 V V3 0 V1 V V 3 V 3 V 1 V V 1 Homogeneosly scale o nomalize ono ni cicle 1 3 1 V V V V 3 V 1 cos V 1

3 view of invaian sace V1 V V3 0 V 1 V 3 V 1 V 3 V V V 3 V 1 V V 3 V 1 V

eemine which sign indicaes which ineleaving 1 1 0 1 1 1 w w 1 V V 3 V w w

ollow in V sace V V V 1 3 1 0 1 1 V V V 1 3 0 1 1 1 3 V 1 V V 1 3 1 V 1 V 1 V 1 V 3 V V 3 V V 3 V

ollow in V sace 1 3 1 0 V 1 V V 1 1 3 V 0 1 1 V V 1 3 V 1 1 V 1 V 3 1 3 0 1 V 1 V 0 V 1 1 3 V 1 V 1 V 1 3 1 1 V 1 1 V 0 V 1 3 V 1 V 1 V 1 V 1 V 1 V 1 V 3 V V 3 V V 3 V V 3 V V 3 V V 3 V V 3 V V1

ollow in V sace 1 3 1 0 V 1 V V 1 1 3 V 0 1 1 V V 1 3 V 1 1 V 1 V 3 1 3 0 1 V 1 V 0 V 1 1 3 V 1 V 1 V 1 3 1 1 V 1 1 V 0 V 1 3 an ansfom o an ansfom o V 1 V 1 V 1 V 1 V 1 V 1 V 3 V V 3 V V 3 V V 3 V V 3 V V 3 V Hamonic Se V V 3 V V1 V 3

eemine which sign indicaes which ineleaving 0 1 1 1 w 1 1 1 3 ^ ^ ^ ^ V w V ^ ^ V w V w 1 V V w 3

Signs and ineleaving Sign(V 1,V,V 3 ) Odeing of oins on P 1 View in (,w) lane

ee Ineleaving Tes Old way V w 1 V V w 3 ee way VV 1 w w V V w 3 3 1 V V w w w

iagams V 1 V = V V 3 = = V 3 V 1 =

es Ineleaving Tes w 0 Û w 0 Û 0 Û