Synthesis of Polyfluorinated and Polychlorinated Hydrocarbons

Similar documents
Stereocontrolled Chlorination in Natural Product Synthesis

Final Exam /415 ( CHEM 6352 Fall %) Name

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

Organic Cumulative Exam December 1, 2001

Title. Author(s)Umezawa, Taiki; Matsuda, Fuyuhiko. CitationTetrahedron Letters, 55(19): Issue Date Doc URL. Rights.

Comparative Synthesis of Ingenol. Tyler W. Wilson SED Group Meeting

Protecting Groups. Tactical Considerations

Midterm Exam #1 /280 CHEM 6352 Fall 2011

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

Advanced Organic Chemistry

Chapter 11 - Alcohols and Ethers 1

H H H OH OH H OH H O 1 CH 2 OH

Chapter 7. Alkenes: Reactions and Synthesis

Stereodivergent Synthesis and Relative Stereostructure of the C1 C13 Fragment of

Recent Advances of Alkyne Metathesis. Group Meeting Timothy Chang

Problem session (3) Daiki Kuwana. Please fill in the blank and explain reaction mechanisms and stereoselectivities.

Total Synthesis of (+/-)-Goniomitine via a Formal Nitrile/Donor-Acceptor Cyclopropane [3 + 2] Cyclization

Palladium-Catalyzed Asymmetric Benzylic Alkylation Reactions

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

Only five of the molecules below may be prepared as the sole product of allylic halogenation of the respective alkene. Circle those five.

A Modular Approach to Polyketide Building Blocks: Cycloadditions of Nitrile Oxides and Homoallylic Alcohols

Chem 232. Problem Set 4. Table. Substrate Types and the Choice of S N 1 of S N 2

Silenes in organic synthesis: a concise synthesis of (±)-epi-picropodophyllin

CEM 852 Final Exam. May 6, 2010

Denmark Group Meeting. & Electrophilic rearrangement of amides

REACTION AND SYNTHESIS REVIEW

A 1,3 Strain and the Anomeric Effect. Michael Shaghafi Chem. Topics Feb. 6, 2012

Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem reaction what is added to the C=C what kind of molecule results addition of HX HX only

2. Which of the following is NOT an electrophile in an electrophilic aromatic substitution reaction? A) NO 2

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

A Concise Synthesis of ( )- Aplyviolene Facilitated by a Stragetegic Ter<ary Radical Conjugate Addi<on

Formal Total Synthesis of Optically Active Ingenol via Ring-Closing Olefin Metathesis

Short Lit

Total Synthesis of the Proposed Structure of Briarellin J

SECTION 12. «POT-POURRI» in Organic Synthesis (2018)

UNIVERSIDADE DE SÃO PAULO

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July

Tips for taking exams in 852

Enan$oselec$ve Total Synthesis of Amphidinolide F

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH

ROC Exam Problem 1

Approaches to the Synthesis. of Tetrahydropyrans. (and closely related heterocycles)

Suggested solutions for Chapter 32

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

Chemistry 3351 Organic Chemistry/Final Exam Monday: Dec. 17 th from 1:30 pm 4:00pm

Regioselective Reductive Cross-Coupling Reaction

Towards Maoecrystal V: A Comparison of Recent Strategies

Construction of Chiral Tetrahydro-β-Carbolines: Asymmetric Pictet Spengler Reaction of Indolyl Dihydropyridines

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito

Total Syntheses of Minfiensine

Nucleophilic Fluorination. Souvik Rakshit Burke group Literature Seminar July 13, 2013

Strategies for Stereocontrolled Synthesis

Alkyl phenyl ketones are usually named by adding the acyl group as prefix to phenone.

Asymmetric Catalysis by Lewis Acids and Amines

Synthesis of the Stenine Ring System from Pyrrole

Short Access to (+)-Lupinine and (+)-Epiquinamide via Double Hydroformylation

Preparation of Alkyl Halides, R-X. Reaction of alkanes with Cl 2 & Br 2 (F 2 is too reactive, I 2 is unreactive): R + X X 2.

Learning Guide for Chapter 12 - Alkenes (II)

Chiral Diol Promoted Boronates Addi3on Reac3ons. Lu Yan Morken Group Boston College

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Massachusetts Institute of Technology Organic Chemistry 5.512

CEM 852 Exam-2 April 11, 2015

Synthesis of Abyssomicin C. Marie-Caroline Cordonnier Litterature Review 23/01/2009

Asymmetric Synthesis of α-substituted Allyl Boranes and Their Application in the Synthesis of Iso-agatharesinol

Chapter 10 Outline: Alcohols

The Amphidinolide T-Series

Organic Tutorials 3 rd Year Michaelmas Transition Metals in Organic Synthesis: (General paper level) ! 1! Reading

Basic Arrow-Pushing & Energy Concepts - Key Problem Set 1 Due Tuesday, 10/4/16

Physical Properties. Alcohols can be: CH CH 2 OH CH 2 CH 3 C OH CH 3. Secondary alcohol. Primary alcohol. Tertiary alcohol

Chem 251 Fall Learning Objectives

I. Introduction. II. Retrosynthetic Analysis. Andrew Baggett. Liu lab

Recent Total Syntheses! Published in Nature!

CHEMISTRY MIDTERM # 2 November 02, The total number of points in this midterm is 100. The total exam time is 120 min (2 h). Good luck!

FINAL EXAM Organic Chemistry Chemistry 225b; 9 A.M., Friday, May 9, NAME (print): Section Day: Section Time:

A Stereoselective Synthesis of (+)-Gonyautoxin 3

CHEM 330. Final Exam December 11, This a closed-notes, closed-book exam. The use of molecular models is allowed. This exam contains 12 pages

Chapter 2: An Introduction to Organic Compounds

Stereoselective Organic Synthesis

a-aminoallylation of Aldehydes with Ammonia: Stereoselective Synthesis of Homoallylic Primary Amines

Alcohols, Ethers, & Epoxides

Chem 253 Problem Set 7 Due: Friday, December 3, 2004

Final Exam /340 ( CHEM 6352 Fall %) Name

H CH 2 -OH (4) H b. H H (5) (6) a. b.

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

Supporting Information Configurational Assignments

Double and Triple Bonds. The addition of an electrophile and a

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

Chemistry 233 Exam 3 (Green) The Periodic Table

Name: Student Number: University of Manitoba - Department of Chemistry CHEM Introductory Organic Chemistry II - Term Test 1

But in organic terms: Oxidation: loss of H 2 ; addition of O or O 2 ; addition of X 2 (halogens).

CEM 852 Final Exam. May 5, 2011

Direct Oxidative Heck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans

C C H 2. O p-tsoh (catalytic) H 3 O +! O

The C-X bond gets longerand weakergoing down the periodic table.

CHEM 330. Final Exam December 5, 2014 ANSWERS. This a closed-notes, closed-book exam. The use of molecular models is allowed

R or S? oxidation #: hybridization:

Studies toward the Synthesis of Azadirachtin: Total Synthesis of a Fully Functionalized ABC Framework and Coupling with a Norbornene Domain

CHEM 203. Final Exam December 18, 2013 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

Glendale Community College Chemistry 105 Exam. 3 Lecture Notes Chapters 6 & 7

Literature Report IX. Cho, S. H. et al. Org. Lett. 2016, 18, Cho, S. H. et al. Angew. Chem. Int. Ed. 2017, 56,

Transcription:

Synthesis of Polyfluorinated and Polychlorinated Hydrocarbons Yong Guan Feb. 13, 2009 Nicoletti, M.; O Hagan, D.; Slawin, A.M.Z. J. Am. Chem. Soc. 2005, 127, 482. Hunter, L.; O Hagan, D.; Slawin, A.M.Z. J. Am. Chem. Soc. 2006, 128, 16422. Hunter, L.; Slawin, A. M. Z.; Kirsch, P.; O Hagan, D. Angew. Chem., Int. Ed. 2007, 46, 7887. Shibuya, G. M., Kanady, J. S., Vanderwal, C. D. J. Am. Chem. Soc. 2008, 130, 12514. Yoshimitsu, T., Fukumoto, N., Tanaka, T. J. Org. Chem. 2009, 74, 696. Nilewski, C., Geisser, R. W.; Erick M. Carreira. Nature 2009, 457, 573.

Outline Synthesis of Polyfluorinated Hydrocarbons Synthesis of Polychlorinated Hydrocarbons

Outline Synthesis of Polyfluorinated Hydrocarbons Synthesis of Polychlorinated Hydrocarbons

α,β,γ-trifluoroalkanes Nicoletti, M.; O Hagan, D.; Slawin, A.M.Z. J. Am. Chem. Soc. 2005, 127, 482.

α,β,γ-trifluoroalkanes a R = C 5 H 11, R = CH 3, b R = C 7 H 15, R = C 5 H 10 Ph. (i) mcpba in DCM, 0 C, 2 h. (ii) HF pyridine in DCM, 10 C, 4 h. (iii,iv) SOCl 2, py. in DCM, 0 C, 45 min then NaIO 4 / RuCl 3 in CH 3 CN/H 2 O, 0 C 1 h. (v) TBAF in acetone, 0 C 2 h. (vi) Et 2 O/H 2 SO 4. (vii) Tf 2 O, pyr in DCM, -40 C, 1 h. (viii) TBAF in MeCN, 0 C, 30 min. Nicoletti, M.; O Hagan, D.; Slawin, A.M.Z. J. Am. Chem. Soc. 2005, 127, 482.

α,β,γ-trifluoroalkanes a R = C 5 H 11, R = CH 3, b R = C 7 H 15, R = C 5 H 10 Ph. (i) mcpba in DCM, 0 C, 2 h. (ii) HF pyridine in DCM, 10 C, 4 h. (iii,iv) SOCl 2, py. in DCM, 0 C, 45 min then NaIO 4 / RuCl 3 in CH 3 CN/H 2 O, 0 C 1 h. (v) TBAF in acetone, 0 C 2 h. (vi) Et 2 O/H 2 SO 4. (vii) Tf 2 O, pyr in DCM, -40 C, 1 h. (viii) TBAF in MeCN, 0 C, 30 min. Nicoletti, M.; O Hagan, D.; Slawin, A.M.Z. J. Am. Chem. Soc. 2005, 127, 482.

α,β,γ-trifluoroalkanes a R = C 5 H 11, R = CH 3, b R = C 7 H 15, R = C 5 H 10 Ph. (i) mcpba in DCM, 0 C, 2 h. (ii) HF pyridine in DCM, 10 C, 4 h. (iii,iv) SOCl 2, py. in DCM, 0 C, 45 min then NaIO 4 / RuCl 3 in CH 3 CN/H 2 O, 0 C 1 h. (v) TBAF in acetone, 0 C 2 h. (vi) Et 2 O/H 2 SO 4. (vii) Tf 2 O, pyr in DCM, -40 C, 1 h. (viii) TBAF in MeCN, 0 C, 30 min. Nicoletti, M.; O Hagan, D.; Slawin, A.M.Z. J. Am. Chem. Soc. 2005, 127, 482.

α,β,γ-trifluoroalkanes Nicoletti, M.; O Hagan, D.; Slawin, A.M.Z. J. Am. Chem. Soc. 2005, 127, 482.

α,β,γ-trifluoroalkanes F F OH vicinal C F bonds preferring to align gauche to each other Nicoletti, M.; O Hagan, D.; Slawin, A.M.Z. J. Am. Chem. Soc. 2005, 127, 482.

All-syn Four Vicinal Fluorine Motif Hunter, L.; O Hagan, D.; Slawin, A.M.Z. J. Am. Chem. Soc. 2006, 128, 16422.

All-syn Four Vicinal Fluorine Motif (a) Et 3 N 3HF, Na 2 SO 4, 70 C; (b) BnBr, NaH, DMF, 40 C; (c) Grubbs second generation catalyst, DCM, Δ; (d) KMnO 4, MgSO 4, EtOH, H 2 O, -10 C; (e) SOCl 2, pyridine, DCM, 0 C; (f) NaIO 4, RuCl 3, MeCN, H 2 O, 0 C; (g) TBAF, MeCN, rt; (h) H 2 SO 4, H 2 O, THF, rt. Hunter, L.; O Hagan, D.; Slawin, A.M.Z. J. Am. Chem. Soc. 2006, 128, 16422.

All-syn Four Vicinal Fluorine Motif (a) Tf 2 O, pyridine, DCM, -40 C; (b) TBAF, MeCN, 0 C; (c) Deoxo-Fluor, 70 C; (d) H 2, Pd/C, MeOH, rt; (e) TsCl, 2,4,6-collidine, 50 C. Hunter, L.; O Hagan, D.; Slawin, A.M.Z. J. Am. Chem. Soc. 2006, 128, 16422.

All-syn Four Vicinal Fluorine Motif C2 symmetry; Dihedral angles of 66.7 (F9-C-C-F10) and 59.7 (F10-C-C-F10 ) between vicinal fluorines; The aryl and fluoroalkyl groups pack in separate domains; Intermolecular interactions include a hydrogen bond (2.52 Å) from the fluorine atom of C10 (and C10 ) to the hydrogen atom at C9 (and C9 ) of an adjacent molecule. Hunter, L.; O Hagan, D.; Slawin, A.M.Z. J. Am. Chem. Soc. 2006, 128, 16422.

α,β,γ,δ-tetrafluoroalkane Hunter, L.; Slawin, A. M. Z.; Kirsch, P.; O Hagan, D. Angew. Chem., Int. Ed. 2007, 46, 7887.

α,β,γ,δ-tetrafluoroalkane a) Grubbs 2nd-generation catalyst, DCM, Δ; b) KMnO 4, MgSO 4, EtOH, DCM, H 2 O, 0 C; c) SOCl 2, pyridine, DCM, rt; d) NaIO 4, RuCl 3, MeCN, H 2 O, rt; e) Bu 4 NF, MeCN, rt; f) H 2 SO 4, H 2 O, THF, RT; g) H 2, Pd/C, MeOH, rt; h) TsCl, collidine, 50 C; i) Deoxo-Fluor, DCM, Δ. Hunter, L.; Slawin, A. M. Z.; Kirsch, P.; O Hagan, D. Angew. Chem., Int. Ed. 2007, 46, 7887.

α,β,γ,δ-tetrafluoroalkane a) Grubbs 2nd-generation catalyst, DCM, Δ; b) KMnO 4, MgSO 4, EtOH, DCM, H 2 O, 0 C; c) SOCl 2, pyridine, DCM, rt; d) NaIO 4, RuCl 3, MeCN, H 2 O, rt; e) Bu 4 NF, MeCN, rt; f) H 2 SO 4, H 2 O, THF, RT; g) H 2, Pd/C, MeOH, rt; h) TsCl, collidine, 50 C; i) Deoxo-Fluor, DCM, Δ. Hunter, L.; Slawin, A. M. Z.; Kirsch, P.; O Hagan, D. Angew. Chem., Int. Ed. 2007, 46, 7887.

α,β,γ,δ-tetrafluoroalkane Left: The simplified model system 6. Middle: Calculated linear conformations and right: either minimum (6a, 6c) or next higher energy conformation (6b). C gray, F green, H white; red arrows indicate g + g - -F F interactions. Relative energies are in kcal mol -1. 1) g + g - -F F interaction costs about 3.4 kcal mol -1 in steric strain 2) 1,3-F CH3 interaction costs 4.04 kcal mol -1 3) vicinal fluorine gauche effect (ca. 0.8 kcal mol -1 ) has only a secondary influence Hunter, L.; Slawin, A. M. Z.; Kirsch, P.; O Hagan, D. Angew. Chem., Int. Ed. 2007, 46, 7887.

Outline Synthesis of Polyfluorinated Hydrocarbons Synthesis of Polychlorinated Hydrocarbons

Dichlorination of Allylic Alcohol Derivatives Unnamed chlorosulfolipids isolated from Adriatic mussels (1-3) and from freshwater algae (4) and algae-derived protein kinase inhibitor malhamensilipin A (5) Gerwick, W. H., et al. J. Nat. Prod. 1994, 57, 524 Ciminiello, P., et al. J. Org. Chem. 2001, 66, 578 Ciminiello, P., et al. J. Am. Chem. Soc. 2002, 124, 13114.

Dichlorination of Allylic Alcohol Derivatives Probable conforma9onal preference of chlorosulfolipid 1. g = gauche, a = an9. Shibuya, G. M., Kanady, J. S., Vanderwal, C. D. J. Am. Chem. Soc. 2008, 130, 12514.

Dichlorination of Allylic Alcohol Derivatives Markó-Maguire Reagents R R 1 or BnNEt 3, KMnO 4, Me 3 SiCl R R 1 R R Cl Cl Cl Cl R 1 R 1 R, R1 = Alkyl, Ary, H 60-95% yield Markó, I. E.; Richardson, P. R.; Bailey, M.; Maguire, A. R.; Coughlan,N. Tetrahedron Lett. 1997, 38, 2339.

Dichlorination of Allylic Alcohol Derivatives Mioskowski Reagents RCCl 2 CHO RCH 2 CHO RCOCHClR RCOCH 2 R RCOCClRCOOR' RCOCHR'COOR' RCCl=CClR' R R' Et 4 N + (Cl 3 ) - RCH=CHR' RCHClCHClR' R Cl O O R H O O PhOR p-clc 6 H 4 OR Schlama, T.; Gabriel, K.; Gouverneur, V.; Mioskowski, C. Angew. Chem., Int. Ed. 1997, 36, 2341.

Dichlorination of Allylic Alcohol Derivatives Comparison of the Markó-Maguire and Mioskowski Reagents for Diastereoselective Vicinal Dichlorination of Allylic Alcohol Derivatives (TBS = tert- Butyldimethylsilyl, Piv = Pivaloate) Shibuya, G. M., Kanady, J. S., Vanderwal, C. D. J. Am. Chem. Soc. 2008, 130, 12514.

Dichlorination of Allylic Alcohol Derivatives Shibuya, G. M., Kanady, J. S., Vanderwal, C. D. J. Am. Chem. Soc. 2008, 130, 12514.

Dichlorination of Allylic Alcohol Derivatives Shibuya, G. M., Kanady, J. S., Vanderwal, C. D. J. Am. Chem. Soc. 2008, 130, 12514.

Dichlorination of Allylic Alcohol Derivatives Diastereoselective Synthesis of a Stereotetrad Relevant to Chlorosulfolipid 1 Shibuya, G. M., Kanady, J. S., Vanderwal, C. D. J. Am. Chem. Soc. 2008, 130, 12514.

Dichlorination of Allylic Alcohol Derivatives Synthesis of Pyran 16 to Confirm the Relative Stereochemistry of Dichlorination Shibuya, G. M., Kanady, J. S., Vanderwal, C. D. J. Am. Chem. Soc. 2008, 130, 12514.

Nucleophilic Multiple Chlorination Yoshimitsu, T., Fukumoto, N., Tanaka, T. J. Org. Chem. 2009, 74, 696.

Nucleophilic Multiple Chlorination Yoshimitsu, T., Fukumoto, N., Tanaka, T. J. Org. Chem. 2009, 74, 696.

Nucleophilic Multiple Chlorination Yoshimitsu, T., Fukumoto, N., Tanaka, T. J. Org. Chem. 2009, 74, 696.

Nucleophilic Multiple Chlorination All reactions were carried out using NCS (3 equiv) and PPh 3 (3 equiv) in toluene

Nucleophilic Multiple Chlorination Rationale for Configurational Retention at the C3 Position Yoshimitsu, T., Fukumoto, N., Tanaka, T. J. Org. Chem. 2009, 74, 696.

Nucleophilic Multiple Chlorination All reactions were carried out using NCS (3 equiv) and PPh 3 (3 equiv) in toluene at 90 C

Nucleophilic Multiple Chlorination Yoshimitsu, T., Fukumoto, N., Tanaka, T. J. Org. Chem. 2009, 74, 696.

Nucleophilic Multiple Chlorination a The reaction was carried out using NCS (3 equiv) and Ph 2 PCl (2 equiv) in CH 2 Cl 2 at rt. b Racemic substrate was used. c The reaction was carried out using NCS (3 equiv) and Ph2PCl (3 equiv) in CH 2 Cl 2 at rt.

Nucleophilic Multiple Chlorination Tetrachlorination of Bisepoxides 4n-q with NCS/Ph 3 P Yoshimitsu, T., Fukumoto, N., Tanaka, T. J. Org. Chem. 2009, 74, 696.

Total synthesis of a chlorosulpholipid Nilewski, C., Geisser, R. W.; Erick M. Carreira. Nature 2009, 457, 573.

Total synthesis of a chlorosulpholipid (a) (H 5 C 2 ) 4 NCl 3, CH 2 Cl 2, 0 C, 45 min, 68%; (b) DIBAL (2.3 equiv.), H 5 C 2 H 5 C 6, 0 C, 10 min, 72%; (c) imidazole (1.5 equiv.), t-bu(h 3 C) 2 SiCl (1.2 equiv.), CH 2 Cl 2, 0 C to room temperature (RT, 20 C), 30 min, 87%; (d) OsO 4 (5 mol%),nmo(1.1 equiv.), acetone/h 2 O, RT, 19 h, 68%; (e) DABCO (3.0 equiv.), (F 3 CSO 2 ) 2 O (1.0 equiv.), -78 C, 10 min, then diol, -78 C to RT, 15 h, 75% (96% based on recovered starting material); (f) (1)-CSA (0.1 equiv.), CH 3 OH, RT, 3 h, 98%; (g) (COCl) 2 (1.3 equiv.), (H 3 C) 2 SO (2.5 equiv.), CH 2 Cl 2, -78 C, 10 min, then 10 (1.0 equiv.), -78 C, 30 min, then (H 5 C 2 ) 3 N (5.4 equiv.), -78 C to RT, 1h; (h) 11 (1.05 equiv.), n-buli (1.05 equiv.), THF, -78 C, then RT, 10 min, followed by aldehyde (1.0 equiv.) at -78 C, 5 min, then RT, 30 min, 62% over two steps; (i) (H 3 C) 3 SiCl (2.0 equiv.), CH 2 Cl 2, H 3 CCO 2 C 2 H 5, 11.5 h, 39% 15, 4%16, 10% mixture of S N 2 products (31% starting material recovered);

Total synthesis of a chlorosulpholipid anchimeric participation of chlorides (j) (H 5 C 2 ) 4 NCl 3 (3.0 equiv.), CH 2 Cl 2, 0 C, 10 min, 51%; (k) (+)-CSA (10 mol%), CH 3 OH, 12 h, 80%; (l) DAIB (1.1 equiv.), TEMPO (0.1 equiv.), CH 2 Cl 2, RT, 16.5 h; (m) CrCl 2 (6.9 equiv.), CHCl 3 (2.6 equiv.), THF, 65 C, 49% over two steps; (n) SO 3 -pyridine (6.0 equiv.), THF, 30 min, 27% (66% starting material recovered). Nilewski, C., Geisser, R. W.; Erick M. Carreira. Nature 2009, 457, 573.

Total synthesis of a chlorosulpholipid (a) m-cpba, CH 2 Cl 2, 0 C to RT, d.r.=1:1, 95% overall; (b) 4Å molecular sieves, NMO (1.1 equiv.), TPAP (5 mol%), CH 2 Cl 2, 6h; 11 (1.6 equiv.), n-buli (1.6 equiv.), THF, -78 C, RT, 10 min; then addition of the aldehyde solution to the phosphonium ylide at -78 C, 1 h, then RT, 1.5 h, 34% (56% based on recovered starting material); (c) (H 3 C) 3 SiCl (2.0 equiv.), CH 2 Cl 2, H 3 CCO 2 C 2 H 5, 9 h, 43% (73% based on recovered starting material); (d) (H 5 C 2 ) 4 NCl 3 (3.0 equiv.), CH 2 Cl 2, -78 C, 2 h, d.r.=10:1, 93% overall; (e) (+)-CSA (10 mol%), CH 3 OH, 12 h, 98%; Nilewski, C., Geisser, R. W.; Erick M. Carreira. Nature 2009, 457, 573.

Total synthesis of a chlorosulpholipid (e) (+)-CSA (10 mol%), CH 3 OH, 12 h, 98%; (f) DAIB (1.3 equiv.), TEMPO (0.2 equiv.), CH 2 Cl 2, RT, 16.5 h; (g) CrCl 2 (6.8 equiv.), CHCl 3 (2.5 equiv.), THF, 65 uc, 47% over two steps; (h) SO 3 - pyridine (3.0 equiv.), THF, 20 min, 99%. Nilewski, C., Geisser, R. W.; Erick M. Carreira. Nature 2009, 457, 573.

Conclusions Polyflurinated and polychlorinated compounds have newly gained synthetic interests. Enantio- and stereoselective methods are needed.