ch-01.qxd 8/4/04 2:33 PM Page 1 Part 1 Basic Principles of Open Channel Flows

Similar documents
Lecture Note for Open Channel Hydraulics

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1

Fluid Mechanics. du dy

UNIT I FLUID PROPERTIES AND STATICS

NPTEL Quiz Hydraulics

HYDRAULICS STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL HYDRAULICS

Lesson 6 Review of fundamentals: Fluid flow

150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces

s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I

Fluid Mechanics Abdusselam Altunkaynak

Introduction to Marine Hydrodynamics

Fluid Mechanics Introduction

CHAPTER 2 Pressure and Head

REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology

Open Channel Flow - General. Hydromechanics VVR090

Chapter 1 INTRODUCTION

Fluid Mechanics-61341

Open Channel Flow - General. Open Channel Flow

Chapter 4 DYNAMICS OF FLUID FLOW

The most common methods to identify velocity of flow are pathlines, streaklines and streamlines.

Hydraulics for Urban Storm Drainage

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Steven Burian Civil & Environmental Engineering September 25, 2013

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.

Chapter 14. Fluid Mechanics

1. The Properties of Fluids

Fluid Statics. Pressure. Pressure

2, where dp is the constant, R is the radius of

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0


Civil Engineering Department College of Engineering

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD

The general rules of statics (as applied in solid mechanics) apply to fluids at rest. From earlier we know that:

ME3560 Tentative Schedule Spring 2019

CHAPTER 1 Fluids and their Properties

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

MECHANICAL PROPERTIES OF FLUIDS:

FLOW MEASUREMENT IN PIPES EXPERIMENT

ME3560 Tentative Schedule Fall 2018

Fluid Mechanics. If deformation is small, the stress in a body is proportional to the corresponding

Visualization of flow pattern over or around immersed objects in open channel flow.

Chapter 9: Solids and Fluids

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

1. Introduction, fluid properties (1.1, 2.8, 4.1, and handouts)

Hydraulics and hydrology

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.

Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian

Pressure in stationary and moving fluid Lab- Lab On- On Chip: Lecture 2

R09. d water surface. Prove that the depth of pressure is equal to p +.

Fluid Mechanics Testbank By David Admiraal

Fluid Mechanics-61341

CE MECHANICS OF FLUIDS

Minimum Specific Energy and Critical Flow Conditions in Open Channels

Chapter 1 Fluid Characteristics

Physics. Assignment-1(UNITS AND MEASUREMENT)

Hydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.

Pressure in stationary and moving fluid. Lab-On-Chip: Lecture 2

Pressure Head: Pressure head is the height of a column of water that would exert a unit pressure equal to the pressure of the water.

Physics 123 Unit #1 Review

CH.1 Overview of Fluid Mechanics/22 MARKS. 1.1 Fluid Fundamentals.

The Hydraulics of Open Channel Flow: An Introduction

Fluid Mechanics Discussion. Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad

AMME2261: Fluid Mechanics 1 Course Notes

Physics 207 Lecture 18

Shell Balances in Fluid Mechanics

Lagrangian description from the perspective of a parcel moving within the flow. Streamline Eulerian, tangent line to instantaneous velocity field.

Fluid Mechanics II Viscosity and shear stresses

ME-B41 Lab 1: Hydrostatics. Experimental Procedures

Exercise sheet 5 (Pipe flow)

Mechanical Engineering Programme of Study

Chapter 1. Viscosity and the stress (momentum flux) tensor

1 FLUIDS AND THEIR PROPERTIES

ACE Engineering College

Fluid Dynamics Exercises and questions for the course

PROPERTIES OF FLUIDS

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like:

Any of the book listed below are more than adequate for this module.

presented by Umut Türker Open Channel Flow

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118

1.060 Engineering Mechanics II Spring Problem Set 8

Formulae that you may or may not find useful. E v = V. dy dx = v u. y cp y = I xc/a y. Volume of an entire sphere = 4πr3 = πd3

CHAPTER 6 Fluids Engineering. SKMM1922 Introduction of Mechanical Engineering

GATE PSU. Chemical Engineering. Fluid Mechanics. For. The Gate Coach 28, Jia Sarai, Near IIT Hauzkhas, New Delhi 16 (+91) ,

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

BFC FLUID MECHANICS BFC NOOR ALIZA AHMAD

5 ENERGY EQUATION OF FLUID MOTION

10.52 Mechanics of Fluids Spring 2006 Problem Set 3

Chapter (6) Energy Equation and Its Applications

MECHANICAL PROPERTIES OF FLUIDS

STEADY UNIFORM FLOW IN OPEN CHANNEL

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

6. Basic basic equations I ( )

UNIFORM FLOW CRITICAL FLOW GRADUALLY VARIED FLOW

Jurong Junior College 2014 J1 H1 Physics (8866) Tutorial 3: Forces (Solutions)

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

Consider a control volume in the form of a straight section of a streamtube ABCD.

Transcription:

ch-01.qxd 8/4/04 2:33 PM Page 1 Part 1 Basic Principles of Open Channel Flows

ch-01.qxd 8/4/04 2:33 PM Page 3 Introduction 1 Summary The introduction chapter reviews briefly the basic fluid properties and some important results for fluids at rest. Then the concept of open channel flow is defined and some applications are described. 1.1 PRESENTATION The term hydraulics is related to the application of the Fluid Mechanics principles to water engineering structures, civil and environmental engineering facilities, especially hydraulic structures (e.g. canal, river, dam, reservoir and water treatment plant). In the book, we consider open channels in which liquid (i.e. water) flows with a free surface. Examples of open channels are natural streams and rivers. Man-made channels include irrigation and navigation canals, drainage ditches, sewer and culvert pipes running partially full, and spillways. The primary factor in open channel flow analysis is the location of the free surface, which is unknown beforehand (i.e. a priori). The free surface rises and falls in response to perturbations to the flow (e.g. changes in channel slope or width). The main parameters of a hydraulic study are the geometry of the channel (e.g. width, slope and roughness), the properties of the flowing fluid (e.g. density and viscosity) and the flow parameters (e.g. velocity and flow depth). 1.2 FLUID PROPERTIES The density of a fluid is defined as its mass per unit volume. All real fluids resist any force tending to cause one layer to move over another, but this resistance is offered only while the movement is taking place. The resistance to the movement of one layer of fluid over an adjoining one is referred to as the viscosity of the fluid. Newton s law of viscosity postulates that, for the straight parallel motion of a given fluid, the tangential stress between two adjacent layers is proportional to the velocity gradient in a direction perpendicular to the layers: d d V y (1.1) where is the shear stress between adjacent fluid layers, is the dynamic viscosity of the fluid, V is the velocity and y is the direction perpendicular to the fluid motion. Fluids that obey Newton s law of viscosity are called Newtonian fluids. At the interface between a liquid and a gas, a liquid and a solid, or two immiscible liquids, a tensile force is exerted at the surface of the liquid and tends to reduce the area of this surface to the

ch-01.qxd 8/4/04 2:33 PM Page 4 4 Introduction greatest possible extent. The surface tension is the stretching force required to form the film: i.e. the tensile force per unit length of the film in equilibrium. The basic properties of air and water are detailed in Appendix A1.1. Notes 1. Isaac Newton (1642 1727) was an English mathematician. 2. The kinematic viscosity is the ratio of viscosity to mass density: = 3. A Newtonian fluid is one in which the shear stress, in one-directional flow, is proportional to the rate of deformation as measured by the velocity gradient across the flow (i.e. equation (1.1)). The common fluids such as air, water and light petroleum oils, are Newtonian fluids. Non-Newtonian fluids will not be considered any further in Part I. They will be briefly mentioned in Part II (i.e. hyperconcentrated flows). Application At atmospheric pressure and 20 C the density and dynamic viscosity of water are: and the density of air is around: w w 998. 2kg/m 1. 005 10 3 Pas 3 air 12kg/m. Water in contact with air has a surface tension of about 0.0733 N/m at 20 C. Considering a spherical gas bubble (diameter d ab ) in a liquid, the increase of gas pressure required to balance the tensile force caused by surface tension equals: P 4 /d ab. 3 1.3 STATIC FLUIDS Considering a fluid at rest (Fig. 1.1), the pressure at any point within the fluid follows Pascal s law. For any small control volume, there is no shear stress acting on the control surface. The only forces acting on the control volume of fluid are the gravity and the pressure 1 forces. In a static fluid, the pressure at one point in the fluid has an unique value, independent of the direction. This is called Pascal s law. The pressure variation in a static fluid follows: dp dz g (1.2) where P is the pressure, z is the vertical elevation positive upwards, is the fluid density and g is the gravity constant (see Appendix A1.1). 1 By definition, the pressure acts always normal to a surface. That is, the pressure force has no component tangential to the surface.

ch-01.qxd 8/4/04 2:33 PM Page 5 1.3 Static fluids 5 Piezometric line Free surface Gas P atm z d Fluid at rest d z o W g x y Fig. 1.1 Pressure variation in a static fluid. For a body of fluid at rest with a free surface (e.g. a lake) and with a constant density, the pressure variation equals: Pxy (,, z) Patm gz ( ( zo d)) (1.3) where P atm is the atmospheric pressure (i.e. air pressure above the free surface), z o is the elevation of the reservoir bottom and d is the reservoir depth (Fig. 1.1). (d z o ) is the free-surface elevation. Equation (1.3) implies that the pressure is independent of the horizontal co-ordinates (x, y). The term { g(z (z o d ))} is positive within the liquid at rest. It is called the hydrostatic pressure. The pressure force acting on a surface of finite area which is in contact with the fluid is distributed over the surface. The resultant force is obtained by integration: F p PdA (1.4) where A is the surface area. Note Blaise Pascal (1623 1662) was a French mathematician, physicist and philosopher. He developed the modern theory of probability. He also formulated the concept of pressure (between 1646 and 1648) and showed that the pressure in a fluid is transmitted through the fluid in all directions (i.e. Pascal s law).

ch-01.qxd 8/4/04 2:33 PM Page 6 6 Introduction Application In Fig. 1.1, the pressure force (per unit width) applied on the sides of the tank are: Fp gdw Pressure force acting on the bottom per unit width 1 2 Fp gd Pressure force acting on the right-wall per unit width 2 For the left-wall, the pressure force acts in the direction normal to the wall. The integration of equation (1.4) yields: F p 2 1 g d 2 sin Pressure force acting on the left-wall per unit width 1.4 OPEN CHANNEL FLOW 1.4.1 Definition An open channel is a waterway, canal or conduit in which a liquid flows with a free surface. An open channel flow describes the fluid motion in open channel (Fig. 1.2). In most applications, the liquid is water and the air above the flow is usually at rest and at standard atmospheric pressure (see Appendix A1.1). Notes 1. In some practical cases (e.g. a closed conduit flowing partly full), the pressure of the air above the flow might become sub-atmospheric. 2. Next to the free surface of an open channel flow, some air is entrained by friction at the free surface. That is, the no-slip condition at the air water interface induces the air motion. The term air boundary layer is sometimes used to describe the atmospheric region where air is entrained through momentum transfer at the free surface. 3. In a clear-water open channel flow, the free surface is clearly defined: it is the interface between the water and the air. For an air water mixture flow (called white waters ), the definition of the free surface (i.e. the interface between the flowing mixture and the surrounding atmosphere) becomes somewhat complicated (e.g. Wood, 1991; Chanson, 1997). 1.4.2 Applications Open channel flows are found in Nature as well as in man-made structures (Fig. 1.3, Plates 1 to 32). In Nature, tranquil flows are observed in large rivers near their estuaries: e.g. the Nile River between Alexandria and Cairo, the Brisbane River in Brisbane. Rushing waters are encountered in mountain rivers, river rapids and torrents. Classical examples include the cataracts of the Nile River, the Zambesi rapids in Africa and the Rhine waterfalls. Man-made open channels can be water-supply channels for irrigation, power supply and drinking waters, conveyor channel in water treatment plants, storm waterways, some public fountains, culverts below roads and railways lines. Open channel flows are observed in small-scale as well as large-scale situations. For example, the flow depth can be between few centimetres in water treatment plants and over 10 m in large

ch-01.qxd 8/4/04 2:33 PM Page 7 1.4 Open channel flow 7 Atmosphere y Free surface Water flow d Velocity distribution z o u Datum Fig. 1.2 Sketch of open channel flow. Fig. 1.3 Wisconsin River and sand bars in Aug, 1966 (Courtesy of Dr Lou Maher) looking upstream. rivers. The mean flow velocity may range from less than 0.01 m/s in tranquil waters to above 50 m/s in high-head spillway. The range of total discharges 2 may extend from Q 0.001 l/s in chemical plants to Q 10 000 m 3 /s in large rivers or spillways. In each flow situation, however, the location of the free surface is unknown beforehand and it is determined by applying the continuity and momentum principles. 2 In hydraulics of open channels, the water flow is assumed incompressible and the volume discharge is commonly used.

ch-01.qxd 8/4/04 2:33 PM Page 8 8 Introduction Table 1.1 Basic differences between pipe flow and open channel flow of an incompressible fluid Pipe flow Open channel flow Flow driven by Pressure work Gravity (i.e. potential energy) Flow cross-section Known (fixed by pipe Unknown in advance because the flow depth is geometry) unknown beforehand Characteristic flow Velocity deduced from Flow depth and velocity deduced by solving parameters continuity equation simultaneously the continuity and momentum equations Specific boundary conditions Atmospheric pressure at the flow free surface 1.4.3 Discussion There are characteristic differences between open channel flow and pipe flow (Table 1.1). In an open channel, the flow is driven by gravity in most cases rather than by pressure work as with pipe flow. Another dominant feature of open channel flow is the presence of a free surface: the position of the free surface is unknown in advance, its location must be deduced by solving simultaneously the continuity and momentum equations, and the pressure at the free surface is atmospheric. 1.5 EXERCISES Give the values (and units) of the specified fluid and physical properties: (a) Density of water at atmospheric pressure and 20 C. (b) Density of air at atmospheric pressure and 20 C. (c) Dynamic viscosity of water at atmospheric pressure and 20 C. (d) Kinematic viscosity of water at atmospheric pressure and 20 C. (e) Kinematic viscosity of air at atmospheric pressure and 20 C. (f) Surface tension of air and water at atmospheric pressure and 20 C. (g) Acceleration of gravity in Brisbane. What is the Newton s law of viscosity? In a static fluid, express the pressure variation with depth. Considering a spherical air bubble (diameter d ab ) submerged in water with hydrostatic pressure distribution: (a) Will the bubble rise or drop? (b) Is the pressure inside the bubble greater or smaller than the surrounding atmospheric pressure? (c) What is the magnitude of the pressure difference (between inside and outside the bubble)? Note: the last question requires some basic calculation.