Similar documents
Solid State Physics (Major, 8 ECTS)

Chapter 10. Nanometrology. Oxford University Press All rights reserved.

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

Seminars in Nanosystems - I

Chapter 12. Nanometrology. Oxford University Press All rights reserved.

Magnetic measurements (Pt. IV) advanced probes

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling

Spectroscopy of Nanostructures. Angle-resolved Photoemission (ARPES, UPS)

Challenges for Materials to Support Emerging Research Devices

Shared Experimental Facilities Your Partner for Materials Characterization at the University of California, Santa Barbara

Magnetic measurements (Pt. IV) advanced probes

Low Temperature Physics Measurement Systems

Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems

Advanced Spectroscopies of Modern Quantum Materials

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture.

Nanotechnology Nanofabrication of Functional Materials. Marin Alexe Max Planck Institute of Microstructure Physics, Halle - Germany

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

Applications of Synchrotron Radiation in Chemistry Zafar Hussain Ibupoto

Scanning Tunneling Microscopy Studies of the Ge(111) Surface

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin

Quantum Condensed Matter Physics Lecture 12

PHYS 3313 Section 001 Lecture #24 Monday, Apr. 21, 2014

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University

Preamble: Emphasis: Material = Device? MTSE 719 PHYSICAL PRINCIPLES OF CHARACTERIZATION OF SOLIDS

Nanomaterials and their Optical Applications

Bapatla Engineering College::Bapatla (Autonomous) ¼ B.Tech- Short answer model questions Subject: Engineering Physics-II Semester (14PH202)

Fundamentals and New Frontiers of Bose Einstein Condensation

Name; Kazuyuki Sakamoto Birth; December 5, 1966 (Kyoto, Japan) Sex; male Family; wife and 2 children Citizenship; Japan

Ecole Franco-Roumaine : Magnétisme des systèmes nanoscopiques et structures hybrides - Brasov, Modern Analytical Microscopic Tools

Low Vibration Cryogenic Equipment

Scanning Tunneling Microscopy Transmission Electron Microscopy

Doctor of Philosophy

X-Ray Spectro-Microscopy Joachim Stöhr Stanford Synchrotron Radiation Laboratory

Unit title: Atomic and Nuclear Physics for Spectroscopic Applications

Chapter 1 Introduction

CCD OPERATION. The BBD was an analog delay line, made up of capacitors such that an analog signal was moving along one step at each clock cycle.

QS School Summary

Импакт-факторы зарубежных научных журналов по физике

Applications of Synchrotron Radiation. Presentation at JASS02 Seminar; Jordan, Oct , 2002 Herman Winick, SSRL/SLAC, Stanford University

Lect Big Picture: Smallest objects to the Universe

Superfluidity and Superconductivity

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor

Interested in exploring science or math teaching as a career?

Superconductivity and Superfluidity

Chancellor Phyllis Wise invites you to a birthday party!

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Solid Surfaces, Interfaces and Thin Films

New High Field Magnet for Neutron Scattering at Hahn-Meitner Institute

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Quantum Tunneling and

Superfluidity and Condensation

Introduction to Atomic Physics and Quantum Optics

Core Level Spectroscopies

MSE 321 Structural Characterization

Putting the Electron s Spin to Work Dan Ralph Kavli Institute at Cornell Cornell University

Introduction to Atomic Physics and Quantum Optics

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Nanotechnology. Yung Liou P601 Institute of Physics Academia Sinica

Welcome to Physics 460 Introduction to Solid State Physics

Characteristic features and societyaccountability. Synchrotron Radiation Facility. (Tohoku Ring: SLiT-J)

Physical Science Research Activities of Korea Basic Science Institute

Scanning Probe Microscopy (SPM)

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

New forms of matter near absolute zero temperature

Electronic Noise Due to Thermal Stripe Switching

DOE SBIR & STTR FY 2019 Phase 1, Release 1 Topics

PHYS 3313 Section 001 Lecture #21 Monday, Nov. 26, 2012

Chapter 103 Spin-Polarized Scanning Tunneling Microscopy

Photoelectron Spectroscopy

General concept and defining characteristics of AFM. Dina Kudasheva Advisor: Prof. Mary K. Cowman

2D Materials Research Activities at the NEST lab in Pisa, Italy. Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy

What is Quantum Transport?

4/14/2015. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( ) Classical Model of Atom

What are we going to talk about: BEC and Nonlinear Atom Optics

Chapter 7: Quantum Statistics

Clark Atlanta University Center for Surface Chemistry and Catalysis Instrument Capabilities

Designing interfaces for Spin Injection into Organic Molecular Solids: A Surface Science Approach

Graphene. Tianyu Ye November 30th, 2011

Opportunities for Advanced Plasma and Materials Research in National Security

Laboratory for Quantum Magnetism. TP lab presentation 2009 Henrik M. Ronnow (EPFL since Jan. 2007)

Graphene Fundamentals and Emergent Applications

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

SUPPLEMENTARY INFORMATION

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

Nanoscale magnetic imaging with single spins in diamond

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

M.Sc. (Final) DEGREE EXAMINATION, MAY Second Year Physics

CHARACTERIZATION of NANOMATERIALS KHP

Quantum Theory of Matter

PEEM and XPEEM: methodology and applications for dynamic processes

Lecture 19: Building Atoms and Molecules

Physics and Material Science of Semiconductor Nanostructures

Modern Physics for Scientists and Engineers International Edition, 4th Edition

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

Magnetism in ultracold gases

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

what happens if we make materials smaller?

MSc in Materials Science Module specifications

Methods of surface analysis

Call for Papers. 3 Steps to Contribute a Presentation. Submit. Submission Deadline: June 26 (Tue.), 2018 (17:00, JST)

Transcription:

http://www.physics.ucdavis.edu/condensed_matter.html A brief introduction to Condensed Matter Physics at Davis and an overview of the Condensed Matter Experiment Group

The Past-- 30 Years of Nobel Prizes in Condensed Matter Physics 1980-present HIGHLIGHTED (UCD CM EXPERIMENT AND CM THEORY FACULTY RESEARCH) 1. 2011 GROUNDBREAKING EXPERIMENTS REGARDING THE TWO-DIMENSIONAL MATERIAL GRAPHENE NOVEL CIRCUIT ELEMENTS? (PICKETT, SAVRASOV, SINGH) 2. 2009 TRANSMISSION OF LIGHT IN FIBERS FOR OPTICAL COMMUNICATION & FOR THE INVENTION OF AN IMAGING SEMICONDUCTOR CIRCUIT THE CCD OPTIC FIBERS, THE CCD 3. 2007 DISCOVERY OF GIANT MAGNETORESISTANCE, LEADING TO SPINTRONICS HARD DRIVE READ HEADS, MAGNETIC RAM/LOGIC (FADLEY, LIU, SINGH, ZIMANYI, ) 4. 2003 PIONEERING CONTRIBUTIONS TO THE THEORY OF SUPERCONDUCTORS AND SUPERFLUIDS SUPERCONDUCTIVITY (PICKETT, SAVRASOV, ZIEVE, ) 5. 2001 ACHIEVEMENT OF BOSE-EINSTEIN CONDENSATION IN DILUTE GASES OF ALKALI ATOMS, AND FOR EARLY FUNDAMENTAL STUDIES OF THE PROPERTIES OF THE CONDENSATES BOSE EINSTEIN CONDENSATION OF ATOMS 6. 2000 DEVELOPMENT OF SEMICONDUCTOR HETEROSTRUCTURES USED IN HIGH-SPEED- AND OPTO-ELECTRONICS, AND INVENTION OF THE INTEGRATED CIRCUIT THE INTEGRATED CIRCUIT, THE IT WORLD 7. 1998 DISCOVERY OF A NEW FORM OF QUANTUM FLUID WITH FRACTIONALLY CHARGED EXCITATIONS THE QUANTUM HALL EFFECT, FRACTIONAL CHARGE--THEORY 8. 1997 DEVELOPMENT OF METHODS TO COOL AND TRAP ATOMS WITH LASER LIGHT LASER TRAPPING OF ATOMS 9. 1996 DISCOVERY OF SUPERFLUIDITY IN HELIUM SUPERFLUID HELIUM 10. 1994 DEVELOPMENT OF NEUTRON SPECTROSCOPY & DEVELOPMENT OF THE NEUTRON DIFFRACTION TECHNIQUE NEUTRON DIFFRACTION AND SPECTROSCOPY 11. 1991 DISCOVERING THAT METHODS DEVELOPED FOR STUDYING ORDER PHENOMENA IN SIMPLE SYSTEMS CAN BE GENERALIZED TO MORE COMPLEX FORMS OF MATTER, IN PARTICULAR TO LIQUID CRYSTALS AND POLYMERS THEORY OF POLYMERS AND LIQUIDS CRYSTALS 12. 1987 THE DISCOVERY OF SUPERCONDUCTIVITY IN CERAMIC MATERIALS HIGH TEMPERATURE SUPERCONDUCTIVY (CURRO, PICKETT, SAVRASOV, ) 13. 1986 FUNDAMENTAL WORK IN ELECTRON OPTICS, AND FOR THE DESIGN OF THE FIRST ELECTRON MICROSCOPE & DEVELOPMENT OF THE SCANNING TUNNELING MICROSCOPE ELECTRON AND SCANNING PROBE MICROSCOPIES (CHIANG,FADLEY) 14. 1985 DISCOVERY OF THE QUANTIZED HALL EFFECT THE QUANTUM HALL EFFECT, FRACTIONAL CHARGE-- EXPERIMENT 15. 1982 THEORY FOR CRITICAL PHENOMENA IN CONNECTION WITH PHASE TRANSITIONS PHASE TRANSITIONS (SINGH) 16. 1981 CONTRIBUTION TO THE DEVELOPMENT OF LASER SPECTROSCOPY LASER SPECTROSCOPY AND DIFFRACTION (ZHU) & CONTRIBUTION TO THE DEVELOPMENT OF HIGH- RESOLUTION ELECTRON SPECTROSCOPY PHOTOELECTRON SPECTROSCOPY/PHOTOEMISSION (CHIANG, FADLEY) Approximately half of Noble Prizes in Physics are in Condensed Matter. UCD faculty involved in many areas.

Related Recent Nobel Prizes in Chemistry 2007 STUDIES OF CHEMICAL PROCESSES ON SOLID SURFACES SURFACE CHEMISTRY, CATALYSIS (CHIANG, FADLEY) 2000 DISCOVERY AND DEVELOPMENT OF CONDUCTIVE POLYMERS POLYMERIC INTEGRATED CIRCUITS 1998 DEVELOPMENT OF THE DENSITY-FUNCTIONAL THEORY THAT CAN BE USED FOR THEORETICAL STUDIES OF THE PROPERTIES OF MOLECULES AND THE CHEMICAL PROCESSES IN WHICH THEY ARE INVOLVED ELECTRONIC STRUCTURE THEORY (FONG, PICKETT, SAVRASOV, COX) 1996 DISCOVERY OF FULLERENES NANOTUBES, NANOCIRCUITS (YU) 1991 DEVELOPMENT OF THE METHODOLOGY OF HIGH RESOLUTION NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY NMR SPECTROSCOPY (CURRO)

A Look at the Future-- Condensed Matter Physics The Science of the World Around Us How Do Complex Phenomena Emerge from Simple Ingredients? Strongly correlated materials How Will the Energy Demands of Future Generations Be Met? Solar cells, fuel cells, What New Discoveries Await Us in the Nanoworld? Surfaces and interfaces, novel nanodevices How Will the Information Technology Revolution Be Extended? Nanoscale logic and memory, spintronics What Happens Far from Equilibrium and Why? Many nanoscale systems What Is the Physics of Life? Biophysics Publisher: National Academies Press Pub. Date: December 2007 ISBN-13: 9780309109697 286pp

UC Davis Experimental Condensed Matter Physics-People Shirley Chiang Rena Zieve Nick Curro Xiangdong Zhu Low-Temperature Physics Novel & Strongly Correlated Materials Nano-Science Surface/Interface Science Biophysics Energy-Related Research Magnetic Materials Dong Yu Chuck Fadley Linton Corruccini Kai Liu

UC Davis Experimental Condensed Matter Physics Special opportunities and facilities State-of-the-art t th tin-house facilities + external facilities Small-group hands-on experimental work diverse experience Excellent track record of funding and RA support: 20% of graduate students t are in CME Dept./Campus central facilities: X-ray diffraction, nanofabrication, clean room, electron microscopy, NMR, electron spectroscopy, Connection to special campus initiatives: Nanomaterials in the Environment, Agriculture & Technology (NEAT)-Liu, Fadley Energy@UC Davis, Lawrence Livermore National Laboratory Yu Unique nearby national facilities: Lawrence Berkeley National Laboratory Advanced Light Source-Fadley, National Center for Electron Microscopy, Molecular Foundry Lawrence Livermore National Laboratory microscopy, high pressure facilities Multiple collaborations & interdisciplinary research: UCD, national, international Proximity to high-tech industry in Silicon Valley: a major asset

Growth and Surface Dynamics of Metals on Semiconductors: Ag/Ge Shirley Chiang Ag/Ge(110), 025ML 0.25 Scanning Tunneling Microscopy (STM) Ag on stepped Ge(111), 0.78 ML at 250 C Low Energy Electron Microscopy (LEEM) Bright = Ag in ( 3x 3)R30º, Dark = Ag in (4x4) 5 microns FOV=5µm FOV=5µm, 5.5eV electron energy, Real-Time movies 100 nm x 100 nm, V sample =-2.0V, I t =0.5nA http://www.physics.ucdavis.edu/stm/index.html

Low-temperature physics: superconductivity, magnetism, high pressure Rena Zieve squeeze samples to drive phase transitions study superconductivity, magnetism 2 graduate students rotate superfluid helium, creating quantized vortices study vortex motion, waves, and energy loss 2 graduate students http://london.ucdavis.edu/

NMR of Strongly Correlated Electron Systems Nicholas Curro PuCoGa 5 NMR of Gallium Frequency T Nature 434, 622 (2005) Unconventional superconductivity and magnetism, heavy fermion physics, quantum phase transitions Studies of nuclear magnetic resonance in extreme conditions: 10mK to 1000 K, 0-60 T, and 0-3 GPa http://www.physics.ucdavis.edu/~curro/

Nanostructure Solar Cells Dong Yu PbS Nano Pine Trees Colloidal PbSe Nanowires 3 m PbS Nanowires Scanning Photocurrent Microscopy V b = 0V Source Drain I - How do photons convert into charge carriers? - How do sizes of semiconductors affect their properties? - How to make efficient and low-cost solar cells? http://www.physics.ucdavis.edu/~yu/

Nanomagnetism & Spintronics Kai Liu Nanoscale architectures Co Cu 100nm Multilayered Nanowires: Vortex state, giant magnetoresistance, Spin-transfer torque Single Domain Vortex State Single-domain Co http://www.physics.ucdavis.edu/~kliu/ Vortex-state Co

Magnetic Frustration at Ultralow Temperatures Linton Corruccini Low temperature magnetism Heat capacity vs T for Gd 2 Zr 2 O 7 Magnetic order peak Cubic pyrochlore lattice Heat capacity vs T for Tb 2 Hf 2 O 7 No magnetic order peak Magnetic Frustration http://www.physics.ucdavis.edu/text/corruccini.html

Optical Studies of Surfaces and Thin Films Xiangdong Zhu http://www.physics.ucdavis.edu/xdzhu/

Studies of Surfaces, Nanostructures, and Complex Materials with Novel X-Ray Synchrotron Radiation Methods Chuck Fadley Department of Physics, University of California, Davis Materials Sciences Division, i i Lawrence Berkeley National Laboratory Spintronics --Probing Buried Magnetic Interfaces with Soft X-ray Standing Waves Depth resolved electronic energy bands in a colossal magnetoresistive oxide nanolayer (Sat. poster) k y k y 200 1 = e g 3d e g 300 40 30 20 10 40 2 = t 2g 3d t 2g 30 20 10 Japan 0 0 400 500 600 700 800 40 200 300 400 500 600 700 800 40 300 500 700 200 400 600 800 pixel pixel pixel 4 30 20 10 5 30 3 Mn3p Detector Ch. / Angle θ XPD 20 Brillouin Zone 10 0 0 k x k x k x 0 X 1 Composition Magnetization 0 Sat n. Fe (12.8 Å) Fe + Cr (6.8 Å intermix) Cr Fe x Cr 1-x X 1-X Iron Chrome Atomic m moments: Fe m Cr Depth (z) http://www.physics.ucdavis.edu/fadleygroup/ 2.8 Å 40Å 4.0 M Cr M Fe 12.5 Å 21.1 Å Theory