Research Article Study of Gamma Ray Exposure Buildup Factor for Some Ceramics with Photon Energy, Penetration Depth and Chemical Composition

Similar documents
Vanadium Compounds: As Gamma Rays Shielding Material

Study of Photon Interaction Parameters for Some Oxide Glasses as Gamma Ray Shielding Materials

Research Article A Comprehensive Study on Gamma-Ray Exposure Build-Up Factors and Fast Neutron Removal Cross Sections of Fly-Ash Bricks

A comprehensive study on energy absorption and exposure buildup factors for some Vitamins and Tissue Equivalent Materials

Energy Absorption Buildup Factor Studies In Some Soils

Exposure Buildup Factors for Heavy Metal Oxide Glass: A Radiation Shield

ARTICLE. Progress in Nuclear Science and Technology Volume 4 (2014) pp Yoshiko Harima a*, Naohiro Kurosawa b and Yukio Sakamoto c

Research Article Energy Absorption and Exposure Buildup Factors of Essential Amino Acids

Evaluation of Geometric Progression (GP) Buildup Factors using MCNP Codes (MCNP6.1 and MCNP5-1.60)

PHYS 3650L - Modern Physics Laboratory

An analytic review of the different methods for evaluating the Z-effective of the series of glass [Li 2 O B 2 O 3 SiO 2 MnO]

Evaluation of gamma shielding parameters of bismuth oxide filled polymer composites

Determination of Photon Ambient Dose Buildup Factors for Radiological Applications for Points and Plaque Source Configurations Using MCNP5

Chapter Four (Interaction of Radiation with Matter)

JRPR. A Study of Shielding Properties of X-ray and Gamma in Barium Compounds. Original Research. Introduction

Gamma-ray shielding of concretes including magnetite in different rate

Comparative Study of Radiation Shielding Parameters for Bismuth Borate Glasses

Georgia Institute of Technology. Radiation Detection & Protection (Day 3)

Chapter 16 Basic Precautions

Geant4 Monte Carlo code application in photon interaction parameter of composite materials and comparison with XCOM and experimental data

Copyright 2008, University of Chicago, Department of Physics. Gamma Cross-sections. NaI crystal (~2" dia) mounted on photo-multiplier tube

Mohammed Jebur Resen AL-Dhuhaibat. Phys. Dep./Sci. Coll./Wasit Uni./Iraq/Wasit /Kut ABSTRACT

CHAPTER 2 INTERACTION OF RADIATION WITH MATTER

Effect of BaO on Optical, Physical and Radiation Shielding Properties of SiO 2 -B 2 O 3 -Al 2 O 3 -CaO-Na 2 O Glasses System

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

Research Article Performance Analysis of γ-radiation Test Monitor Using Monocrystalline n+pp++ Silicon Solar Cell: CsI(Tl) Scintillator

Study on Mass Attenuation Coefficients and Optical Properties for Boro-Tellurite Glass doped with Barium

Shielding of Ionising Radiation with the Dosimetry & Shielding Module

6 Neutrons and Neutron Interactions

Experimental and Theoretical Investigation of Gamma Attenuation of Building Materials

Interaction of charged particles and photons with matter

Measurement of atomic number and mass attenuation coefficient in magnesium ferrite

Comparative Study of Radiation Shielding Parameters for Binary Oxide Glasses

Shell Atomic Model and Energy Levels

Research Article Size Effect and Material Property Effect of the Impactor on the Damage Modes of the Single-Layer Kiewitt-8 Reticulated Dome

Gamma Ray Shielding and Structural Properties of Bi 2 O 3 -B 2 O 3 -Na 2 WO 4 Glass System

EEE4106Z Radiation Interactions & Detection

Journal of Chemical and Pharmaceutical Research

Linear attenuation coefficient calculation for both pure silicon (Si) and silicone supported with lead

Photon Absorption characteristics of. some selected Enzyme Inhibitors used in Cancer Research in the Energy range 1 kev-100 GeV

Chapter 2 Methods Based on the Absorption of Gamma-Ray Beams by Matter

Experimental study of some shielding parameters for composite shields

Physics of Radiotherapy. Lecture II: Interaction of Ionizing Radiation With Matter

Forms of Ionizing Radiation

Today, I will present the first of two lectures on neutron interactions.

Comparison of some human tissues and some commonly used thermoluminescent dosimeters for photon energy absorption

Journal of Chemical and Pharmaceutical Research, 2012, 4(9): Research Article

III. Energy Deposition in the Detector and Spectrum Formation

Journal of Chemical and Pharmaceutical Research, 2012, 4(1): Research Article

Canadian Journal of Physics. Investigations of gamma ray and fast neutron shielding properties of tellurite glasses with different oxide compositions

Interaction of Particles and Matter

CHAPTER 4 RADIATION ATTENUATION

CHARGED PARTICLE INTERACTIONS

Chapter 4. Gamma Radiation Shielding. 4.1 Fabrication of the composites. 4.2 Density

Gamma Radiation Absorption Characteristics of Concrete with Components of Different Type Materials

At the conclusion of this lesson the trainee will be able to: a) Write a typical equation for the production of each type of radiation.

DETERMINATION OF TOTAL MASS ATTENUATION COEFFICIENTS, EFFECTIVE ATOMIC NUMBERS AND EFFECTIVE ELECTRON DENSITY FOR THE MARTIAN ATMOSPHERE

Interactions of Radiation with Matter

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 ISSN

Airo International Research Journal October, 2015 Volume VI, ISSN:

GLOSSARY OF BASIC RADIATION PROTECTION TERMINOLOGY

3 Radioactivity - Spontaneous Nuclear Processes

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect

Basic physics Questions

Interaction of Ionizing Radiation with Matter

Journal of Chemical and Pharmaceutical Research

LECTURE 6: INTERACTION OF RADIATION WITH MATTER

X-ray Interaction with Matter

On the Possibility of Using Model Experiments. to Study Shielding Problems 196 LETTERS TO THE EDITORS 196. Dy Hf Be Gd Y Zr HKiL hkil c/a

Rad T 290 Worksheet 2

CALCULATION OF GAMMA-RAY ATTENUATION PARAMETERS FOR LOCALLY DEVELOPED ILMENITE-MAGNETITE CONCRETE

Applied Nuclear Physics (Fall 2006) Lecture 21 (11/29/06) Detection of Nuclear Radiation: Pulse Height Spectra

EEE4101F / EEE4103F Radiation Interactions & Detection

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Research Article Coherent and Incoherent Scattering Cross Sections of Some Lead and Sodium Compounds at Angles below 10 for 241 Am Gamma Rays

RESULTS AND DISCUSSION ON EFFECT OF COLLIMATOR SIZE ON THE ATTENUATION OF GAMMA RAY IN PURE ELEMENTS

Passage of particles through matter

Chapter 2. Atomic Structure

Chapter NP-4. Nuclear Physics. Particle Behavior/ Gamma Interactions TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 IONIZATION

Research Article Effect of Strain on Thermal Conductivity of Si Thin Films

We have seen how the Brems and Characteristic interactions work when electrons are accelerated by kilovolts and the electrons impact on the target

CHAPTER 5 EFFECTIVE ATOMIC NUMBER OF SELECTED POLYMERS BY GAMMA BACKSCATTERING TECHNIQUE

Calculation of Gamma and Neutron Parameters for Some Concrete Materials as Radiation Shields for Nuclear Facilities

Development of a Dosimetric System using Spectrometric Technique suitable for Operational Radiation Dose Measurements and Evaluation

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321

Mass Attenuation Coefficients of Lead Nitrate Dilute Solutions for 13.5 cm Thickness at 1173 and 1333 kev

Radiation Detection and Measurement

Week 7: Ch. 10 Spec. w/ Scintillation Ctrs. Photomultiplier Devices

Atoms, Radiation, and Radiation Protection

Gy can be used for any type of radiation. Gy does not describe the biological effects of the different radiations.

Studies on mass attenuation coefficients, effective atomic and electron numbers for Cd 1-x Zn x Te alloy at photon energies of 10 to 100 kev

International Journal of Scientific & Engineering Research, Volume 8, Issue 4, April ISSN

Chapter 3. Effective atomic numbers and electron densities for some scintillators and plasticizers

Introduction to Ionizing Radiation

Calculation of Dose Gamma Ray Buildup Factor Up to Thickness of 20mfp

Possible Interactions. Possible Interactions. X-ray Interaction (Part I) Possible Interactions. Possible Interactions. section

APPLIED RADIATION PHYSICS

Compton suppression spectrometry

Interactions with Matter Photons, Electrons and Neutrons

INTERACTION OF RADIATION WITH MATTER RCT STUDY GUIDE Identify the definitions of the following terms:

Transcription:

Ceramics Volume 2013, Article ID 721606, 6 pages http://dx.doi.org/10.1155/2013/721606 Research Article Study of Gamma Ray Exposure Buildup Factor for Some Ceramics with Photon Energy, Penetration Depth and Chemical Composition Tejbir Singh, 1 Gurpreet Kaur, 2 and Parjit S. Singh 3 1 Department of Physics, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab 140407, India 2 Department of Physics, Maharishi Markandeshwar University, Mullana, Haryana 133207, India 3 Department of Physics, Punjabi University, Patiala, Punjab 147002, India Correspondence should be addressed to Tejbir Singh; dr.tejbir@gmail.com Received 12 June 2012; Accepted 7 January 2013 Academic Editor: Baolin Wang Copyright 2013 Tejbir Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gamma ray exposure buildup factor for some ceramics such as boron nitride (), magnesium diboride ( ), silicon carbide (), titanium carbide () and ferrite ( ) has been computed using five parametric geometric progression (G.P.) fitting method in the energy range of 0.015 to 15.0 MeV, up to the penetration of 40 mean free path (mfp). The variation of exposure buildup factors for all the selected ceramics with incident photon energy, penetration depth, and chemical composition has been studied. 1. Introduction The recent nuclear reactor explosion in Japan emphasized the dire need of systematic and precise studies of dosimetric parameters of different type of materials. In the nuclear reactor, multienergetic photons were released, and for protection from these highly penetrating radiations, thick walls of concrete were built around the nuclear reactor. However, in case of nuclear accident, these highly penetrating radiations can travel longer distances and can cause harm to living organisms. In such a situation, the extent to which building materials can provide shielding from these harmful radiations is of utmost concern. Keeping this in mind, an attempt has been made to visualize the interaction of photons with one of the building material, namely, ceramics. Ceramics are the composite materials in which the mechanical properties such as strength, modulus, toughness, wear resistance, and hardness are of primary interest. Despite possessing the strength and modulus values which are equal to or better than metals, these materials have chemical inertness and brittle fracture behavior. Considering such properties, ceramics have been selected to visualize the feasibility of using these materials as gamma ray shielding material. The intensity of a gamma rays beam follows Lambert- Beer law (I =I o e μx ) under three conditions which are (i) monochromatic radioactive source, (ii) thin absorbing material, and (iii) narrow beam geometry that should be used. In case, any of the three conditions has been violated, this law no longer holds. However, violation of the law can be maintained using the correction factor B, which is known as buildup factor. Different researchers have conducted experimental and theoretical studies in different type of materials. Several methods (geometric progression (G.P.) fitting method [1 3] and invariant embedding method [4]) have been used for the computation of buildup factors for different materials in different geometrical situations. American Nuclear Society [2] provided a comprehensive set of standard data for exposure buildup factor which includes twenty three elements, two compounds, and one mixture in the energy range of 0.015 to 15.0 MeV and up to the penetration depth of 40 mfp. In our previous works [5, 6], the various types of buildup factors and different methods/codes available to compute

2 Ceramics the buildup factor have been already discussed. Recently, different researchers had contributed in providing gamma ray buildup factor data for different materials such as for thermoluminescent dosimetric materials [7], flyash concretes [8], human tissue[9], teeth [10, 11], some essential amino acids, fatty acids, and carbohydrates [12], and samples from the earth, moon, and mars [13]. Inthepresentwork,G.P.fittingmethodhasbeenadopted to compute exposure buildup factors at some incident photon energies in the range of 0.015 to 15 MeV with penetration depth up to 40 mfp for some ceramics. 2. Computational Work The computational work of exposure buildup factor for the selected ceramics has been divided into three parts. The first part deals with the computation of equivalent atomic number (Z eq ) for the selected ceramics in the energy region of 15.0 kev to 15.0 MeV. The second part concerns with the computation of G.P. fitting parameters, and finally in the third part, exposure buildup factor values have been computed in thesameenergyregion. 2.1. Computations of Equivalent Atomic Numbers (Z eq ). For the computation of Z eq, the values of Compton partial attenuation coefficient (μ Comp ) and the total attenuation coefficients (μ total )wereobtainedincm 2 /g for the selected ceramics in the energy range of 0.015 to 15.0 MeV using WinXCom program [14]. The values of Z eq for the selected ceramics were computed by matching the ratio R (μ Comp /μ total )ofaparticular ceramics at a selected energy with the corresponding ratio of an element at the same energy. In case the value of ratio lies between two ratios for known successive elements, the value Z eq wastheninterpolatedusingthefollowinglogarithmic interpolation formula [6]: Z eq = Z 1 (log R 2 log R) + Z 2 (log R log R 1 ), (1) (log R 2 log R 1 ) where Z 1 and Z 2 are the atomic numbers of elements corresponding to the (μ Comp /μ total )ratios,r 1 and R 2,respectively, and R (μ Comp /μ total ) is the ratio for the selected ceramic at a particular energy, which lies between ratios R 1 and R 2. 2.2. Computations of G.P. Fitting Parameters. American National Standards [2] provided the exposure G.P. fitting parameters of 23 elements ( 4 Be- 8 O, 11 Na- 16 S, 18 Ar- 20 Ca, 26 Fe, 29Cu,Mo,Sn,La,Gd,W, 82 Pb, and 92 U), one compound (water), and two mixtures (air and concrete) in the energy range of 0.015 to 15.0 MeV and up to a penetration depth of 40 mfp. The computed values of Z eq for the selected ceramics were used to interpolate G.P. fitting parameters (b, c, a, X k, and d) for the exposure buildup factor using the following logarithmic interpolation formula [6]: P= P 1 (log Z 2 log Z eq )+P 2 (log Z eq log Z 1 ) log Z 2 log Z 1, (2) where Z 1 and Z 2 are the elemental atomic numbers between which the equivalent atomic number Z eq of the chosen ceramic lies. P 1 and P 2 are the values of G.P. fitting parameters corresponding to the atomic numbers Z 1 and Z 2,respectively, at a given energy. Using the interpolation formula, G.P. fitting parameters for exposure buildup factors were computed at the selected incident photon energies for the chosen ceramics. 2.3. Computations of Buildup Factors. The computed G.P. fitting parameters (b, c, a, X k,andd) wereusedtocompute the exposure buildup factors for the selected ceramics in incident photon energy range of 0.015 to 15.0 MeV and up to the penetration depth of 40 mfp using following equations [2 4]: B (E, x) =1+ b 1 K 1 (Kx 1), for K =1, (3) B (E, x) =1+(b 1) x, for K=1, where K (E, x) =cx a +d tanh (x/x k 2) tanh ( 2), 1 tanh ( 2) for x 40mfp. 3. Results and Discussion The variation of exposure buildup factor with the incident photon energy in the range of 0.015 to 15.0 MeV has been shown in Figure 1 foratsomeofthepenetrationdepths (1, 5, 10, 20, 30, and 40 mfp). For the fixed penetration depth of 1 mfp, at lower incident photon energy (0.015 MeV), the value of energy absorption buildup factor is small, and it increases with the increase in incident photon energy, reaches a maximum value in the intermediate energy region, and after that starts decreasing with the further increase in the incident photon energy. In lower and higher energy regions photo-electric and pair productions are most dominant processes (in which complete absorption of photon takes place), which result in minimum value of buildup factor. While in the intermediate energy region, Compton scattering is the dominant photon interaction process, which results only in the energy degradation of the photon and not the complete absorption. Hence the photons will pile up and give rise to peak. Similar trend has been observed at higher penetration depths of the ceramic. The dominant range of Compton scattering process can be expressed in the range of E photo-comp and E Comp-pair prod where E photo-comp represents the energy for which both photoelectric absorption and Compton scattering show almost equal value for mass attenuation coefficient. Whereas E Comp-pair prod represents the energy for which both Compton scattering and pair production processes show equal dominance. For boron nitride (least Z eq ceramic), the value of E photo-comp is about 23 kev (the corresponding value of mass attenuation coefficient (μ m ) at which energy is 0.160 cm 2 /g) (4)

Ceramics 3 10 5 10 4 Penetration depth 1mfp 5mfp 10mfp 20 mfp 30mfp 40 mfp Figure 1: Variation of exposure buildup factor with incident photon energy for. andthevalueofe Comp-pair prod is 28 MeV (the corresponding value of mass attenuation coefficient (μ m ) at which energy is 0.68 cm 2 /g). Whereas for ferrite (highest Z eq ceramic), the value of E photo-comp is about 100 kev (the corresponding value of mass attenuation coefficient (μ m ) at which energy is 0.14 cm 2 /g), and the value of E Comp-pair prod is 12 MeV (the corresponding value of mass attenuation coefficient (μ m ) at which energy is 0.13 cm 2 /g). Since, the exposure buildup factor is the result of multiple Compton scattering processes, hence the study of buildup factor is of utmost importance between the values of E photo-comp and E Comp-pair prod. Similarly, for other ceramics like magnesium diboride, silicon carbide, titanium carbide, and ferrite, the dominant range for Compton scattering process lies in between 15.0 kev and 15.0 MeV. Further, it has been also observed that the ceramics with low Z eq show large Compton scattering dominant range (as in case of ), whereas for ceramics with comparatively high Z eq, Compton scattering dominance region is less (as in cases of ferrite and titanium carbide). as a function of penetration depth up to 40 mean free path for theselectedceramicshasbeenshowninfigure 2 for at some of the selected incident photon energies (0.015, 0.10, 0.50, 5.00, and 15.0 MeV). It has been observed that at all the selected energies, exposure buildup factor increases with the increase in penetration depth of. It may be due to the reason that as thickness of ceramic increases, the probability of multiple Compton scatterings also increases, and hence the exposure buildup factor increases. Similar trend has been observed for other ceramics. However, the increasing rate was found to be slow for lower and higher incident photon energies, and rapid increase was observed in case of intermediate energy region. The slower increasing rate in the lower and higher energy regions was due to the dominance of different photon absorption processes in these energy regions (photoelectric effect in the lower energy region and pair production in the higher energy region) which results in the complete absorption of gamma photons in the interacting medium, whereas in the intermediate energy region the dominant process is the Compton scattering, which results only in the energy degradation of photons. Hence, there is a finite possibility of thephotontoreachthedetectorevenforthelargepenetration depths of the ceramics, and hence maximum violation of Lambert-Beer equation has been observed. Further,theincreasingrateofexposurebuildupfactor with the penetration depth is more rapid up to the certain incident photon energy (0.1 MeV), where the Compton scatteringprocessismostdominantprocess,andafterthisthe increasing rate of exposure buildup factor becomes slower for higher energies. All the selected ceramics have different chemical composition and hence different equivalent atomic number (Z eq ). So, to study the chemical composition dependence of different ceramics on exposure buildup factor, exposure buildup factorforalltheselectedceramicshasbeenplottedagainstthe incident photon energy at fixed penetration depths of 1, 5, 10, and 40 mfp and has been shown in Figures 3, 4, 5,and6.From these figures, it has been observed that for all the selected ceramics, exposure buildup factor values are small at lower incident photon energies as well as higher incident photon energies and show maximum values in the intermediate energy region. It may be due to the same reason of dominance of different partial photon interaction processes in different energy regions. Among the selected ceramics, ferrite (highest Z eq ) shows the minimum value for the exposure buildup factor, whereas maximum values are observed for boron nitride (lowest Z eq ). It may be due to the reason that ferrite, which is a ceramic of oxygen (Z =8, weight fraction = 0.30) and iron (Z =26, weight fraction = 0.70), has the maximum equivalent atomic number due to the major contribution of iron. Whereas boron nitride consists of boron (Z =5, weight fraction = 0.44) and nitrogen (Z =7, weight fraction = 0.56) and has the minimum equivalent atomic number. From this observation, it can be concluded that exposure buildup factor is inversely proportional to the equivalent atomic number of the ceramics at lower penetration depths (below 10 mfp). In Figure 5, for the fixed penetration depth of 10 mfp of all the selected ceramics and for incident photon energy above 3 MeV, different ceramics show almost same values for exposure buildup factor. It signifies that, above certain incident photon energy (about 3 MeV), exposure buildup factor becomes almost independent of the chemical composition of the interacting material. Further, the selected ceramics mostly follow different crystal structures such as,,and follow hexagonal, follows cubic, and Fe 2 O 3 follows rhombohedral structure. Since different

4 Ceramics 10 5 10 4 0 0 30 40 Penetration depth (mfp) Energy (MeV) 0.015 0.1 0.5 Figure 2: Variation of exposure buildup factor with penetration depth of. 5 15 Penetration depth =5mfp Figure 4: Variation of exposure buildup factor with incident photon energy for all ceramics at 5 mfp. 7 6 5 4 3 2 1 Incident photon energy (in MeV) Penetration depth =1mfp Penetration depth =10mfp Figure 3: Variation of exposure buildup factor with incident photon energy for all ceramics at 1 mfp. Figure 5: Variation of exposure buildup factor with incident photon energy for all ceramics at 10 mfp.

Ceramics 5 10 5 secondary gamma rays towards exposure buildup factor also increases. 10 4 Penetration depth = 40 mfp Figure 6: Variation of exposure buildup factor with incident photon energy for all ceramics at 40 mfp. 4. Conclusions From the present studies, the following conclusions can be drawn. (i) increases with the increase in penetration depth (40 mfp). (ii) shows the following different trends with incident photon energy. (a) For the entire energy region (0.015 15.0 MeV), in case of small penetration depths (below 10 mfp), exposure buildup factor is inversely proportional to the Z eq. (b) In the higher energy region (above 3 MeV for the selected ceramics), there exists a penetration depth (about 10 mfp in the present case), for which exposure buildup factor becomes almost independent of the Z eq or the chemical composition of the ceramics. (c) In the higher energy region (above 3 MeV), for large penetration depths (above 15 mfp), exposure buildup factor becomes directly proportional to Z eq. ceramics follow different crystal structure, the same values for exposure buildup factor above 3 MeV photon energy and at the penetration depth of 10 mfp suggest that exposure buildup factor becomes independent of crystal structure. However, in Figure 6, which shows the variation of exposure buildup factor for all the selected ceramics at the fixed penetration depths of 40 mfp, reversal in the trend of exposure buildup factor values has been observed above 3 MeV. Thatisabovetheincidentphotonenergyof3MeV,exposure buildupfactorshowsmaximumvaluesforferrite(highest Z eq ceramic) and minimum values for boron nitride (lowest Z eq ceramic); that is, the exposure buildup factor becomes directly proportional to the equivalent atomic number of the ceramic. It may be due to the reason that pair production initiates from 1.022 MeV, and its dominance increases with theincreaseinphotonenergy,anditresultsintheformation of an electron and a positron. For smaller penetration depths (below 10 mean free path) of the ceramics, these particles escape either from the material or after multiple collision within the ceramic comes to rest and further annihilates, that is, creates two secondary gamma rays of 0.511 MeV, which escapes from the ceramic material. With the increase in penetration depth (above 10 mfp), these secondary gamma rays (due to annihilation) contribute in increasing the intensity of primary gamma rays and try to compensate for the decrease in primary gamma rays due to pair production. With the further increase in the penetration depth, that is, for larger penetration depths, the probability of creation of secondary gamma rays increases, and hence the contribution of these Among the selected ceramics, ferrite ( ) offers better gamma ray shielding. References [1] Y. Sakamoto, S. Tanaka, and Y. Harima, Interpolation of gamma ray build-up factors for point isotropic source with respect to atomic number, Nuclear Science and Engineering,vol. 100, pp. 33 42, 1988. [2] American National Standard Institute, Gamma-ray attenuation coefficients and buildup factors for engineering materials, Report ANSI/ANS 6.4.3, 1991. [3] Y. Harima, Y. Sakamoto, S. Tanaka, and M. Kawai, Validity of the geometrical progression formula in approximating gammaray buildup factors, Nuclear Science and Engineering, vol. 94, pp. 24 35, 1986. [4] A. Shimizu and H. Hirayama, Calculation of gamma-ray buildup factors up to depths of 100 mfp by the method of invariant embedding, Nuclear Science and Technology,vol.40, pp.192 200,2003. [5] P. S. Singh, T. Singh, and P. Kaur, Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents, Annals of Nuclear Energy,vol.35,pp.1093 1097,2008. [6] T. Singh, N. Kumar, and P. S. Singh, Chemical composition dependence of exposure buildup factors for some polymers, Annals of Nuclear Energy, vol. 36, no. 1, pp. 114 120, 2009. [7] S. R. Manohara, S. M. Hanagodimatha, and L. Gerwardb, Energy absorption buildup factors for thermoluminescent dosimetric materials and their tissue equivalence, Radiation Physics and Chemistry, vol. 79, no. 5, pp. 575 582, 2010.

6 Ceramics [8] S. Singh, S.S. Ghumman, C. Singh, K. S. Thind, and G. S. Mudahar, Buildup of gamma ray photons in flyash concretes: astudy, Annals of Nuclear Energy,vol.37,pp.681 684,2010. [9] M. Kurudirek, B. Doğan, M. İngeç, N. Ekinci, and Y. Özdemir, Gamma-ray energy absorption and exposure buildup factor studies in some human tissues with endometriosis, Applied Radiation and Isotopes,vol.69,pp.381 388,2011. [10] H. C. Manjunatha and B. Rudraswamy, Computation of exposure build-up factors in teeth, RadiationPhysicsandChemistry, vol. 80, no. 1, pp. 14 21, 2011. [11] M. Kurudirek and S. Topcuoglu, Investigation of human teeth with respect to the photon interaction, energy absorption and buildup factor, Nuclear Instruments and Methods in Physics Research B,vol.269,no.10,pp.1071 1081,2011. [12] M. Kurudirek and Y. Ozdemir, A comprehensive study on energy absorption and exposure buildup factors for some essential amino acids, fatty acids and carbohydrates in the energy range 0.015 15 MeV up to 40 mean free path, Nuclear InstrumentsandMethodsinPhysicsResearchB,vol.269,no.1, pp. 7 19, 2011. [13] M. Kurudirek, B. Dogan, Y. Özdemir, A. Camargo Moreira, and C. R. Appoloni, Analysis of some Earth, Moon and Mars samples in terms of gamma ray energy absorption buildup factors: Penetration depth, weight fraction of constituent elements and photon energy dependence, Radiation Physics and Chemistry, vol. 80, pp. 354 364, 2011. [14] L. Gerward, N. Guilbert, K. Bjørn Jensen, and H. Levring, X-ray absorption in matter. Reengineering XCOM, Radiation Physics and Chemistry,vol.60,no.1-2,pp.23 24,2001.

Nanotechnology International International Corrosion Polymer Science Smart Materials Research Composites Metallurgy BioMed Research International Nanomaterials Submit your manuscripts at Materials Nanoparticles Nanomaterials Advances in Materials Science and Engineering Nanoscience Scientifica Coatings Crystallography The Scientific World Journal Textiles Ceramics International Biomaterials