FEEDBACK, STABILITY and OSCILLATORS

Similar documents
OPERATIONAL AMPLIFIER ª Differential-input, Single-Ended (or Differential) output, DC-coupled, High-Gain amplifier

à 10. DC (DIRECT-COUPLED) AMPLIFIERS

Electronic Circuits Summary

JFET CAPACITANCE CALCULATIONS

ECE3050 Assignment 7

OPERATIONAL AMPLIFIER APPLICATIONS

ECEN 326 Electronic Circuits

Op-Amp Circuits: Part 3

à FIELD EFFECT TRANSISTORS

EE221 Circuits II. Chapter 14 Frequency Response

EE 508 Lecture 4. Filter Concepts/Terminology Basic Properties of Electrical Circuits

EE221 Circuits II. Chapter 14 Frequency Response

Chapter 10 Feedback. PART C: Stability and Compensation

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

ECE 255, Frequency Response

First and Second Order Circuits. Claudio Talarico, Gonzaga University Spring 2015

Start with the transfer function for a second-order high-pass. s 2. ω o. Q P s + ω2 o. = G o V i

Sophomore Physics Laboratory (PH005/105)

FEEDBACK AND STABILITY

Chapter 8: Converter Transfer Functions

7. DESIGN OF AC-COUPLED BJT AMPLIFIERS FOR MAXIMUM UNDISTORTED VOLTAGE SWING

ESE319 Introduction to Microelectronics. Feedback Basics

Dynamic circuits: Frequency domain analysis

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS

8.1.6 Quadratic pole response: resonance

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

Laplace Transform Analysis of Signals and Systems

Basic Principles of Sinusoidal Oscillators

Filters and Tuned Amplifiers

ESE319 Introduction to Microelectronics. Feedback Basics

ECEN 325 Electronics

Electronic Circuits EE359A

EE348L Lecture 1. EE348L Lecture 1. Complex Numbers, KCL, KVL, Impedance,Steady State Sinusoidal Analysis. Motivation

Homework Assignment 11

Stability of Operational amplifiers

Homework 7 - Solutions

Handout 11: AC circuit. AC generator

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Stability & Compensation

Frequency Dependent Aspects of Op-amps

Prof. D. Manstretta LEZIONI DI FILTRI ANALOGICI. Danilo Manstretta AA

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ

Sinusoidal Steady-State Analysis

MODULE-4 RESONANCE CIRCUITS

Berkeley. Matching Networks. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2016 by Ali M. Niknejad

ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani

ECEN 325 Electronics

Use of a Notch Filter in a Tuned Mode for LISA.

MAS107 Control Theory Exam Solutions 2008

Operational Amplifiers

EE 230 Lecture 25. Waveform Generators. - Sinusoidal Oscillators The Wein-Bridge Structure

Lecture 17 Date:

The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids).

( s) N( s) ( ) The transfer function will take the form. = s = 2. giving ωo = sqrt(1/lc) = 1E7 [rad/s] ω 01 := R 1. α 1 2 L 1.

Second-order filters. EE 230 second-order filters 1

EE 230 Lecture 24. Waveform Generators. - Sinusoidal Oscillators

Systems Analysis and Control

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Poles, Zeros, and Frequency Response

EE 508 Lecture 24. Sensitivity Functions - Predistortion and Calibration

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e

Workshop: Average values and uncertainties Quantum aspects of physical chemistry

HOMEWORK 4: MATH 265: SOLUTIONS. y p = cos(ω 0t) 9 ω 2 0

Active Control? Contact : Website : Teaching

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

Input and Output Impedances with Feedback

R-L-C Circuits and Resonant Circuits

Lecture 50 Changing Closed Loop Dynamic Response with Feedback and Compensation

To find the step response of an RC circuit

6.1 Introduction

Adjoint networks and other elements of circuit theory. E416 4.Adjoint networks

D is the voltage difference = (V + - V - ).

ECEN 607 (ESS) Op-Amps Stability and Frequency Compensation Techniques. Analog & Mixed-Signal Center Texas A&M University

Feedback design for the Buck Converter

First-Order Low-Pass Filter

Chapter 9: Controller design

Lecture 4: R-L-C Circuits and Resonant Circuits

EE 508 Lecture 22. Sensitivity Functions - Comparison of Circuits - Predistortion and Calibration

Transient Response of a Second-Order System

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 )

Estimation of Circuit Component Values in Buck Converter using Efficiency Curve

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.

Microwave Oscillators Design

Homework 6 Solutions and Rubric

Electric Circuit Theory

EE-202 Exam III April 13, 2015

EE-202 Exam III April 6, 2017

Resonant Matching Networks

Problem Weight Score Total 100

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits

Advanced Analog Building Blocks. Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc

Lecture 9 Time Domain vs. Frequency Domain

Frequency response. Pavel Máša - XE31EO2. XE31EO2 Lecture11. Pavel Máša - XE31EO2 - Frequency response

EE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions

(amperes) = (coulombs) (3.1) (seconds) Time varying current. (volts) =

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

55:041 Electronic Circuits The University of Iowa Fall Final Exam

Taking the Laplace transform of the both sides and assuming that all initial conditions are zero,

MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions

Transcription:

FEEDBACK, STABILITY and OSCILLATORS à FEEDBACK, STABILITY and OSCILLATORS - STABILITY OF FEEDBACK SYSTEMS - Example : ANALYSIS and DESIGN OF PHASE-SHIFT-OSCILLATORS - Example 2: ANALYSIS and DESIGN OF WIEN BRIDGE OSCILLATORS à FEEDBACK, STABILITY OF FEEDBACK SYSTEM, OSCILLATORS ü STABILITY OF FEEDBACK SYSTEM V out = A vo.hv in -b.v out L A vf = V out ÄÄÄÄÄÄÄÄÄÄÄÄ V in = A vo.hv in -b.v outl ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ fi A vf = V in A vo ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ +b.a vo The negative feedback effectively reduce the gain. Note that if» b.a vo» >> then, A vf > A vo ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ A vo.b > ÄÄÄÄÄ b For non - inverting opamp amplifier A vf = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ R ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ R +R F Univ. of Southern Maine Prof. M. G. Guvench

Phase at w Ø (number of zeros -number of poles). 90 Even if A vo (0) may be very large, at high frequencies» A vo HjwL» can become very small; making the approximation above invalid. A vf HjwL = A vo HjwL ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ + A vo HjwL.b HjwL For DC, the negative feedback results in a (+) sign in the denominator. Therefore,» A vf HjwL» will always be smaller than» A vo HjwL. But, if the inputs are reversed or somehow A vo HjwL.bHjwL changes its sign, the feedback becomes positive, the denominator can become <, therefore, A vf with feedback becomes even greater than A vo of the operational amplifier. Interesting Point: Denominator ª 0 fl "Instability" fl Oscillations Conditions for Instability HOscillationsL + A v HjwL.b HjwL 0 Equivalently J Re @ + A vo HjwL.b HjwLD = 0 Im @ + A vo HjwL.b HjwLD = 0 a. + Re @A vo HjwL.b HjwLD = 0 or Re@A vo HjwL.b HjwLD =- b. Im @HA vo HjwL.b HjwLD = 0 fi Phase of HA vo.bl = 0, 80, 360 Note that, it is impossible to make Re @ + A vo HjwL.b HjwLD = 0 for phase = 0or 360 Univ. of Southern Maine 2 Prof. M. G. Guvench

For instability : J Angle@A vo.bd = 80 Re@A vo.bd =- N or, J Angle@A vo.bd = 80» A vo.b» = N Univ. of Southern Maine 3 Prof. M. G. Guvench

Stable system since» A vo.b < at the critical frequency(2) which satisfies the phase condition. Definitions/Conditions for Stability: Loop Gain = A vo.b Worst case: b= for passive circuits Univ. of Southern Maine 4 Prof. M. G. Guvench

f M (Phase Margin) > 30 ~ 60-70 for a good internally compensated opamp Gain Margin > 0 db xxxxxxxxxxxxxxxxxxxxx OSCILLATOR ª Unstable but at a unique frequency so that it generates a sine wave with minimal distortion and minimal drift of oscillation frequency. Univ. of Southern Maine 5 Prof. M. G. Guvench

à Example : ANALYSIS and DESIGN OF PHASE-SHIFT-OSCILLATORS Note that for an oscillator to oscillate it does not need a signal, therefore, the signal input shown in the block diagrams can be eliminated. Amplifier Gain = A v Beta HjωL =βhjω ) b (jw) circuit Beta HjwL =b HjwL = V 2 HjwL ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ V HjwL Univ. of Southern Maine 6 Prof. M. G. Guvench

Educated conclusion: use higher number of RC's than 3 to achieve higher slope for better frequency stability. @VD = @ZD * @ID V is known, I is unknown stimuli i j k V 0 0 y z = { i j k R + ÄÄÄÄÄÄÄÄÄÄÄ j wc -R 0 -R 2 R + ÄÄÄÄÄÄÄÄÄÄÄ j wc -R 0 -R 2 R + ÄÄÄÄÄÄÄÄÄÄÄ j wc and output voltage, V 2 = R.I 3 y i j z k { I I 2 I 3 y z { One can apply Cramer's Rule to solve for I 3 and the output voltage V 2 = R. I 3. In Mathematica the same calculation can be done by using linear solver which yields { I, I 2, I 3 } and pick out I 3, the third term from the list, and multiply it by R, as done below. V 2 = ExpandAllAR TakeALinearSolve ω > A i j k jrcy E R + j ω C R 2 R + j ω C R 0 R 0 R 2 R + j ω C y i, j k z { V 0 0 y E, 83<E ê. z { V 99 + 6y+ 5y 2 + y 3 == V + 6y+ 5y 2 + y ê. y > 3 j ω RC V 5 6 C 3 j 3 R 3 ω + 3 C 2 j 2 R 2 ω + 2 CjRω + Rearrange V 2 = V 5 H L + H6 L ω 2 R 2 C 2 jω RC ω 2 R 2 C 2 For the phase to reach 0 or 80 imaginary term should disappear, Univ. of Southern Maine 7 Prof. M. G. Guvench

Therefore, 6 ω 2 R 2 C = 0 ω 2 0 = $%%%%%%%%%%%%%%%% 6 R 2 C 2 Then, If Summary: V 2 V A vo i k j y z β { = i y j k 5. z { ω 0 2 = ω 2 R 2 C 2 ω 2 = = 6 R 2 C 2 5.6 = 30 = 29 6 R 2 C 2 then oscillations will start and grow at ω 0. If» A vo» 29, If A vo < 0 (i.e. inverting) Oscillations will start and grow up at ω 0 = è!!! 6 RC A vf = A vo = A vo +β HjωL A vo = Univ. of Southern Maine 8 Prof. M. G. Guvench

à Example 2: ANALYSIS and DESIGN OF WIEN BRIDGE OSCILLATORS Univ. of Southern Maine 9 Prof. M. G. Guvench

Univ. of Southern Maine 0 Prof. M. G. Guvench

Beta =β HjωL = = = Z b Z a + Z b = R b +jω C b IR a + M + J jω C a IR a + M I + jω C jω C a R b M + b N R b +jω C b A R a + j Iω R a C b M + C b + E ω R b C a R b C a = + C b + M + j Iω R a R b I R a R b C a ω R b C a M When ω 2 = ω 0 2 = R a R b C a C b the imaginary term disappears β Hj ω 0 L = R a + C b + C a R b If H+L feedback is provided A vf = A vo β HjωL A vo at ω=ω 0 A vf Hjω 0 L A vo β Hjω 0 L A vo or A vf Hjω 0 L if A vo For C a = C b = C, R a = R b = R A vo 3 β Hjω 0 L = R a R b + C b C a + Univ. of Southern Maine Prof. M. G. Guvench

Wien - Bridge Oscillator i j R f + y z R a k R { R b + C b C a + Amplifier Design : Condition : Z in >> Z ab where Z ab = HZ a êê Z b L ω=ω0 Condition 2 : A vo > i k j y z β { ω=ω 0 In order to control the amplitude () Small Signal Gain > minimum needed for oscillation, (2) Average gain reduces and becomes less than ( M at the amplitude of oscillations it is required to stabilize. β ω= ω 0 Amplifer Chs. with Saturating Gain Univ. of Southern Maine 2 Prof. M. G. Guvench

Inverting Amplifier with Gain Saturation Low amplitudes Mid amplitudes High amplitudes R F = R F R F R F êê R F2 R F = R F êê R F2 êê R F3 i y β A vf = j k + z > β { β A v Univ. of Southern Maine 3 Prof. M. G. Guvench

H b.a v L b.a v > b.a v ª HA v L Large Signal HA v L Small signal Univ. of Southern Maine 4 Prof. M. G. Guvench

ACTIVE FILTERS à ACTIVE FILTERS - PASSIVE FILTER + AMPLIFIER - FILTER IS INTEGRATED IN THE FEEDBACK LOOP - TRUE ACTIVE FILTERS IMPLEMENTED WITH DEPENDENT SOURCES a. ACTIVE TWO-POLE SALLEN-KEY LOW-PASS FILTER b. ACTIVE TWO-POLE SALLEN-KEY HIGH-PASS FILTER c. ACTIVE TWO-POLE SALLEN-KEY BAND-PASS FILTER à ACTIVE FILTERS "Active" Filter Passive Filter Components + OpAmp as amplifier + OpAmp as dependent source à Example : PASSIVE FILTER + AMPLIFIER Advantage:. R L does not load the filter; therefore, it does not affect the frequency response. 2. The filter can actually amplify the signal in its path. (Insertion gain vs insertion loss of a passive filter) Univ. of Southern Maine 5 Prof. M. G. Guvench

R Thevenin.C observe that ω 3dB = and depends on loading resistance R RC L. At higher frequencies, frequency response of "real opamp" will alter the frequency response of the active filter. * Note that the danger of instability at the frequency where phase angle ª 80 * If the opamp is internally frequency compensated it can introduce no more than 90 phase while its gain is still greater than "0 db". This implies that: Overall filter will never have a gain greater than 0 db when phase = -80 ï stable. Univ. of Southern Maine 6 Prof. M. G. Guvench

à Example 2: FILTER IS INTEGRATED IN THE FEEDBACK LOOP If the opamp has wide enough GBW and low frequency gain; A vf HjωL = V out V in = A vo > +βa vo β HjωL This has the effect of Low Pass ö Low Reject (High Pass) High Pass ö High Reject Band Pass ö Band Reject A Good "Band Reject" Filter Remark: A good Low / High / Band Reject actually reduces the signal in the reject band significantly, i.e. gain <<. Univ. of Southern Maine 7 Prof. M. G. Guvench

à Example 3: TRUE ACTIVE FILTERS IMPLEMENTED WITH DEPENDENT SOURCES a. ACTIVE TWO-POLE SALLEN-KEY LOW-PASS FILTER b. ACTIVE TWO-POLE SALLEN-KEY HIGH-PASS FILTER c. ACTIVE TWO-POLE SALLEN-KEY BAND-PASS FILTER a. ACTIVE TWO-POLE SALLEN-KEY LOW-PASS FILTER Equivalent circuit: Univ. of Southern Maine 8 Prof. M. G. Guvench

Node Equations: Univ. of Southern Maine 9 Prof. M. G. Guvench

i j k V in R + V O sc 0 y z = JHG + G 2 + sc L G 2 { G 2 HG 2 + sc 2 L N JV N V 0 V i in R j y z k 0 = JHG + G 2 + sc L HG 2 + sc L { H G 2 L HG 2 + sc 2 L N JV N V 0 Using Cramer' s Rule to get V O V in R V 0 V in R = DetA i V HG + G 2 + sc L in R j y z I V in M. k H G 2 L 0 E { R DetAJ HG + G 2 + sc L HG 2 + sc L H G 2 L HG 2 + sc 2 L N E = I V in M H G I V in M. R 2 L HG + G 2 + sc L HG 2 + sc 2 L G 2 HG 2 + sc L R V O V in = H HsL = G.G 2 s 2 C C 2 + sc G 2 + sc 2 HG + G 2 L + G 2 HG + G 2 L G 2 2 G 2 sc = G.G 2 s 2 C C 2 + sc 2 HG + G 2 L + G.G 2 = HR C L HR 2 C 2 L s 2 + s I + M + I M I M R C R 2 C R C R 2 C 2 Rename : 2 i =ω 0 j + R C R 2 C 2 k R C y z = 2 ζ ω 0 R 2 C { H HsL = ω 0 2 s 2 + 2 ζω 0 s +ω 2 0 No inductor! The response of this circuit is similar to the response of an RLC - Low Pass passive filter shown below. Except that there is no need to employ bulky, lossy and expensive inductors to implement it. Univ. of Southern Maine 20 Prof. M. G. Guvench

V out ê V in = ê sc êhr + sl + ê scl = êhsrc + s 2 LC + L = H ê LCLêHs 2 + R ê Ls + ê LCL where ω 0 2 ê LC is the "resonant frequency" and 2 ζ ω 0 R ê L is the "damping factor" H = ω 0 2 s 2 + 2 ζ ω 0 s +ω 2 0 a =, b = 2 ζ ω 0, c =ω 0 2 = constant Hs p L Hs p 2 L p, p 2 = è!!!!!!!!!!!!!!!! b ± b 2 4 ac 2 a = b 2 ± $%%%%%%%%%%%%%%%%%%% i k j b y z c 2 { 2 = ζ ω 0 ± "######################### Hζ ω 0 L 2 ω 02 = ζω 0 ± jω 0 "############ ζ 2 complex conjugate H =» constant»» s p»» s p 2» Univ. of Southern Maine 2 Prof. M. G. Guvench

b. ACTIVE TWO-POLE SALLEN-KEY HIGH-PASS FILTER Insertion Loss Univ. of Southern Maine 22 Prof. M. G. Guvench

Univ. of Southern Maine 23 Prof. M. G. Guvench

c. ACTIVE TWO-POLE SALLEN-KEY BAND-PASS FILTER Univ. of Southern Maine 24 Prof. M. G. Guvench

Node Equations : V IN i R j k + KV 2 R 0 y z = i j { k + R R + sc + sc sc y sc + sc z JV N V 2 R { or V i IN y R j z k 0 = i j { k 2 H R + scl HsC + K R L sc H + scl R y z JV N V 2 { Using Cramer' s rule, KV 2 = V OUT = K DetA i j 2 H R + scl V IN y R z k sc 0 E { DetA i2 H K + scl HsC + y R R j k sc H + scl z E R { = K + scv IN R 2 H + scl H K + scl sc HsC + L R R R Univ. of Southern Maine 25 Prof. M. G. Guvench

V OUT V IN = K sc R after dividing by C2, 2 HsCL 2 + 4 H sc L + 2 H R R L2 HsCL 2 sc K R H HsL = K sc R HsCL 2 + H4 KL sc + 2 H R R L2 H HsL = K s RC è!!!! 2 s 2 + H4 KL RCÆ s + J RC N2 Æ 2 γ = 2 ζ ω n ω n 2 ω n = è!!! 2 RC ω n =ω 0 2 +γ 2 The damping factor : ζ= H4 KL RC 2 2 è!!!! RC = H4 KL 2 è!!! 2 Poles = γ±jω 0 Resonance is at ω=ω 0 BandWidth = BW =ω 2 ω = ω 0 +γ Hω 0 γl = 2 γ Quality Factor of a Resonant Circuit : Q = ω peak BW > ω 0 2 ζ = è!!! 2 4 K Univ. of Southern Maine 26 Prof. M. G. Guvench

K RC» H max» = H+jωL 2 + H 4 K L jω+hω RC 0L 2 jω = K 4 K = K è!!! 2 è!!! 2 4 K = K Q è!!! 2 K 4» H» max unstable! Oscillator Univ. of Southern Maine 27 Prof. M. G. Guvench

Univ. of Southern Maine 28 Prof. M. G. Guvench