Introduction of Surface Acoustic Wave (SAW) Devices

Similar documents
Scattering at an Interface:

Analysis Methods for Slab Waveguides

International Distinguished Lecturer Program

Ray Optics Theory and Mode Theory. Dr. Mohammad Faisal Dept. of EEE, BUET

Optics. n n. sin. 1. law of rectilinear propagation 2. law of reflection = 3. law of refraction

REFLECTION AND REFRACTION

Types of Waves Transverse Shear. Waves. The Wave Equation

The z-transform. 7.1 Introduction. 7.2 The z-transform Derivation of the z-transform: x[n] = z n LTI system, h[n] z = re j

INF-GEO Solutions, Geometrical Optics, Part 1

Module 18 Discrete Time Signals and Z-Transforms Objective: Introduction : Description: Discrete Time Signal representation

Z - Transform. It offers the techniques for digital filter design and frequency analysis of digital signals.

a b c d e f g h Supplementary Information

Cork Institute of Technology Bachelor of Science (Honours) in Applied Physics and Instrumentation-Award - (NFQ Level 8)

6.1 Analysis of frequency selective surfaces

Particle Swarm Optimization Design of Optical Directional Coupler Based on Power Loss Analysis

Antenna Engineering Lecture 8: Antenna Arrays

Optical Devices for High Speed Communication Systems. Lecture Notes

Chapter 7 z-transform

Chapter 7: The z-transform. Chih-Wei Liu

Time-Domain Representations of LTI Systems

Analysis of MOS Capacitor Loaded Annular Ring MICROSTRIP Antenna

FFTs in Graphics and Vision. The Fast Fourier Transform

Waves and rays - II. Reflection and transmission. Seismic methods: Reading: Today: p Next Lecture: p Seismic rays obey Snell s Law

Section 19. Dispersing Prisms

Section 19. Dispersing Prisms

Mechatronics. Time Response & Frequency Response 2 nd -Order Dynamic System 2-Pole, Low-Pass, Active Filter

Sound II. Sound intensity level. Question. Energy and Intensity of sound waves

y = f x x 1. If f x = e 2x tan -1 x, then f 1 = e 2 2 e 2 p C e 2 D e 2 p+1 4

Frequency Domain Filtering

6.003 Homework #12 Solutions

Lecture 9: Diffusion, Electrostatics review, and Capacitors. Context

Direction of Arrival Estimation Method in Underdetermined Condition Zhang Youzhi a, Li Weibo b, Wang Hanli c

Measurement uncertainty of the sound absorption

6.003 Homework #12 Solutions

A. Basics of Discrete Fourier Transform

FIR Filter Design: Part II

REFLECTION AND REFRACTION

Quantum Mechanics I. 21 April, x=0. , α = A + B = C. ik 1 A ik 1 B = αc.

Most text will write ordinary derivatives using either Leibniz notation 2 3. y + 5y= e and y y. xx tt t

Filter banks. Separately, the lowpass and highpass filters are not invertible. removes the highest frequency 1/ 2and

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE

CHM 424 EXAM 2 - COVER PAGE FALL

PAPER : IIT-JAM 2010

EE260: Digital Design, Spring n Binary Addition. n Complement forms. n Subtraction. n Multiplication. n Inputs: A 0, B 0. n Boolean equations:

Maximum and Minimum Values

There are 7 crystal systems and 14 Bravais lattices in 3 dimensions.

Butterworth LC Filter Designer

Repetition: Refractive Index

Olli Simula T / Chapter 1 3. Olli Simula T / Chapter 1 5

(4 pts.) (4 pts.) (4 pts.) b) y(x,t) = 1/(ax 2 +b) This function has no time dependence, so cannot be a wave.

Wave Motion

CMOS. Dynamic Logic Circuits. Chapter 9. Digital Integrated Circuits Analysis and Design

Chapter 4 : Laplace Transform

BLUE PRINT FOR MODEL QUESTION PAPER 3

Polariton resonances in multilayered piezoelectric superlattices

Digital signal processing: Lecture 5. z-transformation - I. Produced by Qiangfu Zhao (Since 1995), All rights reserved

Digital Signal Processing

ANALYSIS OF DAMPING EFFECT ON BEAM VIBRATION

2D DSP Basics: Systems Stability, 2D Sampling

MEI Conference 2009 Stretching students: A2 Core

The DOA Estimation of Multiple Signals based on Weighting MUSIC Algorithm

Sinusoidal Steady-state Analysis

Overview of Aberrations

Supplementary Information: Flexible and tunable silicon photonic circuits on plastic substrates

Practical Spectral Anaysis (continue) (from Boaz Porat s book) Frequency Measurement

ADVANCED DIGITAL SIGNAL PROCESSING

Exponential Moving Average Pieter P

Application of the Herschel-Quincke Tube Concept to Higher-Order Acoustic Modes in Two-Dimensional Ducts

Chapter 2 Feedback Control Theory Continued

Coma aberration. Lens Design OPTI 517. Prof. Jose Sasian

Office: JILA A709; Phone ;

EF 152 Exam #2, Spring 2016 Page 1 of 6

Electromagnetic wave propagation in Particle-In-Cell codes

Frequency Response of FIR Filters

THE LEVEL SET METHOD APPLIED TO THREE-DIMENSIONAL DETONATION WAVE PROPAGATION. Wen Shanggang, Sun Chengwei, Zhao Feng, Chen Jun

Quantum Annealing for Heisenberg Spin Chains

Physics 102 Exam 2 Spring Last Name: First Name Network-ID

Accurate and Fast Extraction of the Bloch Eigenmodes of Fiber Gratings

Exercises and Problems

step size step-size 0.5V Quantization error 0.25V and z or zero zero * pole * A P a g e Apply KCL at node V,

17 Phonons and conduction electrons in solids (Hiroshi Matsuoka)

Finite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures

EL 675 UHF Propagation for Modern Wireless Systems. Henry L. Bertoni Polytechnic University

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8

[ ] sin ( ) ( ) = 2 2 ( ) ( ) ( ) ˆ Mechanical Spectroscopy II

FAILURE CRITERIA: MOHR S CIRCLE AND PRINCIPAL STRESSES

University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science. BACKGROUND EXAM September 30, 2004.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Generalized Alternating-Direction Implicit Finite-Difference Time-Domain Method in Curvilinear Coordinate System*

Answer: 1(A); 2(C); 3(A); 4(D); 5(B); 6(A); 7(C); 8(C); 9(A); 10(A); 11(A); 12(C); 13(C)

POWER SERIES SOLUTION OF FIRST ORDER MATRIX DIFFERENTIAL EQUATIONS

Matsubara-Green s Functions

GROUND MOTION OF NON-CIRCULAR ALLUVIAL VALLEY FOR INCIDENT PLANE SH-WAVE. Hui QI, Yong SHI, Jingfu NAN

(, ) (, ) (, ) ( ) ( )

Calculus 2 Test File Fall 2013

: Transforms and Partial Differential Equations

Photon Scanning Tunneling Microscope: Detection of Evanescent Waves

Physics 2D Lecture Slides Lecture 22: Feb 22nd 2005

Transcription:

April, 018 Itroductio of Surface Acoustic Wave (SAW) Devices Part 6: D Propagatio ad Waveguide Ke-a Hashimoto Chiba Uiversit k.hashimoto@ieee.org http://www. te.chiba-u. jp/~ke

Cotets Wavevector ad Diffractio Waveguide Scalar Potetial Theor

Cotets Wavevector ad Diffractio Waveguide Scalar Potetial Theor

Diffractio (a) Fresel Regio (Beam Propagatio) W (a) (b) (b) Frauhofer Regio (Clidrical Wave Propagatio) c Critical Legth: c =(1+)W / Parameter Determied b Aisotrop(=0 for Isotropic)

(a) For Wide Aperture (b) Narrow Aperture Variatio with Aperture Size For Weighted IDT

Wave Vector =/:Phase Dela per Uit Legth Wave Propagatio Wave Propagatio =/ / =/ V p (=fdoes ot Follow Vector Decompositio Rule! ep( j X) ep[ j( z)] z

D Wave Equatio u C u ep[ j( t )] 0 3 S 3 where 0 / V (- 1,+ 3 ) (-S 1,+S 3 ) (+ 1,+ 3 ) (+S 1,+S 3 ) S 0 1 S 1 (- 1,- 3 ) (-S 1,-S 3 ) (+ 1,- 3 ) (+S 1,-S 3 )

Sell s Law Cotiuit of Wave Frot at Boudar Medium 1 Medium Cotiuit of Lateral Wavelegth Cotiuit of Lateral Wavevector Compoet

At Boudar Betwee Two media, S () / t t / / S () i S (1) i i r r i / r / (a) Trasmissio S (1) i / r / (b) Total Reflectio Slowess Surface (S=1/V p ) Whe S (1) >S () si si si i r r I optics, =/c, where is refractive ide ad c is wave velocit i vacuum t t

Evaescet Field (at Total Reflectio) () j () 0 Field Peetratio Epoetial Deca (Eerg Storage)

Tuelig Eve for Total Reflectio State, Wave Trasmissio Occurs whe Medium is Thi No Phase Dela Through Trasmissio

0 0 0 ) / ( ) / ( V V V 0 0 1 0 1 0 ) / ( ) / ( ) / ( V V V V Parabolic Approimatio /V 0 /V 0 Aisotrop Case )] ( ep[ t j u

Whe Aisotrop eists, V p =S Phase Velocit V g : Group Velocit S z (+S,+S z ) V g -1 S V g S V p Beam Steerig cf. Birefrigece

Gree Fuctio Aalsis q(,) (X,Y) ( X, Y ) G( X, Y ) q(, ) dd F Where G(X,Y) is Gree Fuctio G( r) ep( jr) r Para-Aial Approimatio for X» Y Approimatig 0, The F G( X, Y ) ep( j X jy X / 4 X )

Cotributio of -th Electrode (Width w, Positio (, )) +w / (,) -w / (X,Y) ( X, Y ) A N 1 w w G( X / /, Y ) d

(X m,y) -w / +w / (,) Y m -W m / Y m +W m / ddy Y X G A dy Y X Q M m N W Y W Y w w m M m W Y W Y m m m m m m m m m 1 1 / / / / 1 / / ), ( ), ( Detectio b m-th Electrode (Width W m, Positio (X m,y m ))

Amplitude i db Simulatio 0-0 -40-60 -80 With Diffractio Without Diffractio -100 30 35 40 45 50 55 60 Frequec i MHz Sigificat at Higher Out-of-Bad Rejectio

Cotets Wavevector ad Diffractio Waveguide Scalar Potetial Theor

Ifluece of Diffractio i SAW Resoators Couter Measure

Iharmoic Resoaces Admittace G Iharmoic Resoace B Frequec r a Desig Challege: Suppressio of Iharmoic Resoaces Without Badl Affectig Mai Resoace

Closed Waveguide Waveumber of Mode = h For Phase Matchig Betwee Icidet ad -Bouced Waves - h csc+= coth cos : Reflectio Coef. at Boudaries Trasverse Resoace Coditio - h +=

Resoace Coditio h 0 h 0 h h Trasverse Resoace Coditio

ad 0 h Waveumber of Guided Mode ( / V ) ( / h ) Normalized frequec 3.5 1.5 1 0.5 0 = =1 =0 0 0.5 1 1.5.5 3 Normalized waveumber Relatio Betwee ad 0 Whe =0 or

(a) Near Cutoff (b) Far from Cutoff Propagatio of Waveguide Mode V p =/ : Phase Velocit Frequec ta -1 (V p ) Waveumber ta -1 (V g ) Propagatio Speed of Phase Frot V g =/ : Group Velocit Propagatio Speed of Eerg

Ifluece of Group ad Phase Velocities o Sigal Trasfer =L/V g t (a) Iput Sigal =-L/V p t (b) Output Sigal

Uder Cutoff Frequec Normalized frequec 3 =6 =5 =4 =3 1 = =1 0-3j -j -j 0 1 3 Normalized waveumber Behavior as Evaescet Field

At Cutoff (a) cut-off (b) (c) R cut-off (d) R R Behavior as Evaescet Field

Eve if ot Cutoff 1 R1 R 1 R 1 R Ifluece of Higher-Order Cutoff Modes

Ope Waveguide h Use of Total Reflectio at Surfaces Eerg Peetratio to Outsides Trasverse Resoace Coditio - h += is Frequec or depedet

Similarit with Closed Waveguide at Total Reflectio Normalized frequec 1.4 1. 1 0.8 0.6 0.4 0. 0 Critical Coditio 0 0. 0.4 0.6 0.8 1 1. 1.4 Normalized wavevector Relatio betwee ad 0 If Total Reflectio Coditio is Not Satisfied?

Leak Waveguide h Whe Reflectio Coefficiet at Surfaces is Large, Pseudo Mode Propagates with Eerg Leakage to Outside If Reflectio Coefficiet at Surfaces is Small?

Propagatio as Free Wave(Not Guided) Appearig Whe Velocities of Waveguide Mode ad Free Wave are Close (Near Cutoff)

Ecitatio ad Propagatio of No-Leak Compoet source c SAW c =cos -1 (V S /V B ): critical agle V S : SAW velocit, V B : BAW velocit

Ecitatio ad Propagatio of Leaked-BAW Compoet source c Leaked BAW c =cos -1 (V B /V S ): critical agle V S : SAW velocit, V B : BAW velocit Field Amplitude Grows Toward the Depth!

Resoace Frequec of Cuboid Cavit z z z h h h 0 z z h h h

Wavevector of Propagatio Mode i Rectagular Waveguide z 0 h h

Cotets Wavevector ad Diffractio Waveguide Scalar Potetial Theor

Scalar Potetial Aalsis w B w G w B Regio B Regio G Regio B -D Aalsis Approimatio as Uiform (Flat) IDT Field Epressio(Whe w B = is Assumed for Simplicit) B ep( B )ep( j) ( wg / ) { G ep( jg ) G ep( jg )}ep( j) ( wg / ) B ep( B )ep( j) ( wg / )

Due to Cotiuit of ad at =w G / Smmetric Mode ( B+ = B-, G+ = G- ) B G cos( GwG / ) ep( BwG ta( w / ) B G G G / ) Ati-Smmetric Mode ( B+ =- B-, G+ =- G- ) B B jg si( GwG / ) ep( BwG / ) G cot( G w G / )

Parabolic Approimatio for Slowess Surface S S S S (a) For Regio G For Regio B V G0-1 V G0-1 (b) >0 <0 G 0 B 0 G B G B / / G0 B0 For Isotropic Case, =0.5

Slowess Surface of SH-tpe SAW o 36-LT S sec/km 0.3 0. 0.1 0-0.1-0. -0.3 0 0.1 0. 0.3 S sec/km

Waveumber of Gratig Mode ad Slowess Surface For Eerg Trappig i Waveguide Real B S S V -1 p S V p -1 S V B0-1 V G0-1 V G0-1 (a) For >0 (b) For <0 V G0 <V p <V B0 V B0 <V p <V G0 Higher-order Modes Appear i Higher Frequecies V B0-1 Higher-order Modes Appear i Lower Frequecies

Smmetric Mode ˆ 1 ˆ ta ˆ 1 ˆ 1 G V w V V ˆ 1 ˆ cot ˆ 1 ˆ 1 G V w V V Ati-Smmetric Mode Whe V B0 /V G0-1 «1, Where :Relative Phase Velocit :Relative Waveguide Width G0 G0 B0 p G G G0 B0 G0 B0 p ˆ ˆ V V V w w V V V V V V

Relative SAW Velocit vs. Relative Aperture Relative phase velocit 1 0.8 A 3 S 0.6 A 0.4 S 1 0. A 1 0-0. S 0-0.4-0.6-0.8-1 0 0.5 1 1.5.5 3 Relative aperture width Velocit i Regio B Velocit i Regio G

Equivalet Circuit for Multi-Mode Resoators () L m (3) L m () L m (1) L m C m () C m (3) C m () C m (1) C 0 R m () R m (3) R m () R m (1) ( ) r C 1 ( ) m L ( ) m V p ( ) p I

Modes Propagate without Mutual Power Iteractio ( ) ( ) d ( ) d ( ) k Mode Orthogoalit * k ( ) ( ) d Field ca be Epressed as Sum of Mode Fields Mode Completeess k k P k where P k ( ) k d d ( ) k 1 A ( ) / k k P k

Fourier Trasform ()=p -0.5 ep(j/p) Orthogoalit p 0 ( ) ( ) d k * Completeess ( ) p 0 k 1 * p p 0.5 0 A ( ) k k p 0 k 1 ep[j( m) / p] d p 0.5 k k k 1 A k * ep(kj ( ) ( ) d A ( ) ( ) d A k / p) Multiplicatio of * () & Itegratio give p 0.5 A p ( )ep( j 0 / p) d

Differece of Waveguide Width w g with Figer Overlap Width w e w e w g Amplitude at Ecitatio Source ( ) 0 0 ( ( w e w e /) /)

/ / * 0 ) ( e e w w m m m d P A 1 * * ) ( ) ( / ) ( ) ( k m k k k m d P A d Multiplig m* () ad Itegratig The 1D Aalsis Gives A 0 = 0 w e 1 / / 0 (0) ) ( ) ( ) ( d w d A A C C e w w m m e e Sice Motioal Capacitace Power Ecitatio Efficiec,

Effective Electromechaical Couplig Factor vs. Relative Aperture Width (Whe w e =w g ) Relative couplig factor 1 0.1 0.01 S 0 0.001 0 0.5 1 1.5.5 3 Relative aperture width Zero Ecitatio Efficiec for Ati-Smmetric Modes S 1 S

Wh Effective Couplig Factor Chages? (a) S 0 Mode (Whe w is small) Large Peetratio (b) S 0 mode (Whe w is large) Small Peetratio (c) S 1 mode Eistece of Sig Iverted Regio