Mechanical Behavior of Composite Tapered Lamina

Similar documents
TABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

Composite Structures. Indian Institute of Technology Kanpur

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

Bending of Simply Supported Isotropic and Composite Laminate Plates

EFFECT OF LAMINATION ANGLE AND THICKNESS ON ANALYSIS OF COMPOSITE PLATE UNDER THERMO MECHANICAL LOADING

Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost

Materials and Structures. Indian Institute of Technology Kanpur

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

Chapter Two: Mechanical Properties of materials

Basic Equations of Elasticity

Smart Materials, Adaptive Structures, and Intelligent Mechanical Systems

ME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2)

QUESTION BANK Composite Materials

Chapter 3. Load and Stress Analysis

Buckling Behavior of 3D Randomly Oriented CNT Reinforced Nanocomposite Plate

Computational Analysis for Composites

KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP)

Strain Transformation equations

Jeff Brown Hope College, Department of Engineering, 27 Graves Pl., Holland, Michigan, USA UNESCO EOLSS

Finite Element Analysis of Composite Laminate By Using ABDH Matrix(Stiffness Matrix)

Module-6: Laminated Composites-II. Learning Unit-1: M6.1. M 6.1 Structural Mechanics of Laminates

3D Elasticity Theory

STRAIN. Normal Strain: The elongation or contractions of a line segment per unit length is referred to as normal strain denoted by Greek symbol.

Module 7: Micromechanics Lecture 25: Strength of Materials Approach. Introduction. The Lecture Contains. Effective Transverse Modulus

BUCKLING COEFFICIENTS FOR SIMPLY SUPPORTED, FLAT, RECTANGULAR SANDWICH PANELS UNDER BIAXIAL COMPRESSION

ON THE NUMERICAL ANALYSIS OF COMPOSITE MATERIAL

[5] Stress and Strain

Presented By: EAS 6939 Aerospace Structural Composites

2.2 Relation Between Mathematical & Engineering Constants Isotropic Materials Orthotropic Materials

Materials and Structures. Indian Institute of Technology Kanpur

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011

Constitutive Relations

Hygrothermal stresses in laminates

Composites Design and Analysis. Stress Strain Relationship

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

Advanced Structural Analysis EGF Section Properties and Bending

EE C247B ME C218 Introduction to MEMS Design Spring 2017

Finite Element Method in Geotechnical Engineering

Lecture 8. Stress Strain in Multi-dimension

Mechanical Design in Optical Engineering

N = Shear stress / Shear strain

Failure Analysis of Unidirectional Composite Pinned- Joints

ANALYSIS OF STRAINS CONCEPT OF STRAIN

MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING

3D and Planar Constitutive Relations

MECE 3321: Mechanics of Solids Chapter 6

Strength Prediction Of Composite Laminate

Mechanical Properties

Stress, Strain Stress strain relationships for different types of materials Stress strain relationships for a unidirectional/bidirectional lamina

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Mechanical Design in Optical Engineering

ELASTICITY (MDM 10203)

BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS

Lab Exercise #5: Tension and Bending with Strain Gages

Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )

Elastic parameters prediction under dynamic loading based on the. unit cell of composites considering end constraint effect

Lecture 15 Strain and stress in beams

Combined Stresses and Mohr s Circle. General Case of Combined Stresses. General Case of Combined Stresses con t. Two-dimensional stress condition

Fracture Mechanics, Damage and Fatigue: Composites

Bending Analysis of Symmetrically Laminated Plates

FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

Prediction of Elastic Constants on 3D Four-directional Braided

Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading

LAMINATION THEORY FOR THE STRENGTH OF FIBER COMPOSITE MATERIALS

EE C245 ME C218 Introduction to MEMS Design

Example 3.7 Consider the undeformed configuration of a solid as shown in Figure 3.60.

Mechanical and Thermal Properties of Coir Fiber Reinforced Epoxy Composites Using a Micromechanical Approach

2. (a) Explain different types of wing structures. (b) Explain the advantages and disadvantages of different materials used for aircraft

COMPUTER AIDED DESIGN IN CASE OF THE LAMINATED COMPOSITE MATERIALS

Comb resonator design (2)

6. Bending CHAPTER OBJECTIVES

Dynamic Response Of Laminated Composite Shells Subjected To Impulsive Loads

Getting Started with Composites Modeling and Analysis

Numerical investigation on the position of holes for reducing stress concentration in composite plates with bolted and riveted joints

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

DEVELOPMENT OF A MICROMECHANICAL MODEL IN INTERACTION WITH PARAMETERS RELATED TO THE MICROSTRUCTURE OF CARBON/EPOXY COMPOSITES

COMPOSITE PLATE THEORIES

Stress-strain response and fracture behaviour of plain weave ceramic matrix composites under uni-axial tension, compression or shear

PLY LEVEL UNCERTAINTY EFFECTS ON FAILURE OF COMPOSITE

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test

Chapter 5 Plane-Stress Stress-Strain Relations in a Global Coordinate System

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

Stress-Strain Behavior

Nomenclature. Length of the panel between the supports. Width of the panel between the supports/ width of the beam

Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

Stresses Analysis of Petroleum Pipe Finite Element under Internal Pressure

DYNAMIC RESPONSE OF SYNTACTIC FOAM CORE SANDWICH USING A MULTIPLE SCALES BASED ASYMPTOTIC METHOD

The aims of this experiment were to obtain values for Young s modulus and Poisson s ratio for

Design Survey of Laminated Composite I-Beam

CHAPTER 4 Stress Transformation

Generic Strategies to Implement Material Grading in Finite Element Methods for Isotropic and Anisotropic Materials

ANALYTICAL SOLUTIONS USING HIGH ORDER COMPOSITE LAMINATE THEORY FOR HONEYCOMB SANDWICH PLATES WITH VISCOELASTIC FREQUENCY DEPENDENT DAMPING

Influence of fibre proportion and position on the machinability of GFRP composites- An FEA model

COMPARISON OF NUMERICAL SIMULATION AND EXPERIMENT OF A FLEXIBLE COMPOSITE CONNECTING ROD

Unit 18 Other Issues In Buckling/Structural Instability

Chapter 5 Structural Elements: The truss & beam elements

SOME RESEARCH ON FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

7.3 Design of members subjected to combined forces

COMPARISON OF COHESIVE ZONE MODELS USED TO PREDICT DELAMINATION INITIATED FROM FREE-EDGES : VALIDATION AGAINST EXPERIMENTAL RESULTS

INTRODUCTION TO STRAIN

Transcription:

International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 8 (August 2014), PP.19-27 Mechanical Behavior of Composite Tapered Lamina Kiran Ravikumar 1 1 Manipal Institute of Technology, Manipal. Abstract:- Composite lamina is widely used in a variety of applications. The laminas used are of different shapes. Based on the shape of the laminas its mechanical behavior also changes. Laminas that are tapered along a single direction are one of the most commonly used.we can analyze these laminas by considering them as a set of regular laminas of varying lengths arranged one above the other. This paper gives an alternative set of formulae that can be used to determine the mechanical behavior of such laminas. The formulae speak about the manner in which the tapered lamina deforms along each axis. A Compliance matrix will be formulated specifically for the analysis of composite tapered laminas. For this paper the data obtained from the derived formulae is verified against the data obtained from alrea existing FEA software like ABAQUS. Keywords: Lamina/Ply; Strength; Mechanical Properties; Analytical Modeling; Composite; Stiffness Matrix; Compliance Matrix. Annotations E x Modulus of Elasticity in the fiber (x) direction E y Modulus of Elasticity in the transverse (y) direction E z Modulus of Elasticity in the out of plane (z) direction v xy Poison s ratio relating the longitudinal strain in x direction to the transverse strain in y direction v xz Poison s ratio relating the longitudinal strain in x direction to the transverse strain in z direction G xy Shear modulus along the xy plane I. INTRODUCTION A unidirectional tapered Composite lamina is one in which the thickness of the lamina is varying linearly from one end to the other. The fiber is laid along the direction of taper. This will develop an orthotropic property in the lamina. When the lamina is loaded it will undergo deformations. The coordinate system considered and the geometry of the tapered lamina is shown in Figure 1. The x direction refers to the direction in which the fiber is laid. The y direction is perpendicular to the x direction that is, it lies in the transverse direction. The dimension along this direction remains constant throughout. The z direction is perpendicular to the xy plane.it is referred to as the out of plane direction. The length of the composite lamina is measured along the x direction and is taken as l. The width of the tapered lamina is measured along the y direction and is taken as b. The thickness of the tapered lamina is measured along the z direction and it is considered as t 1 on one side and t 2 on the opposite side. Also t 1 is greater than t 2. Figure 1 Isometric view of the Tapered Lamina 19

Figure 2 Side view of Tapered Lamina Figure 3 Top View of the Tapered Lamina A Lamina generally has two of its dimensions much greater than the third dimension. Hence a state of plane stress can be considered. THEORY The composite can experience three different loading conditions under the plane stress condition. The composite can be loaded along the xdirection or loaded along the y direction or the lamina can undergo a shear loading on the xy plane. Each of these cases will be considered individually and the deformations developed will be determined. The normal loads considered are to be tensile in nature. But the deformations under compressive loading can also be determined as long as the lamina does not buckle. The forces applied are such that the lamina will experience only elastic behavior. A. Load along X direction When the composite lamina is loaded along the X direction, three deformations result. The first one will be along the loading direction itself called dx. The remaining two deformations are due to the poisson s effect. The loading condition is shown in Figure 4. 20

Figure 4 Load in the x direction Figure 5 Considered Element Figure 5 shows the element considered for analysis. F x is the load along the x direction, t is the thickness of a section at a distance x from the thicker end. Consider the relation Modulus of elasticity = Stress Strain Stress = F x b t Strain = d x dx Substituting in the Stress-Strain relation (1) and rearranging we get d x = (4) F x E x b dx t Where t = t 1 k x k = t 1 t 2 l So, d x = F x dx E x b t 1 k x Integrating (6) with respect to x from 0 to l, we get the net deformation in x direction as F x = x l ln t 1 (7) E x b (t 1 t 2 ) t 2 For deformation in y due to the loading in x direction we have to consider the Poisson s ratio, v xy = transverse strain (y ) longitudinal strain (x) v xy = d x (9) dx Rearranging and substituting the value of d x dx in (9), d x = F x dx E x b (t 1 k x) = v xy F x E x b t Integrating (11) with respect to y from 0 to b we get, y = v xy F x (12) E x t The equation (12) shows that the deformation in the y direction is dependent on the cross section at which the deformation is measured. When x = l, the deformation is maximum. Hence loading in the x direction introduces a taper along the y direction as well. 21 (2) (5) (6) (1) (3) (8) (10) (11)

For deformation in z due to the loading in x direction we have to consider the Poisson s ratio, v xz = transverse strain (z) longitudinal strain (x) v xz = d z dz d x dx Rearranging and substituting the value of d x dx at a section x in (14), d x = F x dx E x b (t 1 k x) d z = v xz F x dz E x b t Integrating (16) with respect to z we get, z = v xz F x E x b ln t 1 t The equation (17) shows that the deformation in the z direction is dependent on the cross section at which the deformation is measured. When x = l, the deformation is minimum. Hence loading in the x direction increases the taper along the z direction. B. Load along y direction When the composite lamina is loaded along the y direction, three deformations result. They are similar to the previous loading condition. But here the deformations in x and z will result due to Poisson s effect and the deformation in y direction will be due to the load acting in the y direction. Figure 6 shows the loading condition considered. (17) (13) (14) (15) (16) Figure 6 Load in the y direction Now F y is the load acting in the y direction. All other geometric parameters are the same. stress = F y 1 2 l (t 1+t 2 ) strain = y b From the stress strain relation (1), y = 2 F y b For deformation in x due to the loading in y direction from the Poisson s ratio, v yx = transverse strain (x) longitudinal strain (y ) v yx = d x dx (22) (18) (19) (20) (21) = y b This is because the total strain will be the same throughout for this loading condition. Rearranging and substituting the value of y/b in (22), d x dx = 2 v yx F y Integrating (23) with respect to x from 0 to a section at a distance x from the thicker end, x = v yx F y 2 x This shows that the deformation in x varies linearly with the taper. For deformation in z due to the loading in y direction from the Poisson s ratio, (23) (24) 22

v yz = transverse strain (z) longitudinal strain (y) Mechanical Behavior of Composite Tapered Lamina v yz = d z dz (26) Again, = y b Substituting and rearranging (26) we get, d z dz = 2 v yz F y Integrating (27) with respect to dz from 0 to the thickness t at a section we get, z = v yz 2 F y t (28) The deformation in z direction depends on the thickness of the section at which the deformation is measured. C. SHEAR DEFORMATION When the composite lamina is loaded by shear it will undergo a deformation as shown in the Figure 8. (27) (25) Figure 7 Shear Loading Figure 8 Shear Deformation 23

The shear load is acting on the xy plane. Its magnitude is taken as F xy. stress = F xy 1 2 l (t 1+t 2 ) But, l l = θ From the stress strain relation (1), θ = 2 F xy G xy l (t 1 +t 2 ) strain = l l Mechanical Behavior of Composite Tapered Lamina The change in angle can be considered as the displacement of the face on which the shear load is acting. II. VERIFICATION The above derived formulae are verified against the deformations obtained from an FEA tool such as ABAQUS. A 3 dimensional model of the tapered lamina is developed with the following dimensions. l = 50mm b = 50mm t 1 = 6mm t 2 = 3mm The material considered is S-Glass epoxy composite with the following properties, E x = 53e3 N/mm 2 E y = 16e3 N/mm 2 v xy = Vxz = Vyz = 0.26 v yx = 0.078 G xy = 6.35e3 N/mm 2 The respective deformations were found from the formula and from the software, for ten different load values in each case. The error is calculated and it is plotted against the load values for each deformation. All deformation values obtained are in mm. A. LOAD IN X AXIS The force acting in the x direction is considered to vary from 600 N to 6000N in steps of 600 N.The figures (Figure 9 to 11) shows the error obtained when compared with ABAQUS results for loading in X direction. For deformation in x direction, (29) (30) Figure 9 Error vs Load for deformation in x For deformation in y direction, 24

Figure 10 Error vs Load for deformation in y For deformation in z direction, Figure 11 Error vs Load for deformation in z B. LOAD IN Y AXIS The force acting in the y direction is considered to vary from 450 N to 4500 N in steps of 450 N.The figures (Figure 12 to 14) shows the error obtained when compared with ABAQUS results for loading in Y direction. For deformation in y direction, Figure 12 Error vs Load for deformation in y For deformation in x axis 25

Figure 13 Error vs Load for deformation in x For deformation in z axis, Figure 14 Error vs Load for deformation in z C. SHEAR LOAD The shear force acting in the xy plane is considered to vary from 450 N to 4500 N in steps of 450 N. The Figure 15 shows the variation of the error obtained when the results are compared with ABAQUS results. Shear Deformations, Figure 15 Error vs Load for shear deformation 26

III. COMPLIANCE MATRIX The compliance matrix for a tapered composite lamina experiencing in plane stresses will be developed now. x S11 S12 S13 F x y = S21 S22 S23 F y θ S31 S32 S33 l S11 = ln t 1 E x b (t 1 t 2 ) t 2 2 v yx x S12 = E y l (t 1 + t 2 ) S13 = 0 v xy F xy S21 = E x (t 1 k x) 2 b S22 = E y l (t 1 + t 2 ) S23 = 0 S31 = 0 S32 = 0 2 S33 = G xy l (t 1 + t 2 ) To determine the deformation in the z direction, v xz F x l t z = E x x b t 1 t ln t 1 2 t + v yz 2 F y t E y l (t 1 + t 2 ) The Compliance Matrix will be as shown below, S11 S12 0 S21 S22 0 0 0 S33 IV. CONCLUSION The formulae were derived for the composite tapered lamina. Using these formulae the deformations experienced by the lamina was calculated for various load values. These results were compared with the results obtained from the FEA tool ABAQUS and the two results were found to match with minimum error. The compliance matrix obtained can be used to stu the behavior of a tapered lamina under plane stress condition with good accuracy. ACKNOWLEDGEMENT I would like to thank Dr. Satish Shenoy, Professor, Aeronautical and Automobile Department of Manipal Institute of Technology for guiding and helping me in the completion of this Paper. REFERENCES [1]. Madhujit Mukhopadhyay, Mechanics of Composite Materials and Structures, Universities Press, 2004. [2]. Isaac M. Daniel and OriIshai, Engineering Mechanics of Composite Materials, Oxford Universities Press, 1994. [3]. K. He, S. V. Hoa and R. Ganesan, The stu of Tapered Laminated Composite Structures, Composites Science and Technology, 2000. 27