Half of Final Exam Name: Practice Problems October 28, 2014

Similar documents
Problem set 7 Math 207A, Fall 2011 Solutions

Practice Problems for Final Exam

LMI Methods in Optimal and Robust Control

ẋ = f(x, y), ẏ = g(x, y), (x, y) D, can only have periodic solutions if (f,g) changes sign in D or if (f,g)=0in D.

Main topics and some repetition exercises for the course MMG511/MVE161 ODE and mathematical modeling in year Main topics in the course:

B5.6 Nonlinear Systems

Math 273 (51) - Final

154 Chapter 9 Hints, Answers, and Solutions The particular trajectories are highlighted in the phase portraits below.

1. < 0: the eigenvalues are real and have opposite signs; the fixed point is a saddle point

Part II. Dynamical Systems. Year

B5.6 Nonlinear Systems

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.

2.10 Saddles, Nodes, Foci and Centers

Nonlinear Systems Theory

Problem List MATH 5173 Spring, 2014

Chapter 9 Global Nonlinear Techniques

Summary of topics relevant for the final. p. 1

Math 232, Final Test, 20 March 2007

Applied Dynamical Systems

Ordinary Differential Equation Theory

3 Stability and Lyapunov Functions

Solutions to Final Exam Sample Problems, Math 246, Spring 2011

THE INVERSE FUNCTION THEOREM

Nonlinear Autonomous Dynamical systems of two dimensions. Part A

MATH 215/255 Solutions to Additional Practice Problems April dy dt

FINAL EXAM MATH303 Theory of Ordinary Differential Equations. Spring dx dt = x + 3y dy dt = x y.

MA5510 Ordinary Differential Equation, Fall, 2014

MATH 32A: MIDTERM 2 REVIEW. sin 2 u du z(t) = sin 2 t + cos 2 2

Econ 204 Differential Equations. 1 Existence and Uniqueness of Solutions

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

1 Lyapunov theory of stability

Math 266: Phase Plane Portrait

Nonlinear Autonomous Systems of Differential

Math 234 Final Exam (with answers) Spring 2017

2. Dual space is essential for the concept of gradient which, in turn, leads to the variational analysis of Lagrange multipliers.

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables.

Chapter #4 EEE8086-EEE8115. Robust and Adaptive Control Systems

APPM 2360: Final Exam 10:30am 1:00pm, May 6, 2015.

Differential equations, comprehensive exam topics and sample questions

Nonlinear Control Systems

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

3 Applications of partial differentiation

1 The pendulum equation

BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

4 Second-Order Systems

Mathematical Analysis Outline. William G. Faris

Sample Solutions of Assignment 10 for MAT3270B

Complex Dynamic Systems: Qualitative vs Quantitative analysis

Section 9.3 Phase Plane Portraits (for Planar Systems)

ME 680- Spring Representation and Stability Concepts

Examples include: (a) the Lorenz system for climate and weather modeling (b) the Hodgkin-Huxley system for neuron modeling

Economics 204 Fall 2011 Problem Set 2 Suggested Solutions

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

MCE693/793: Analysis and Control of Nonlinear Systems

Physics: spring-mass system, planet motion, pendulum. Biology: ecology problem, neural conduction, epidemics

NORMS ON SPACE OF MATRICES

Chapter 4: First-order differential equations. Similarity and Transport Phenomena in Fluid Dynamics Christophe Ancey

Nonlinear Dynamical Systems Lecture - 01

Math 10C - Fall Final Exam

In these chapter 2A notes write vectors in boldface to reduce the ambiguity of the notation.

MAT 211 Final Exam. Spring Jennings. Show your work!

Math 1270 Honors ODE I Fall, 2008 Class notes # 14. x 0 = F (x; y) y 0 = G (x; y) u 0 = au + bv = cu + dv

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations

(x k ) sequence in F, lim x k = x x F. If F : R n R is a function, level sets and sublevel sets of F are any sets of the form (respectively);

Stable and Unstable Manifolds for Planar Dynamical Systems

There is a more global concept that is related to this circle of ideas that we discuss somewhat informally. Namely, a region R R n with a (smooth)

STABILITY. Phase portraits and local stability

Lyapunov Stability Theory

MATH 32A: MIDTERM 1 REVIEW. 1. Vectors. v v = 1 22

An Undergraduate s Guide to the Hartman-Grobman and Poincaré-Bendixon Theorems

Volumes of Solids of Revolution Lecture #6 a

Existence and uniqueness of solutions for nonlinear ODEs

Third In-Class Exam Solutions Math 246, Professor David Levermore Thursday, 3 December 2009 (1) [6] Given that 2 is an eigenvalue of the matrix

minimize x subject to (x 2)(x 4) u,

Now I switch to nonlinear systems. In this chapter the main object of study will be

Solutions of Math 53 Midterm Exam I

Do not write below here. Question Score Question Score Question Score

Math 216 Final Exam 14 December, 2012

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS III: Autonomous Planar Systems David Levermore Department of Mathematics University of Maryland

MATH 415, WEEK 11: Bifurcations in Multiple Dimensions, Hopf Bifurcation

ODE Homework 1. Due Wed. 19 August 2009; At the beginning of the class

ANSWERS Final Exam Math 250b, Section 2 (Professor J. M. Cushing), 15 May 2008 PART 1

MAS331: Metric Spaces Problems on Chapter 1

Lecture Notes for Math 524

3 (Due ). Let A X consist of points (x, y) such that either x or y is a rational number. Is A measurable? What is its Lebesgue measure?

DYNAMICAL SYSTEMS AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

Department of Mathematics IIT Guwahati

Section 5. Graphing Systems

= e t sin 2t. s 2 2s + 5 (s 1) Solution: Using the derivative of LT formula we have

Non-Linear Dynamics Homework Solutions Week 6

Math 118, Fall 2014 Final Exam

ENGI Linear Approximation (2) Page Linear Approximation to a System of Non-Linear ODEs (2)

Math 216 First Midterm 19 October, 2017

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C

Implicit Functions, Curves and Surfaces

Approximating solutions of nonlinear second order ordinary differential equations via Dhage iteration principle

Math 361: Homework 1 Solutions

Understand the existence and uniqueness theorems and what they tell you about solutions to initial value problems.

Transcription:

Math 54. Treibergs Half of Final Exam Name: Practice Problems October 28, 24 Half of the final will be over material since the last midterm exam, such as the practice problems given here. The other half will be comprehensive.. Consider this enhanced predator prey system for the populations of two species x, y. Find the nullclines and use this information to sketch the phase space. Indicate the equilibrium points and the direction of flow. Determine the stability types of the rest points and find the stable and unstable spaces of the linearized flows at these points. Sketch enough trajectories to describe the global flow. x = x( + y) y = y( x y) x = if x = or y =. y = if y = or x + y =. Thus both equations are satisfied at the equilibrium points P = (, ), P 2 = (, ) and P = (2, ). We note that x > if y < and x < if y >. Similarly y > if x + y < and y < if x + y >. Thus in the four regions NE, NW, SW and SE cut by y = and x + y = going clockwise around P, the direction of flow is SE, NE, NW ande SW, respectively. The Jacobean is At P we have DF (x, y) = y y DF (, ) = x. 2y x ( ) so that the eigenvalues and eigenvectors are λ =, V = (, ); λ 2 =, V 2 = (, ). This is a saddle with E s and E u the horizontal and vertical axes, resp. At P 2 we have DF (, ) = ( ) 2 so that the eigenvalues and eigenvectors are λ = 2, V = (5, ); λ 2 =, V 2 = (, ). This is a saddle with E s the vertical axis and E u = span{v }. At P we have DF (2, ) = ( ) 2. The trace is negative and the determinant is positive, so that the eigenvalues are both negative or have negative real parts. Indeed the eigenvalues are λ = 2 ( + 7i). This is a stable spiral. All of this information is given in Fig.. The computed phase plane generated by D- XplorMath is given in Fig. 2.

Figure : Nullclines, Equilibrium Points, Directions and Stable/Unstable Spaces. Figure 2: Trajectories of the predator prey system of Problem.. 2

2. Consider the folowing model of reaction diffusion equation system. Determine if it is a gradient or a Hamiltonian system. Use this fact to sketch the global flow. Identify the stability type of the equilibrium points. x = 2(y x) + x( x 2 ) y = 2(y x) + y( y 2 ) We see that f y (x, y) = 2 and g x (x, y) = 2 are equal so there is a potential function F (x, y) = 2 x2 + 4 x4 2xy + 2 y2 + 4 x4 and the system is a gradient system ( ) x = F (x, y). y The critical points satisfy = f(x, y) = F x = 2y x x = g(x, y) = F y = 2x y y Thus the equilibrium points are the intersections of the curves y = 2 (x + x ) and y = 2 (y + y ), which are the points P = (, ), P 2 = (, ) and P = (, ). Computing the Hessian, ( ) ( ) Fxx F xy x 2 H(x, y) = = 2 y 2 At P, F yx F yy H(, ) = ( ) 2 2 whose eigenvalues are λ = 2 and λ 2 = 6, hence P 2 and P are relative minima. At P 2 and P, H(, ) = H(, ) = ( ) 4 2 2 4 whose eigenvalues are λ = and λ 2 =, hence is a saddle. It follows that P is a saddle for the flow and both P 2 and P are stable nodes. The flow is perpendicular to the level surfaces. The D-XplorMath plot of level sets and trajectories is given in Fig. 4.. Suppose that f(x, t) C ( R 2, R ) and that (, x ) R 2. Assume that f satisfies a local Lipschitz Condition: for every compact set K R 2 there is L R so that f(t, x) f(t, y) L x y whenever (t, x), (t, y) K. Then there is an ɛ > and a function x(t) C ([, + ɛ), R 2 ) which solves the initial value problem x = f(t, x) () x( ) = x. This is the short time existence theorem for non-autonomous equations. Note that we only assume continuity with respect to t so that we cannot consider time as an independent variable in a system of one higher dimension and quote the result we proved in class for autonomous equations. However, we may follow the proof we gave verbatim.

Figure : Flow of gradient system and level curves of the potential. For any r > let R = [, + r] [x r, x + r] be a compact compact box and L its corresponding Lipschitz constant. Let { Let ɛ = min r, M } r,. Let L + M = sup f(t, x). (t,x) R X = {z(t) C([, + ɛ]) : z(t) x r whenever t [, + ɛ]} The space X is a closed convex subset of the complete metric space C([, + ɛ]) under the sup norm. The sup norm for w C([, + ɛ]) is given by w = sup w(s). s [,+ɛ] Thus the subspace (X, ) is also a complete metric space. We will show that there is a unique function z X that solves the integral equation x(t) = x + f(s, x(s)) ds for all t [, + ɛ] (2) Define the nonlinear operator T : X X for u X and t [, + ɛ] by the formula (T u)(t) = x + f(s, u(s)) ds. 4

Note that T u is continuous since it is the indefinite integral of a continuous function s f(s, u(s)). To see that is satisfies the bound, we have for any for u X and t [, + ɛ] (T u)(t) x = f(s, u(s)) ds f(s, u(s)) ds Thus we have shown that T : X X. M ds = M(t ) Mɛ M r M r. Now we shall show that the operator is a contraction, namely, for some θ (, ) we have for all u, v X T u T v θ u v. () In this situation, we define the Picard Iterates recursively: x (t) = x and x n+ (t) = (T x n )(t) for n N. If the mapping T is a contraction, then the Picard Iterates {x n (t)} are dominated by a geometric sequence, thus form a Uniformly Cauchy sequence on [, + ɛ], thus converges uniformly to a unique continuous function in the complete metric space (X, ) satisfying x = T x, which is the integral equation (2). This fact from analysis is called the Contraction Mapping Theorem or the Banach Fixed Point Theorem. For u, v X and t [, + ɛ] we have by the Lipschitz bound, (T u)(t) (T v)(t) = f(s, u(s)) f(s, v(s)) ds f(s, u(s)) f(s, v(s)) ds L u(s) v(s) ds L u v ds = (t ) u v L u v. L + Taking supremum over t [, + ɛ] gives () with θ = L L +. It remains to argue that the solution of the integral equation (2) also solves the initial value problem (). If x(t) solves (), then by the Fundamental Theorem of Calculus, for t [, + ɛ], x(t) x = dx t (s) ds = f(s, x(s)) ds dt which is the integral equation (2). On the other hand, if x(t) X solves the integral equation (2), then it is differentiable since by the Fundamental Theorem of Calculus, x(x) is the integral of a continuous function. Moreover, its derivative is given by the integrand Also, at the initial point dx (t) = f(t, x(t)). dt so the initial condition holds as well. x( ) = x + f(s, x(s)) ds = x +, 5

4. Suppose that f(x, t) C ( R 2, R ), (, x ) R 2 and a >. Assume that f satisfies a Lipschitz Condition: there is L R so that f(t, x) f(t, y) L x y whenever (t, x), (t, y) [, + a] R. Show that the soliution of the initial value problem () is unique. Suppose that both u(t) and v(t) satisfy the initial value problem (). Using ther integral equation, we find u(t) v(t) = f(s, u(s)) f(s, v(s)) ds f(s, u(s)) f(s, v(s)) ds L u(s) v(s)) ds Thus if we define the function F (t) = L u(s) v(s)) ds we find fromt the Fundamental Theorem of Calculus that F (t) = u(t) v(t)) LF (t). It follows that ( e L(t t) F ) = e L(t ) (F LF ). Thus the positive function satisfies F (t) F ( ) = for all t. Thus F (t) = or u(t) = v(t) for all t. 5. Generalize the method of Picard Approximation to accommodate non-autonomous equtions. Find the first few iterates of the initial value problem and compare to the Maclaurin series for the solution. x = 2tx x() =. The generalization is to use the non-autonomous integral equation. anything in X. Then recursively devine for n N, In this example, let x (t) =. Then x (t) = x x 2 (t) = x x (t) = x x 4 (t) = x 2sx (s) ds = 2 2sx (s) ds = 2 2sx 2 (s) ds = 2 2sx (s) ds = 2 x n+ (t) = x + s ds = t 2 ; f(s, x(s)) ds. s ( s 2) ds = t 2 + 2 t4 ; Put x (t) = x or s ( s 2 + 2 ) s4 ds = t 2 + 2 t4 6 t6 ; s ( s 2 + 2 s4 6 ) s6 ds = t 2 + 2 t4 + 6 t6 24 t8 ; 6

The Maclaurin series solution is found by assuming the solutin is a convergent power series and plugging into the ODE to find equations for the coefficients. Assuming we get and x (t) = x(t) = + a n t n i= na n t n = a + 2a 2 t + a t 2 + 4a 4 t 4 + n= 2tx = 2t which results in the equations 2a n t n+ = 2t 2a t 2 2a 2 t 2a t 4 n= a =, a =, a 2 =, na n = 2a n 2, for n. This results in a 2k = for all odd terms and a 2k = 2 2k a 2(k ) whose solution is a 4 = 2, a 6 = 6, a 8 = 24 and so on. In general, for k N we have a 2k = ( )k. k! In other words x(t) = e t2. 6. Suppose that both f(t, x), g(x, t) C ( R 2, R ), (, x ) R 2 and a > satisfies the Lipschitz Condition: there is L R so that f(t, x) f(t, y) L x y whenever (t, x), (t, y) [, + a] R. Show that the soliution of the initial value problem () depends continuously on the equation. That is, assume that for some η > the two functions satisfy f(t, x) g(t, x) η for all (t, x) [, + a] R. Suppose we look at two solutions of the different equations { x = f(t, x), x( ) = x. { y = g(t, y) y( ) = x. Then x(t) y(t) η L ( ) e L(t t) for all t [, + a]. 7

As usual, we will try to apply Gronwall s Inequality to the difference of solutions. For t [, + a], x(t) y(t) = x + f(s, x(s)) ds x g(s, y(s)) ds = f(s, x(s)) g(s, y(s)) ds f(s, x(s)) g(s, y(s)) ds f(s, x(s)) g(s, x(s)) + g(s, x(s)) g(s, y(s)) ds f(s, x(s)) g(s, x(s)) + g(s, x(s)) g(s, y(s)) ds η + L x(s) y(s) ds = η(t ) + L x(s) y(s) ds We apply Gronwall s Inequality (Problem 5) with f(t) = η(t ), u = x(t) y(t) and v = L. For t [, + a], x(t) y(t) η(t ) + ηl e L(t s) (s ) ds = η ( ) e L(t t). L 7. Prove Gronwall s Inequality. If f, u, v : [, + a] R are continuous, u, v and satisfy u(t) f(t) + u(s) v(s) ds for all t then Let Then ( ) u(t) f(t) + exp v(u) du f(s)v(s) ds. s F (t) = u(s) v(s) ds. F = uv v(f + F ) so ( e ) t v(s) t ds v(s) F = e t ds (F vf ) e v(s) t ds vf which implies Multiplying by the integrating factor yields e t t v(r) t dr F (t) e s v(r) t dr v(s) f(s) ds. u(t) f(t) + e s v(r) dr v(s) f(s) ds. 8

8. Analyze the stability properties of each rest point. At each rest point, determine the dimensions of the stable and unstable manifolds. Compute a basis for the stable and unstable manifolds for the associated linearized system. We recast the equation as a system. x 7x + x + e x = x = y y = z z = ( ex ) y + 7 z The equilibrium point satisfies y =, z = so = e x so x =. The Jacobean at (,, ) is A = DF () = 7 The characteristic polynomial is ( ) 7 p(λ) = ( λ)( λ) λ + ( λ) = λ + 7 λ2 λ ( = (λ ) λ 2 4 λ ) The eigenvalues are λ =, λ 2 = 2 + 7 and λ = 2 7. Thus the matrix is hyperbolic with two positive and one negative eigenvalue. The origin is of saddle type, thus unstable. It has a local one dimensional stable manifold and a two dimensional local unstable manifold. We solve for eigenvectors. = (A λ I)V = 4 2 7 = (A λ 2 I)V 2 = 2 7 5 7 2 + 7 = (A λ I)V = 2 + 7 5 + 7 2 + 7 9 + 4 7 9 2 7 9 4 7 9 It follows that V and V 2 span the unstable space E u of the linearied equation y = Ay and V spans the stable space E s. 9

9. Find the stable and unstable manifolds. x = x y = y + x 2 z = z + y 2 The only equilibrium point is the origin. There the linearized system is A = DF () = diag(,, ) so that the stable and unstable spaces are E s = {(x, y, z) : z = } and E u = {(x, y, z) : x = y = }. To find the stable manifold, we seek solutions that are tangent to E s at the origin. The system may be solved by back substitution. Indeed, x = x means x(t) = x e t. Hence y = y + x 2 = y + x 2 e 2t so y(t) = ( y + x 2 ) e t x 2 e 2t Also z = z + y 2 = z + ( y + x) 2 2 ( e 2t 2x 2 y + x) 2 e t + x 4 e 4t so ( z(t) = z + ) ( y + x 2 2 ( ) 2 x2 y + x 2 ) + 5 x4 e t ( y + x 2 ) 2 e 2t + ( 2 x2 y + x 2 ) e t 5 x4 e 4t The stable manifold tends to zero as t so the e t coefficient must vanish, namely, points of W s satisfy z = ( y + x 2 2 ( ) + 2 x2 y + x 2 ) 5 x4 = y2 6 x2 y x4. The points in the unstable manifold W u tend to zero as t, which means that the coefficients of the e t and e 2t, e t and e 4t must vanish, namely x = y =.. Classify the stability types of all the equilibrium points of the system. x = 4y + 2xy 8 y = 4y 2 x 2 At the equilibrium, the second equation = y says x = ±2y. Using x = 2y in = x says = 2y +2y 2 4 or y =, 2, giving two rest points P = ( 2, ) and P 2 = (4, 2). Using x = 2y says y 2 + y + 2 = which has no real roots. The Jacobean is At P, ( ) 2y 4 + 2x A = DF = 2x 8y A = ( ) 2 8 4 8 whose eigenvalues are λ = 5 ± i 2i, thus by the linearized stability, P is a stable node node.

At P 2, A = ( 4 4 ) 8 6 whose eigenvalues are λ = 2,, thus by the linearized stability, P 2 is an unstable node.. Show that there is a nontrivial periodic solution. x = y y = x + ( x 2 2y 2 )y Observe that the origin is the only rest point. Consider the function Then along the flow, in polar coordinates, V (x, y) = 2 x2 + 2 y2. V (x, y) = ( x 2 2y 2 )y 2 Thus inside the circle x 2 +y 2 2 we have x2 2y 2 2(x 2 +y 2 ) so that V and the flow is not inward. Outside the circle x 2 + y 2 we have x 2 2y 2 x 2 y 2 so that V and the flow is not outward. It follows that the annulus 2 r2 is a closed, forward invariant set without rest points. Hence it must contain its limit cycles. Indeed, for any point in the annulus, its omega limit set ω(x) must be a nonempty, closed limit set in the annulus which contains no equilibrium point since the origin is not in the annulus. By the Poincaré Bendixson Theorem, ω(x) is a closed orbit. 2. Consider the prameterized system. Find the bifurcation values µ = µ and describe the nature of the bifurcation at the µ. x = µx y + x x 2 + y 2 y = x + µy + y x 2 + y 2 Write the system in polar coordinates. With x = r cos θ and y = r sin θ we get so r cos θ r sin(θ)θ = µr cos θ r sin θ + r 2 cos θ r sin θ + r cos(θ)θ = r cos θ + µr sin θ + r 2 sin θ θ = r = µr + r 2 If µ then r > all r > so that the origin is an unstable node. If µ < then at the radius r = µ, there is a limit cycle C. In this case if < r < µ we have r < and for r > µ, r >. In other words, the cycle C is unstable: nearby trajectories depart from C as t. At the same time, the origin is a stable rest point. Thus this system undergoes a Hopf bifurcation. As µ passes through zero from negative to positive, an unstable limit cycle C and a stable rest point zero collapse to form an unstable rest point zero.

. Determine the stability type of the zero solution. x + (x ) + x = The corresponding system is x = y y = x y Consider the Lyapunov function V (x, y) = 2 x2 + 2 y2. We have V = xx + yy = y 4. Since v, the origin is stable. In fact, in any closed ball P = B(, δ), the zero set is Z = {(x, y) : V (x, y) = } = {(x, y) : y = }. In this set there are no invariant subsets other than {(, )} because, if y = and x then y so the trajectory leaves Z. By LaSalle s Principle, (, ) is asymptotically stable and P is in the basin of its attraction. But as δ > is arbitrary, every point (x, y ) R 2 is attracted to the origin. 2