What can you really measure? (Realistically) How to differentiate nondifferentiable functions?

Similar documents
I. Introduction & Motivation

Green s Functions and Distributions

CHAPTER 6 bis. Distributions

Sobolev spaces. May 18

Here we used the multiindex notation:

EXPOSITORY NOTES ON DISTRIBUTION THEORY, FALL 2018

Fourier transform of tempered distributions

Fourier Transform & Sobolev Spaces

Reminder Notes for the Course on Distribution Theory

We denote the space of distributions on Ω by D ( Ω) 2.

MATH 220: MIDTERM OCTOBER 29, 2015

Partial Differential Equations

Distribution Theory and Fundamental Solutions of Differential Operators

Commutative Banach algebras 79

Dangerous and Illegal Operations in Calculus Do we avoid differentiating discontinuous functions because it s impossible, unwise, or simply out of

Chapter 1. Distributions

On some weighted fractional porous media equations

Distributions. Chapter INTRODUCTION

1.5 Approximate Identities

Lecture Notes Math 632, PDE Spring Semester Sigmund Selberg Visiting Assistant Professor Johns Hopkins University

On semilinear elliptic equations with measure data

Partial Differential Equations 2 Variational Methods

Existence Theory: Green s Functions

8 Singular Integral Operators and L p -Regularity Theory

Kernel Method: Data Analysis with Positive Definite Kernels

Sobolev Spaces. Chapter 10

Chapter One. The Calderón-Zygmund Theory I: Ellipticity

1 Continuity Classes C m (Ω)

LECTURE 5: THE METHOD OF STATIONARY PHASE

Laplace s Equation. Chapter Mean Value Formulas

MATH 220: THE FOURIER TRANSFORM TEMPERED DISTRIBUTIONS. Beforehand we constructed distributions by taking the set Cc

2. Function spaces and approximation

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

x λ ϕ(x)dx x λ ϕ(x)dx = xλ+1 λ + 1 ϕ(x) u = xλ+1 λ + 1 dv = ϕ (x)dx (x))dx = ϕ(x)

Math 342 Partial Differential Equations «Viktor Grigoryan

Hyperbolic PDEs. Chapter 6

TOPICS IN FOURIER ANALYSIS-IV. Contents

ISSN: [Engida* et al., 6(4): April, 2017] Impact Factor: 4.116

The Colombeau theory of generalized functions

MATH 6B Spring 2017 Vector Calculus II Study Guide Final Exam Chapters 8, 9, and Sections 11.1, 11.2, 11.7, 12.2, 12.3.

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

e (x y)2 /4kt φ(y) dy, for t > 0. (4)

In this chapter we study elliptical PDEs. That is, PDEs of the form. 2 u = lots,

BOUNDARY VALUE PROBLEMS ON A HALF SIERPINSKI GASKET

SOLUTIONS TO HOMEWORK ASSIGNMENT 4

Introduction to Microlocal Analysis

2 (Bonus). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

TOOLS FROM HARMONIC ANALYSIS

A review: The Laplacian and the d Alembertian. j=1

Math 321 Final Examination April 1995 Notation used in this exam: N. (1) S N (f,x) = f(t)e int dt e inx.

Tips and Tricks in Real Analysis

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

Fourier analysis, measures, and distributions. Alan Haynes

Oscillatory integrals

CHAPTER V DUAL SPACES

1 Fourier Integrals of finite measures.

Preliminary Exam 2018 Solutions to Morning Exam

Wiener Measure and Brownian Motion

A proof for the full Fourier series on [ π, π] is given here.

Some Aspects of Solutions of Partial Differential Equations

2) Let X be a compact space. Prove that the space C(X) of continuous real-valued functions is a complete metric space.

FOURIER SERIES WITH THE CONTINUOUS PRIMITIVE INTEGRAL

n=0 ( 1)n /(n + 1) converges, but not

Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space

be the set of complex valued 2π-periodic functions f on R such that

REAL AND COMPLEX ANALYSIS

13. Fourier transforms

Unbounded operators on Hilbert spaces

+ 2x sin x. f(b i ) f(a i ) < ɛ. i=1. i=1

Sobolev Spaces and Applications. T. Muthukumar

We have to prove now that (3.38) defines an orthonormal wavelet. It belongs to W 0 by Lemma and (3.55) with j = 1. We can write any f W 1 as

Bernstein s inequality and Nikolsky s inequality for R d

Final: Solutions Math 118A, Fall 2013

Theorem 5.3. Let E/F, E = F (u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg f u.

THEOREMS, ETC., FOR MATH 515

Mathematical Tripos Part III Michaelmas 2017 Distribution Theory & Applications, Example sheet 1 (answers) Dr A.C.L. Ashton

On stable inversion of the attenuated Radon transform with half data Jan Boman. We shall consider weighted Radon transforms of the form

STRUCTURE OF (w 1, w 2 )-TEMPERED ULTRADISTRIBUTION USING SHORT-TIME FOURIER TRANSFORM

On the distributional divergence of vector fields vanishing at infinity

INTRODUCTION TO DISTRIBUTIONS

Integral Jensen inequality

FOURIER INVERSION. an additive character in each of its arguments. The Fourier transform of f is

THE LAPLACIAN AND THE DIRICHLET PROBLEM

Distributions and Fourier Transform A. Visintin 2014

are harmonic functions so by superposition

1 Math 241A-B Homework Problem List for F2015 and W2016

Solutions to Tutorial 11 (Week 12)

PARTIAL DIFFERENTIAL EQUATIONS MIDTERM

HADAMARD OPERATORS ON D (R d )

Harmonic Functions and Brownian motion

Average theorem, Restriction theorem and Strichartz estimates

arxiv: v1 [math.fa] 18 Feb 2016

MTH 404: Measure and Integration

3. (a) What is a simple function? What is an integrable function? How is f dµ defined? Define it first

Motivation towards Clifford Analysis: The classical Cauchy s Integral Theorem from a Clifford perspective

Harmonic Analysis Homework 5

GAUSSIAN MEASURES ON 1.1 BOREL MEASURES ON HILBERT SPACES CHAPTER 1

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES

WEYL S LEMMA, ONE OF MANY. Daniel W. Stroock

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r

Transcription:

I. Introduction & Motivation I.1. Physical motivation. What can you really measure? (Realistically) T (x) vs. T (x)ϕ(x) dx. I.2. Mathematical motivation. How to differentiate nondifferentiable functions? IBP: b a T (x)ϕ(x) dx = b a T (x)ϕ (x) dx, (*) provided ϕ is nice, and the boundary terms vanish. Heaviside s operational calculus (c. 1900) Sobolev (1930s): continuous linear functionals over some space of test functions Schwartz (1950s): duality of certain topological vector spaces 1

Consider the DE u = H, where H(x) is the Heaviside function: { 1, x > 0 H(x) = 0, x 0 H(x) Figure 1. The Heaviside function H(x). We would like to say that { the soln is x, x > 0 x + = 0, x 0, but this function is not a classical soln: it is not differential at 0. x + Figure 2. The piecewise continuous function x+. 2

II. Basics of the theory Let us not require T to have a specific value at x. T is no longer a function call it a generalized function. Think of T as acting on a weighted open set instead of on a point x. T (x) T (ϕ) Formalize: T acts on test functions ϕ. Denote: T, ϕ = T (x)ϕ(x) dx. ϕ(x) a b [ ] Figure 3. A test function ϕ. Reqs for nice test functions ϕ : (1) ϕ C, and (2) boundary terms must vanish (ϕ( ) = ϕ( ) = 0). (a) ϕ C c, i.e., ϕ has compact support, or x (b) ϕ(x) 0 quickly(with derivs) Choosing (2a) leads to the theory of distributions à la Laurent Schwartz. Choosing (2b) leads to the theory of tempered distributions. 3

Definition 1. The space of test functions is D(Ω) := C c (Ω) Note: (2a) allows more distributions than (2b). (larger class of test functions fewer distributions. Reqs for a distribution : (1) T, ϕ must exist for ϕ D. (2) Linearity: T, a 1 ϕ 1 + a 2 ϕ 2 = a 1 T, ϕ 1 + a 2 T, ϕ 2. Taking a cue from Riesz 1 : Definition 2. The space of distributions is the (topological) dual space D (Ω) = {continuous linear functionals on D(Ω)}. 1 Actually, D (Ω) is a larger class than the class of Borel measures on Ω. 4

Examples 1. Any f L 1 loc (Ω). T f, ϕ = f(x)ϕ(x) dx The distribution f really means T f. 2. Any regular Borel measure µ on Ω T µ, ϕ = ϕ(x) dµ T is regular iff T = T f for f L 1 loc (Ω). Otherwise, T is singular. so The most famous singular distribution, Dirac-δ: δ, ϕ = ϕ(0) = δ(x)ϕ(x) dx = ϕ(x) dµ for δ(x) = µ(e) = {, x = 0 0, x 0 { 1, 0 E 0, 0 / E. 5

Some distributions do not even come from a measure. Example. δ, ϕ := ϕ (0). Note: require smooth test functions allow rough distributions; differentiability of a distribution relies on differentiability of test functions. To define δ, ϕ, ϕ must be C 0. To define δ, ϕ, ϕ must be C 1. 6

III. Differentiation of Distributions. Key point: how do we understand T? Only by T, ϕ. So what does T mean? Must understand T, ϕ. Working in Ω = R: T, ϕ = T (x)ϕ(x) dx = [T (x)ϕ(x)] = T, ϕ T (x)ϕ (x) dx Definition 3. For any T D (Ω), D k T, ϕ := T, D k ϕ, ϕ D. More generally (induct): D α T, ϕ := ( 1) α T, D α ϕ, ϕ D. Note: this formula shows every distribution is (infinitely) differentiable. Note: D α+β T = D α (D β T ). 7

Recall that x + is not differentiable { in the classical sense. x, x > 0 x + = 0, x 0, But x + can be differentiated as a distribution: x +, ϕ = x +, ϕ = 0 xϕ (x) dx = [ xϕ(x)] 0 + ϕ(x) dx = 0 + = H, ϕ So x + = H, as hoped. Similarly, x +, ϕ = H, ϕ = H, ϕ = 0 H(x)ϕ(x) dx = ϕ(0) So x + = H = δ, as hoped. 0 ϕ (x) dx (Motivation for ϕ C.) 8

IV. A Toolbox for Distribution Theory Definition 4. For {ϕ k } k=1 D, ϕ k 0 iff (i) K Ω compact s.t. spt ϕ k K, k, and (ii) D α ϕ k 0 uniformly on K, α. Definition 5. For {T k } k=1 D, T k 0 T k, ϕ 0 C, ϕ D. This is weak or distributional (or pointwise ) convergence. Theorem 6. Differentiation is linear & continuous. Proof. a) (at 1 + bt 2 ), ϕ = at 1 + bt 2, ϕ = a T 1, ϕ b T 2, ϕ = a T 1, ϕ + b T 2, ϕ b) Let {T n } D converge to T in D. T n, ϕ = T n, ϕ n T, ϕ = T, ϕ 9

Theorem 7. D is complete. Theorem 8. D is dense in D. (Given T D, {ϕ k } D such that ϕ k distributions.) T as Proposition 9. If f has classical derivative f and f is integrable on Ω, then T f = T f. Theorem 10. {f k } L 1 loc, f k L 1 loc. Then f D k f. D (i.e., T fk T f ) ae f, and f k g Definition 11. A sequence of functions {f k } such that f k D δ is a delta-convergent sequence, or δ-sequence. Theorem 12. Let f 0 be integrable on R n with f = 1. Define f λ (x) = λ n f ( ) x λ = λ n f ( x 1 ) λ,..., x n λ 10

for λ > 0. Then f λ D δ as λ 0. Example. dx R 1 + x = π = define f(x) = 1 2 π(1 + x 2 ). Then obtain the delta-sequence f λ = 1 λ 1 π(1+(x/λ) 2 ) = λ π(x 2 +λ 2 ). Example. e x2 = π 1/2 = define f(x) = e x2 π. R Then obtain the δ-sequence f λ = e x2 /λ πλ. Further, n dx = e x2 k dxk R n e x 2 = R n n k=1 k=1 = π n/2 gives the n-dimensional δ-sequence R n e x2 kdxk f λ (x) = e x 2 /λ (πλ) n/2. (1) 11

IV.1. Extension from test functions to distributions. Approximation and adjoint identities Approximation: For T D, and an operator S defined on D, find arbitrary ϕ n T and define ST = lim Sϕ n. Example. (Translation) Define S = τ h on D by τ h (ϕ) = τ h, ϕ = ϕ(x h). To define τ h T : find an arb sequence {ϕ n } D, with D ϕ n T. Then T, ϕ = T (x)ϕ(x) dx = lim ϕ n (x)ϕ(x) dx, so τ h T, ϕ = lim = lim = lim = lim = T, τ h ϕ τ h ϕ n (x)ϕ(x) dx ϕ n (x h)ϕ(x) dx ϕ n (x)ϕ(x + h) dx ϕ n (x)τ h ϕ(x) dx 12

Example. (Differentiation) Define S = d dx on D(R). Let I denote the identity, use τ h Then d dx = lim h 0 1 h (τ h I), so d T, ϕ = lim dx h 0 h 0 I. 1 h ( τ ht, ϕ T, ϕ ) 1 = lim h 0 h ( T, τ hϕ T, ϕ ) = lim h 0 T, 1 h (τ hϕ ϕ) 1 = T, lim h 0 h (τ h I) ϕ = T, d dx ϕ Adjoint Identities: Let T D and let R be an operator such that Rϕ D. Define S as the operator which satisfies ST, ϕ = T, Rϕ, i.e. ST (x)ϕ(x) dx = T (x)rϕ(x) dx. Definition 13. S is the adjoint of R. If S = R, we say R is self-adjoint. Example: The Laplacian. T, ϕ = T, ϕ. 13

Example. (Translation) Define S = τ h by Sψ, ϕ := ψ, τ h ϕ. τ h ψ(x)ϕ(x) dx = ψ(x)τ h ϕ(x) dx Example. (Differentiation) Define S = d ( d dx ψ(x)) ϕ(x) dx = dx by Sψ, ϕ := ψ, d dx ϕ. ψ(x) ( d dx ϕ(x)) dx Example. (Multiplication) Define S by Sψ, ϕ := ψ, f ϕ. (f(x)ψ(x)) ϕ(x) dx = ψ(x) (f(x)ϕ(x)) dx Note: this only works when f ϕ D! So require f C. Example of trouble: let f(x) = sgn(x) so f is discontinuous at 0. Then f δ cannot be defined: f δ, ϕ = δ, f ϕ = f(0)ϕ(0) but f(0) is undefined. Thus, the product of two arbitrary distributions is undefined. 14

IV.2. Multiplication. There is no way of defining the product of two distributions as a natural extension of the product of two functions... Definition 14. For T D, f C, can define their product ft as the linear functional ft, ϕ = T, fϕ, ϕ D. When T is regular, ft g, ϕ = T g, fϕ = gfϕ = fg, ϕ since fg is also in L 1 loc. Thus ft g = T fg in this case. Example. (Leibniz Rule) D k (ft ), ϕ = ft, D k ϕ = T, fd k ϕ = T, D k (fϕ) (D k f)ϕ = T, D k (fϕ) + T, (D k f)ϕ = fd k T, ϕ + (D k f)t, ϕ Thus, D k (ft ) = fd k T + (D k f)t. 15

V. Things from last time A distribution is a continuous linear functional on Cc (Ω) T, ϕ = T (ϕ) := T (x)ϕ(x) dx. T, ϕ = T, ϕ, α T, ϕ = ( 1) α T, α ϕ. δ, ϕ = ϕ(0) δ, ϕ = ϕ (0). For x + = max{0, x} and the Heaviside function H(x), x + = H = δ. The translation operator τ h, ϕ = τ h (ϕ) = ϕ(x h) τ h T, ϕ = T, τ h ϕ. The multiplication-by-a-smooth-function operator f T, ϕ = T, f ϕ. Adjoint Identities: Let T D and let R be an operator such that Rϕ D. Define S as the operator which satisfies ST, ϕ = T, Rϕ. 16

VI. Convolutions Convolution is a smoothing process: convolve anything with a C m function and the result is C m, even if m =. Strategy: T may be nasty, but T ϕ is lovely (C ), so work with it instead. Even better, find {ϕ k } such that T ϕ k T and use it to extend the usual rules of calculus & DEs. Need ϕ(x y) to discuss convolutions, so consider functions of 2 variables for a moment: ϕ(x, y) D(Ω 1 Ω 2 ). Let T i be a distribution on Ω i (T i D(Ω i )). For fixed y Ω 2, the function ϕ(, y) is in D(Ω 1 ), and T 1 maps ϕ(, y) to the number T 1, ϕ(, y) = T 1 (ϕ)(y). Theorem 15. For ϕ, T i as above, T 1 (ϕ) D(Ω 2 ) and β y T 1 (ϕ) = T 1 ( β y ϕ ). So T i : ϕ T i (ϕ) preserves the smoothness of ϕ D. 17

Corollary 16. If ϕ C (Ω 1 Ω 2 ) has compact support as a function of x and y separately, then T 1 (ϕ) C (Ω 2 ) for every T 1 D (Ω 1 ). y (0,1) spt ϕ(x+y) (-1,0) (1,0) x R 2 (0,-1) Figure 4. For ϕ D(R) with support spt(ϕ) = [ 1, 1], the function ϕ(x + y) is defined on R 2 and does not have compact support. Definition 17. Convolution of a Cc an L 1 loc function f is (ϕ f)(x) := ϕ(x y)f(y) dy = function ϕ with ϕ(y)f(x y) dy. Now extend convolution to distributions: (T 1 T 2 )(ϕ) = T 1 T 2, ϕ := T 1 (T 2 (ϕ(x+y)), ϕ D(R n ). 18

Suppose T i are regular, and defined by f i L 1 loc (Rn ), where at least one of the f i has compact support. Then (T 1 T 2 )(ϕ) = T 1 T 2, ϕ = T 1, T 2, ϕ(x + y) = f 1 (x) f 2 (y)ϕ(x + y) dy dx = f 1 (x y)f 2 (y)ϕ(x) dy dx x x y = f 1 f 2, ϕ with f 1 f 2 as above. Note: f 1 f 2 = f 2 f 1 = T 1 T 2 = T 2 T 1. VI.1. Properties of the convolution. Let T D (R n ) and ϕ D(R n ). Then δ T, ϕ = T δ, ϕ = T, δ, ϕ(x + y) = T, ϕ(y) shows δ T = T δ = T. Additionally, (D α δ) T, ϕ = T, (D α δ), ϕ(x + y) = T, ( 1) α D α ϕ(y) = D α T, ϕ 19

The Magic Property: (D α δ) T = D α T = D α (δ T ) = δ D α T. Further properties of : 2 1. spt(t 1 T 2 ) spt T 1 + spt T 2. 2. T 1 (T 2 T 3 ) = (T 1 T 2 ) T 3 = T 1 T 2 T 3. 3. D α (T 1 T 2 ) = (D α δ) T 1 T 2 = (D α T 1 ) T 2 = T 1 (D α T 2 ). 4. τ h (T 1 T 2 ) = δ h T 1 T 2 = (τ h T 1 ) T 2 = T 1 (τ h T 2 ). To see the last, note that τ h δ = δ h by τ h δ, ϕ = δ, τ h ϕ = δ, ϕ(x + h) = ϕ(h) = δ h, ϕ, 2 Assuming one of the Ti has compact support. 20

so δ h T = τ h T by δ h T, ϕ = T, δ h, ϕ(x + y) = T, ϕ(x + h) = T, τ h ϕ = τ h T, ϕ. Conclusion: (D, +, ) is a commutative algebra with unit δ. Example. Let S H = δ. Then δ = (S H) = S H = S δ = S, shows H 1 = δ. Similarly, (δ ) 1 = H. Definition 18. For f on R n, its reflection in 0 is f(x) = f( x). For distributions, we extend the defn by T, ϕ = T, ϕ. Theorem 19. The convolution (T ψ)(x) = T (τ x ψ) is in C (R n ). Proof. For any ϕ D(R), we have T ψ, ϕ = T, ψ(y), ϕ(x + y). 21

Thus ψ(y), ϕ(x + y) = = ψ(y)ϕ(x + y) dy ψ(ξ x)ϕ(ξ) dξ shows T ψ, ϕ = = ψ(ξ x), ϕ(ξ) = ψ(x ξ), ϕ(ξ) = τ ξ ψ(ξ), ϕ(ξ) T, τ ξ ψ(x), ϕ(ξ) = T (τ ξ ψ), ϕ(ξ) = T (τ x ψ), ϕ. Finally, note that (T ψ)(x) = T (τ x ψ) = T (ψ(x y)) is smooth by Cor. 16. Corollary 20. T (ϕ) = (T ϕ)(0). 22

VI.2. Applications of the convolution. The C function α(x) = { exp ( 1 1 x 2 ), x < 1 0, x 1 has support in the closed unit ball B = B(0, 1). [ ] 1 β(x) = α(x) α(y) dy is another C function with support in the closed unit ball B which satisfies β = 1. Then take the δ-sequence β λ (x) = 1 ( x ) λ nβ. λ Theorem 21. The C function T β λ converges strongly 3 to T as λ 0. Definition 22. The convolution of f (or T ) with β λ is called a regularization of f (or T ). T β 1/k = T γ k is a regularizing sequence for the distribution T D. 3 unif T βλ, ϕ T, ϕ on every bounded subset of D. 23

Proposition 23. Suppose T = 0. Then T = ae c R. Proof. Let γ k be a regularizing sequence for δ. Then (T γ k ) = T γ k = 0 for every k, so T γ k = c k. D c k = T γ k T, but still must show {c k } converges in C. Pick ϕ D with ϕ = 1. Then c k = c k, ϕ converges in C; hence its limit c = lim c k coincides with T. D Note: in general, f pw k f does not imply f k f (it doesn t even imply f is a function!). f k = constant is a special case. Proposition 24. Suppose T = 0. Then T is linear a.e. Proof. For ϕ D, T ϕ C, and (T ϕ) = T ϕ = 0. Thus T ϕ is a linear function of the form (T ϕ)(x) = ax + b. 24

Let h(x) = ax + b. Then (h β)(x) = h(x y)β(y) dy = [a(x y) + b]β(y) dy = ax + b since yβ(y) dy = 0. Thus h β = h, so (T β) γ k = (T γ k ) β = T γ k. As k, this gives T β = ae T. Note: this generalizes immediately to T (n) = 0 = T = ae P (x) = a 0 + a 1 x + + a m x m, for m < n. Definition 25. For T D, a distribution S satisfying D k S(ϕ) = T (ϕ) for all ϕ D is called a primitive (antiderivative) of T. Theorem 26. Any distribution in D (R) has a primitive which is unique up to an additive constant. 25

Another notion of regularization. Definition 27. If f has a pole at x 0, the Cauchy principal value of the divergent integral f(x) dx is pv f(x) dx = lim f(x) dx. ε 0 x x 0 ε Definition 28. Obtaining the distributional derivative of f L 1 loc from a divergent integral by taking the principal value is called regularizing the integral. If f L 1 loc but D α f / L 1 loc, then Dα T f is a regularization of T D α f. Example. The function { 1/x, x > 0, f(x) = 0, x 0 does not define a distribution on R However, f R + L 1 loc and so defines a regular distribution. As classical derivatives, d dx log x = 1 x, x 0 so what is the relation of the distributional derivative of log x to 1/x? 26

d dx log x, ϕ = log x, ϕ = log x ϕ (x) dx R = lim = lim = lim ε 0 log x ϕ (x) dx [ [log x ϕ(x)] ε ε [ 2ε log ε ϕ(ε) ϕ( ε) + 2ε ε 0 x ε ε 0 (log x L 1 loc) x ε x ε ] ϕ(x) x dx ] ϕ(x) x dx ϕ(x) = lim ε 0 x ε x dx ϕ(x) = pv x dx since ϕ is differentiable at x = 0. Hence, we say that (log x ) = pv 1/x. is the distributional derivative of log x, and is not a function. 27

VII. Solving Differential Equations with Distributions Consider a DE Lu = f, (2) where L is some linear 4 differential operator of order m. Definition 29. A classical solution to (2) is an m-times differentiable u defined on Ω which satisfies the equation in the sense of equality between functions. If u C m (Ω) (so Lu is continuous) then u is a strong solution. Definition 30. A weak solution to (2) is u D (Ω) which satisfies the equation in the sense of distributions: Lu, ϕ = f, ϕ, ϕ D(Ω). Note: every strong soln is a weak soln, but converse is false. 4 Restr to linear is nec because we cannot define mult in D as a natural extn of mult of functions. 28

Example. For Ω = R, consider xu = 0. Strong soln: u = c 1. Weak soln: consider u = c 2 H. u = c 2 δ xu, ϕ = c 2 xδ, ϕ = c 2 δ, xϕ = 0 ϕ D. So u = c 2 H is also a weak soln, and u = c 1 + c 2 H. is the (weak) general solution (but not a strong solution). What else is odd about this example? Example. Solve u = δ on R. We found the solution x + = xh(x). Any other solution will satisfy the homogeneous equation D 2 x [u xh(x)] = 0, so will have the form ζ(x) = xh(x) + ax + b. 29

Boundary conditions will determine the constants, e.g., ζ(0) = 0, ζ(1) = 1 = ζ(x) = xh(x). We use ζ to denote the general solution of u = δ. Now use this to solve more general equations. Example. For Ω = (0, 1), solve u = f. (3) Consider f = 0 outside (0, 1) so f L 1 (R). Then So one solution to (3) is u(x) = (f ζ)(x) = = 1 0 x 0 (f ζ) = f ζ = f δ = f. (x ξ)h(x ξ)f(ξ) dξ (x ξ)f(ξ) dξ 0 x 1, and the general solution is thus u(x) = x If we have initial conditions 0 (x ξ)f(ξ) dξ + ax + b. u (0) = a, u(0) = b, 30

this becomes u(x) = x 0 (x ξ)f(ξ) dξ + u (0)x + u(0). Alternatively, boundary conditions at x = 0 and x = 1 can be expressed u(0) = b u(1) = 1 0 (1 ξ)f(ξ) dξ + a + b. Definition 31. ζ is the fundamental solution of the operator D 2. E D is the fundamental solution of the differential operator L = c α (x)d α iff LE = δ. Reason: α m L(f E) = f LE = f δ = f shows f E is a solution to Lu = f. 31

Example. On R 2, is log x a weak solution to u = 0? For x 0, ( ) ( ) 1 1 log x = D 1 x D 1 x + D 2 x D 2 x ( ) ( ) x1 x2 = D 1 + D x 2 2 x 2 = 0, (4) so one might think so... log x L 1 loc (R2 0), so compute the (dist) Laplacian log x. log x, ϕ = log x, ϕ = log x ϕ(x) dx R 2 = lim log x ϕ(x) dx ε 0 x ε Now choose Ω to contain spt ϕ and B(0, ε), for ε > 0. Use Green s formula 5 on the open set Ω ε = Ω\B(0, ε) = {x Ω. x > ε} 5 Ω (u v v u) = Ω (udνv vdνu). 32

to get log x ϕ(x) dx = ϕ(x) log x dx Ω ε Ω ε + [log x D ν ϕ(x) ϕ(x)d ν log x ] dσ Ω ε where D ν is outward normal on Ω ε. Ω spt(ϕ) Ω ε x = ε D ν Figure 5. The domains Ω and Ω ε. But ϕ and D ν ϕ vanish on (and outside) Ω, so log x ϕ(x) dx = ϕ(x) log x dx x ε x ε + [log x D ν ϕ(x) ϕ(x)d ν log x ] dσ x =ε By (4), the first integral on the right drops out. With x = ( x 2 1 + x 2 2) 1/2 = r, we have Dν = D r on the 33

circle x = ε; and so log x ϕ(x) dx x ε [ ] = log εd r ϕ(x) + ϕ(x) ε x =ε dσ Since ϕ D(R 2 ), D r ϕ M on R 2. Thus log εd r ϕ(x) dσ log ε M 2πε x =ε ε 0 0. The other integral is 1 ϕ(x) dσ ε x =ε = 1 ε (ϕ(x) ϕ(0)) dσ + 1 ε ε 0 x =ε x =ε ϕ(0) dσ 0 + 2πϕ(0), since ϕ is continuous at 0. Conclusion: log x, ϕ = 2πϕ(0), ϕ D, hence log x = 2πδ. 1 Thus, 2π log x is a fundamental solution of in R2. 34

VIII. Things from last time Convolution (ϕ f)(x) := ϕ(x y)f(y) dy = ϕ(y)f(x y) dy. (T 1 T 2 )(ϕ) = T 1 T 2, ϕ := T 1 (T 2 (ϕ(x+y)), ϕ D(R n ). Key properties: δ T = T δ = T. T 1 T 2 = T 2 T 1. T 1 (T 2 T 3 ) = (T 1 T 2 ) T 3. D α (T 1 T 2 ) = (D α T 1 ) T 2 = T 1 (D α T 2 ). T D (R) = S D s.t. D k S(ϕ) = T (ϕ), ϕ pv f(x) dx = lim f(x) dx. ε 0 x x 0 ε Definition 32. E D is the fundamental solution of the differential operator L iff LE = δ. Reason: L(f E) = f LE = f δ = f shows f E is a solution to Lu = f. 1 2π log x is a fundamental solution of in R2. 35

Example. On R 3, is x 1 a weak solution to u = 0? x 1 = (D1 2 + D2 2 + D3)(x 2 2 1 + x 2 2 + x 2 3) 1/2 3 x j = D j (x 2 j=1 1 + x2 2 + x2 3 ( )3/2 ) 3 3x 2 j = (x 2 1 + x2 2 + 1 x2 3 )5/2 (x 2 1 + x2 2 + x2 3 )3/2 = 3 j=1 3 j=1 = 0, for x 0 so one might think so... Since x 1 L 1 loc (R3 ), x 1, ϕ = x 1, ϕ x 2 3 j (x 2 1 + x2 2 + x2 3 )5/2 j=1 1 (5) (x 2 1 + x2 2 + x2 3 )3/2 = lim [ = lim ε 0 + ε 0 x ε x ε x =ε x 1 ϕ(x) dx x 1 ϕ(x) dx ( ) x 1 D ν ϕ(x) D ν x 1 ϕ(x) ] dσ 36

by Green s formula. Again, the first integral vanishes by (5). With D ν = D r, x 1 ϕ(x) dx x ε = 1 D r ϕ(x) dσ 1 ϕ(x) dσ. ε ε 2 x =ε x =ε Since D r ϕ M on R 3, 1 D r ϕ(x) dσ ε M ε x =ε x =ε dσ = 4πεM ε 0 0. Finally, 1 ϕ(x) dσ ε 2 x =ε = 1 ( ( ) ϕ(x) ϕ(0) dσ + 1 ε 2 x =ε ε 2 = 1 ( ) ϕ(x) ϕ(0) dσ + 4πϕ(0) ε 2 x =ε ε 0 0 + 4πϕ(0) x =ε ) ϕ(0) dσ Thus x 1, ϕ = 4πϕ(0) shows 1 = 4πδ, and x hence 1 4π x is a fundamental solution of on R3. 37

By the preceding results, the Poisson equation u = f has a solution given by u = f ( 1 ) 4π x when the conv is well-defined. Recall, this is because for such a u, ( ( u = f 1 )) ( 4π x = f 1 ) 4π x = f δ = f The solution may be interpreted physically as the potential generated by f, e.g., gravitational potential due to a mass density distribution f. When f L 1 K, u(x) = 1 4π R 3 f(ξ) x ξ dξ. 38

Example. Temperature distribution on a slender, infinite conducting bar is described by { u t = u xx u(x, 0) = ϕ(x), where ϕ(x) is the initial heat distribution at t = 0. To get the general solution u = f E, we must find the fundamental solution E satisfying (D t D 2 x)e(x, t) = 0 (6) on the upper half plane R R +, and on the boundary t = 0, x R. E(x, 0) = δ (x,0) (7) Such an E is given by Fourier theory: E(x, t) = 1 4πt e x2 /4t. This satisfies (6) by direct computation. In order to satisfy (7), it suffices to show E(x, t) is a δ-sequence as t 0 +, but we did this in (1). 39

Example. The motion of an infinite vibrating string solves D 2 t u = D 2 xu, where x R, t > 0. Suppose the string is released with initial shape u 0 and initial velocity u 1. Let Then E 0 = 1 2 [H(x + t) H(x t)] E 1 = D t E 0 = 1 2 [δ(x + t) + δ(x t)]. (D 2 t D 2 x)e 0 = 0 (D 2 t D 2 x)e 1 = 0 clearly hold in the upper half plane. When t = 0, Consequently, E 0 = 0, E 1 = δ, D t E 1 = 0. u = u 0 E 1 + u 1 E 0 satisfies the initial conditions: u(x, 0) = u 0 δ + u 1 0 = u 0 u t (x, 0) = u 0 D t E 1 + u 1 D t E 0 = u 0 0 + u 1 δ = u 1 40

When u 0 C 2 and u 1 C 1 L 1, u = 1 2 [u 0(x t) + u 1 (x + t)] u 1 (ξ) [H(x + t ξ) H(x t ξ)] dξ + 1 2 = 1 2 [u 0(x t) + u 1 (x + t)] + 1 2 x+t x t u 1 (ξ) dξ H(x+t) H(x t) H(x+t) H(x t) t t t Figure 6. Construction of H(x + t) H(x t), which is convolved against u 1. The more general wave equation Dt 2 u = c 2 Dxu 2 is solved from this one via change of coordinates: u = 1 2 [u 0(x ct) + u 1 (x + ct)] + 1 2c x+ct x ct u 1 (ξ) dξ. If the string is released from rest (u 1 = 0), the solution is the average of two travelling waves u 0 (x ct), u 1 (x ct), both having the same shape u 0 but travelling in opposite directions with velocity ±c. 41

IX. The Descent Method The Descent Method was so coined in [La-vF] and is reminiscent of the method used by Schwartz to establish the convergence of the Fourier series associated to a periodic distribution. General idea of the Descent Method: (1) Begin with a formula you would like to manipulate, but cannot due to some issue of convergence. (2) Prove that the pointwise manipulations hold under some sufficiently restrictive conditions. (3) Integrate multiple times (say q times), until these conditions are met, so everything is sufficiently smooth and converges nicely. (4) Perform the desired manipulations. (5) Differentiate distributionally (q times) until you obtain the formula you need. Resulting identity will hold distributionally, but may not make sense pointwise. 42

We will be using periodic distributions: D (R n ) per := {T D (R n ). τ κ T = T, κ Z n } = D (T n ), where T n = R n /Z n. Properties true for R n will remain true on T n when of a local nature; convolution product has all the familiar properties. Theorem 33. If T D has compact support, then there is a continuous function f and a multi-index α N n such that T, ϕ = D α f, ϕ, ϕ D. Theorem 34. (Dirichlet) If a periodic function f has a point x 0 for which both f(x 0 ) = lim x x 0 f(x) and f(x 0 +) = lim x x + 0 f(x) exist and are finite, then its Fourier series converges at x 0 to the value 1 2 [f(x 0 ) + f(x 0 +)]. In particular, if f is continuous on [a, b], then the Fourier series converges pointwise to the value of the function on [a, b]. 43

Theorem 35. The Fourier series associated to a periodic distribution converges if and only if the Fourier coefficients are of slow growth 6 Combining these results, we know that we will be able to integrate any periodic distribution until it becomes a continuous fn, whence we can integrate it until it is C m. This is the key that allows the descent method. Example. Suppose you have the Fourier series of two periodic distributions: P α, Q β. α Z What is the product ( α Z β Z ) P α Q β? β Z The product will contain a coefficients R α,β for each point (α, β) Z 2. We d like to say ( ) P α Q β R α,β. β Z α Z = N N α + β =N 6 Slow growth means that they do not grow faster than polynomially, i.e., D α ϕ(x) C α(1 + x ) N(α), α. 44

Figure 7. Writing the Cauchy product of doubly infinite series. If the series do not converge absolutely, this rearrangement is not justified: need the Descent Method! (1) Start with ( ) P α Q β = β Z α Z (α,β) Z 2 R α,β. (2) We know that such rearrangements are valid when the series is absolutely convergent. (3) Integrate the series term-by-term, q times. For large enough q, the series will converge absolutely, and even normally. (4) Rearrange the terms of the integrated series so that they are indexed/ordered in the concentric form mentioned above. (5) Differentiate the reordered series, term-by-term, q times. 45

We have just shown that as distributions, ( ) P α Q β = R α,β, α Z β Z N N α + β =N even though the sum on the right may not converge pointwise. Example. Suppose for x [0, y] you have an expression of the ( form ) a m ( 1) f1(n,m) b n,m x n c m ( 1) f2(n,m) d n,m x n m=0 n N n N and you would like to factor out the powers of x. Pointwise, such a manipulation would have no justification unless we had some strong convergence conditions, positivity of the terms, etc. However, we interpret the series as a distribution and apply the descent method. Then [ we get the series ( ) ] a m ( 1) f1(n,m) b n,m c m ( 1) f2(n,m) d n,m x n n N m=0 which is equal, as a distribution, to the original expression, and shows the coefficients of the x n much more clearly. 46

References [AG] [Ev] M. A. Al-Gwaiz, Theory of Distributions, Pure and Applied Mathematics 159, Marcel Dekker, Inc., New York, 1992. Lawrence C. Evans, Partial Differential Equations, Graduate Studies in Mathematics volume 19, American Mathematical Society, Providence, 1998. [La-vF] M. L. Lapidus and M. van Frankenhuysen, Fractal Geometry and Number Theory: Complex dimensions of fractal strings and zeros of zeta functions, Birkhäuser, Boston, 2000 (Second rev. and enl. ed. to appear in 2005.) [St] [Ru] Robert Strichartz, A Guide to Distribution Theory and Fourier Transforms, Studies in Advanced Mathematics, CRC Press, 1994. Walter Rudin, Functional Analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., 1973. 47