Lectures # He-like systems. October 31 November 4,6

Similar documents
FI 2201 Electromagnetism

U>, and is negative. Electric Potential Energy

Lecture 4. Beyond the Hückel π-electron theory. Charge density is an important parameter that is used widely to explain properties of molecules.

Fourier-Bessel Expansions with Arbitrary Radial Boundaries

Electric Potential. and Equipotentials

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x

This immediately suggests an inverse-square law for a "piece" of current along the line.

Radial geodesics in Schwarzschild spacetime

Chapter Direct Method of Interpolation More Examples Mechanical Engineering

Physics 505 Fall 2005 Midterm Solutions. This midterm is a two hour open book, open notes exam. Do all three problems.

10 m, so the distance from the Sun to the Moon during a solar eclipse is. The mass of the Sun, Earth, and Moon are = =

Physics 1502: Lecture 2 Today s Agenda

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

Lecture 10. Solution of Nonlinear Equations - II

10 Statistical Distributions Solutions

Physics 11b Lecture #11

Ch 26 - Capacitance! What s Next! Review! Lab this week!

Week 8. Topic 2 Properties of Logarithms

Lecture 11: Potential Gradient and Capacitor Review:

1.3 Using Formulas to Solve Problems

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z)

EECE 260 Electrical Circuits Prof. Mark Fowler

Physics 604 Problem Set 1 Due Sept 16, 2010

Energy Dissipation Gravitational Potential Energy Power

Discrete Model Parametrization

Math 4318 : Real Analysis II Mid-Term Exam 1 14 February 2013

Chapter 19 Webassign Help Problems

9.4 The response of equilibrium to temperature (continued)

Quantum Mechanics Qualifying Exam - August 2016 Notes and Instructions

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

The Area of a Triangle

7.5-Determinants in Two Variables

Example 2: ( ) 2. $ s ' 9.11" 10 *31 kg ( )( 1" 10 *10 m) ( e)

Chapter 2: Electric Field

Language Processors F29LP2, Lecture 5

3.1 Magnetic Fields. Oersted and Ampere

Solutions to Midterm Physics 201

Answers to test yourself questions

u(r, θ) = 1 + 3a r n=1

SPA7010U/SPA7010P: THE GALAXY. Solutions for Coursework 1. Questions distributed on: 25 January 2018.

Friedmannien equations

dx was area under f ( x ) if ( ) 0

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

EE Control Systems LECTURE 8

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is:

Electricity & Magnetism Lecture 6: Electric Potential

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

10.3 The Quadratic Formula

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information

E-Companion: Mathematical Proofs

Course Updates. Reminders: 1) Assignment #8 available. 2) Chapter 28 this week.

Problem Set 10 Solutions

Physics 505 Homework No. 9 Solutions S9-1

PHYS 2421 Fields and Waves

General Physics (PHY 2140)

Section 35 SHM and Circular Motion

New Approach to Many-Body-QED Calculations: Merging Quantum-Electro- Dynamics with Many-Body Perturbation

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2010 Homework Assignment 4; Due at 5p.m. on 2/01/10

Lecture 7: Angular Momentum, Hydrogen Atom

1.2 Differential cross section

2.Decision Theory of Dependence

ELECTROSTATICS. 4πε0. E dr. The electric field is along the direction where the potential decreases at the maximum rate. 5. Electric Potential Energy:

Chapter #3 EEE Subsea Control and Communication Systems

Chapter #5 EEE Control Systems


Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

Quality control. Final exam: 2012/1/12 (Thur), 9:00-12:00 Q1 Q2 Q3 Q4 Q5 YOUR NAME

Chapter 9 Many Electron Atoms

π,π is the angle FROM a! TO b

9.4. The Vector Product. Introduction. Prerequisites. Learning Outcomes

STD: XI MATHEMATICS Total Marks: 90. I Choose the correct answer: ( 20 x 1 = 20 ) a) x = 1 b) x =2 c) x = 3 d) x = 0

Math 259 Winter Solutions to Homework #9

Topics for Review for Final Exam in Calculus 16A

Chapter 25 Electric Potential

= ΔW a b. U 1 r m 1 + K 2

Important design issues and engineering applications of SDOF system Frequency response Functions

3.23 Electrical, Optical, and Magnetic Properties of Materials

Elastic scattering of 4 He atoms at the surface of liquid helium

FI 2201 Electromagnetism

set is not closed under matrix [ multiplication, ] and does not form a group.

Satellite Orbits. Orbital Mechanics. Circular Satellite Orbits

Introductions to ArithmeticGeometricMean

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

Physics 215 Quantum Mechanics 1 Assignment 2

CHAPTER 25 ELECTRIC POTENTIAL

Mark Scheme (Results) January 2008

Collection of Formulas

Continuous Charge Distributions

Math 2142 Homework 2 Solutions. Problem 1. Prove the following formulas for Laplace transforms for s > 0. a s 2 + a 2 L{cos at} = e st.

Inference for A One Way Factorial Experiment. By Ed Stanek and Elaine Puleo

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 20

Optimization. x = 22 corresponds to local maximum by second derivative test

2. Elementary Linear Algebra Problems

PHYSICS 211 MIDTERM I 22 October 2003

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

CHAPTER 18: ELECTRIC CHARGE AND ELECTRIC FIELD

Artificial Intelligence Markov Decision Problems

A Hartree-Fock Example Using Helium

Transcription:

Lectue #5-7 7 Octoe 3 oveme 4,6 Self-conitent field Htee-Foc eqution: He-lie ytem Htee-Foc eqution: cloed-hell hell ytem Chpte 3, pge 6-77, Lectue on Atomic Phyic He-lie ytem H (, h ( + h ( + h ( Z Z: He Z3: Li + hψ ( ε ψ ( Solution: Coulom (H-lie wve function ψ nlm( Pnl ( Ylm ( θ, φ One-electon wve function, π Z4: Be ++ Coulom epulion etween two electon H (, Ψ (, E Ψ(, 3/ P ( Z e Ψ (, P ( P ( {,, } 4 Z Two-electon gound tte wve function

Deivtion of Htee-Foc eqution fo oitl E Ψ h ( + h ( + Ψ Z Ψ h ( Ψ 4 π d P ( 4 π d P ( P ( ( 4π d P ( omliztion condition d P ( Z dp ( Z d P ( P ( d P ( d d (integting y pt dp ( Z h ( h ( d P ( d Ψ + Ψ Deivtion of Htee-Foc eqution fo oitl Ψ 4π Ψ < + + > q Y * q ( θ, φ Y ( θ, φ q The pheicl hmonic e othonoml on the unit phee: dω Y ( θ, φ Y ( θ, φ δ δ * ' q' q ' qq' * Theefoe: dω Y ( θ, φ Y δ δ nd only one tem q q q contiute fom the um ove nd q fo integl. d P d P ( ( Ψ Ψ, >

Deivtion of Htee-Foc eqution fo oitl d P d P ( ( Ψ Ψ d P v (, ( > >, ew deigntion Thi i potentil t of pheiclly ymmetic chge ditiution with dil denity P (. d P Ψ Ψ ( v (, Put it ll togethe E Ψ h ( + h ( + Ψ dp ( Z d P ( + v(, P ( d Ψ Ψ dp ( omliztion condition Vitionl pinciple: we equie tht enegy e ttiony with epect to vition of the dil function uject to nomliztion contnt. δ ( E λ Lgnge multiplie 3

HF eqution δ P ( δ P ( dp δ d d δ P d dp ( Z δ ( E λ dδ δ[ P ( ] + v(, δ[ P ( ] λδ[ P ( ] d dp ( dp ( Z + d δ d d P ( δp ( v(, P ( δp ( λδp ( δp ( d ( Z P ( + v(, P ( λ P ( δ P ( d d P (integting y pt HF eqution δ d P ( Z ( E λ d P ( (, P ( P ( P ( d λ + v δ d P ( Z P v P P ( (, ( ( d + ε HF eqution fo oitl Jut the dil Schödinge eqution fo pticle with l moving in potentil Z V ( +v(, 4

HF eqution: olution pocedue d P ( Z P v P P ( (, ( ( d + ε. Pic function P ( which i ou et nown ppoximtion to wve function (ceened Coulom wve function with effective chge β 3/ β 5 P ( β e, β Z 6. Ue it to clculte the potentil v (, : v (, d P ( > 3. Sutitute thi potentil to HF eqution nd olve it fo P nd ε. 4. ow ue ou new wve function to evlute to potentil v (, gin. 5. Repet until ε convege (eqution i olved itetively. Convegence pmete ε δ ε ( n ε ( n ( n ( n ε enegy fte itetion n Bc to the clcultion of totl enegy Itetion of ε : enegy convege to digit fte 8 itetion ε -.979.u. E Ψ h ( + h ( + Ψ h + v (, ε v (,.86.u. 77.8 ev The impovement i mll fo He ut it i the et which cn e otined within the fmewo of Independent-pticle ppoximtion. 5

Why do we need ppoximtion method? H (,,, h ( + i i i j ij H (,,, Ψ (,,, E Ψ(,,, Why do we need ppoximte method? Let te n ion tom. It h 6 electon: wve function depend on 3 6 78 vile. Uing gid of only point we need 78 nume to tulte ion wve function! Ψ (,,, Thi i lge thn the etimted nume of pticle in the Sol ytem! Thi i why ppoximtion to exct olution nd the method of impoving ccucy of thee olution e of uch inteet. Independent-pticle pticle ppoximtion H (,,, h ( + H + V i i i j ij H (,,, h ( + U ( V (,,, U ( i i i i i i j ij i i h( i dd nd utct Why? To hve ette lowet ode nd mlle V. ote: we edefined ou lowet ode nd ou lowet ode wve function e olution of hψ ( ε ψ (. Wht e ou indice? Lowet ode enegy E ε + ε + + ε ( n n Full et of quntum nume which define oitl. Fo exmple: ( n, l, m, µ 6

Mtix element How to evlute mtix element of H nd V? H (,,, h ( + U ( V (,,, U ( i i i i i i j ij i one-ody mtix element eed to evlute: two-ody mtix element Ψ h ( Ψ Ψ U ( Ψ n i n n i n i i Ψ Ψ n n i j ij me et of indice Sytem of pticle: mny-pticle opeto F i i f ( One-pticle opeto Exmple: H i h i Let deignte ou Slte deteminte function Ψ n How to evlute the coeponding mtix element? Ψ' ' n' F Ψ n i f ii If the et of indice { n } nd { n} e the me. f f d ψ ( f ( ψ ( 3 7

Sytem of pticle: mny-pticle opeto G g( ij i j Two-pticle opeto Exmple: i j ij Ψ G Ψ g g ' ' n' n ( ijij ijji i, j If the et of indice { n } nd { n} e the me. g g cd d d ψ ( ψ ( g( ψ ( ψ ( 3 3 cd c d F i i Mtix element How to evlute mtix element of H nd V? f ( Ψ Ψ Ψ n F Ψ n i G g( ij Ψ n G Ψ n ( gijij gijji i, j i j h ( Ψ U ( Ψ n i n i i n n i j ij i, j ( h n i n ii i i Ψ Ψ U ii f ii ( gijij gijji Coulom mtix element 8

Cloed-hell hell ytem: He, Be, e, Helium He : Beyllium Be : eon e : p 6 Mgneium Mg : p 3 6 Agon Ag : p 3 3p Clcium p... 6 6 3p 4 6 6 C : 3 Cloed-hell hell ytem: He, Be, e, Let ue the following deigntion gin: um ove coe (cloed-hell oitl i deignted y the indice fom the eginning of the lphet:,,c,d ( ( Ψ h ( Ψ h h n i n ii i i Ψ U ( Ψ U U n i n ii i i Ψ Ψ ( gijij gijji ( g g n n i j ij i, j Sum ove men um ove the entie et of quntum nume of ll the coe electon Fo exmple, Be: nl : (, n l m µ 9

Cloed-hell hell ytem: He, Be, e, ( E Ψ H Ψ h + U (... n n n E Ψ V Ψ g g U ( ( ( (... n n n E h + g g... n ote: ou lowet-ode eigenvlue ε nd eigenfunction e olution of hψ ( ε ψ ( h h + U ( nd not of the hψ ( ε ψ (. ψ ( i Pn ( i ( i, i ( l Y lm θ φ χ i µ i Wht do we need to clculte to deive HF eqution? We ledy hve the expeion fo the enegy: omliztion condition: (dil function with the me vlue of l e othonoml Vitionl pincipl δ (We intoduce Lgnge multiplie λ to ccommodte nomliztion contin.. eed to clculte:. Apply the vitionl pincipl. E h + g g ( (... n ( h, g, g. n l n l dpn l Pn l δ, nn E... n λn l, n l, nl nl nnl

h. Evlution of ( ( h dp P P d Pn l l ( l + Z nl + nl nl d (Rememe dil Schödinge eqution fo pticle with ngul momentum l dpn l l ( l + Z d P ( nl P + nl I n l d (integting y pt. Evlution of g nd g. Let otin the genel expeion fo the Coulom mtix element g cd nd then clculte g nd. ote: we deived it in the peviou lectue. g g d d ψ ( ψ ( ψ ( ψ ( 3 3 cd c d The function ψ e given y ψ ( P ( Y ( θ, φ nlm nl lm

Coulom mtix element The / cn e expnded 4π < + + > q Y * q ( θ, φ Y ( θ, φ q Thi expeion my e e-witten uing C-teno defined y 4π C ( ˆ q Yq ( θ, φ ( + q ( C ( ˆ ˆ q C q ( < + > q Coulom mtix element We now utitute the expeion fo ψ nd / c into ou mtix element nd epte d nd dω integl < q ( C ( ˆ ψ ( ( ˆ nlm Pnl ( Ylm ( θ, φ q C q + > q g d d ψ ( ψ ( ψ ( ψ ( cd 3 3 c d < d d Pn l P nl P ncl c Pn dl + d > ( ( ( ( R ( cd dil integl ( q dω Y ( θ, φ C ( θ, φ Y ( θ, φ q dω Y lm q lcmc ( θ, φ C ( θ, φ Y ( θ, φ lm q ld md l m C l m q c c l m C l m q d d

Coulom mtix element g R ( cd ( l m C l m l m C l m q cd q c c q d d q ext, we ue Wigne-Ect theoem fo oth of the mtix element: l m l m q cd ( ( c d q q -q g R cd l C l l C l l c m c l d m d l m l m We ue -q ( q q ote: nd q e intege l d m d l d m d Coulom mtix element l m l m cd ( ( c d q q q g R cd l C l l C l l c m c l d m d l m l m ( R ( cd l C l l C l c d + l c m c l d m d l m l m ( ( cd + c d g R cd l C l l C l l c m c l d m d 3

Summy: Coulom mtix element (non-eltivitic ce l m l m ( ( cd + c d g R cd l C l l C l l c m c l d m d R ( cd d d P ( P ( P ( P ( < nl nl + nclc nd ld > l C l l l l ( ( + ( + l C l ( l C l l l ote : l + + l i n even intege g. Evlution of. l m l m ( + ( l m l m g R l C l l C l Let um ove m nd µ : l m l m ( + ( m µ g R l C l l C l l m l m Sum ove µ give fcto of. + ( l R ( l C l l C l l m l m l + δ l + 4

g. Evlution of. µ m l + g R ( l C l l C l l + l + l + l + R ( (l + R ( l + l C l l + R ( d d P ( P ( P ( P ( nl nl nl nl > g. Evlution of. l m l m ( + l + l + g ( + R l C l l C l m µ m µ l m l m l C l ( l C l ote : l + + l i n even intege l l m + l + l + l m δ µ ( R ( l C l µ + l m µ g l C l l + R ( 5

Summy dpn l l ( l + Z + nl nl d ( h I( n l d P P m µ m µ g (l + R ( g l C l l + R ( E h + g g ( (... n Putting it ll togethe E... n ( h + ( g g + ( h ( g g nl mµ nl mµ nl mµ Λ l l l C l I( nl + (l + R ( R ( n m ( ( l µ nl l l + + Doe not depend on m, µ o we cn um ove thee indice y multiplying y (l + E... n (l + I( nl + (l + R ( Λl ( l R nl nl 6

Summy E... n (l + I( nl + (l + R ( Λl ( l R nl nl dpn l l ( l + Z + nl nl d I( n l d P P δ E λ l C l l l Λ l l ( l ( l + +... n n,, l nl nl nl nnl Thi expeion mut e ttiony with epect to vition δ P (. nl n l n l dpn l Pn l δ, nn Some deigntion E (l + I( n l + (l + R ( Λ R (... n l l nl nl R ( d P ( d P ( dp ( (, v > v(, ote deigntion fo indice nd : index lel n oitl with nn nd ll, {n,l } now. Fo exmple,, p, < ( ( ( ( ( + > R d P P d P P v (,, d P ( P ( v (,, OTE : v (,, v (, P ( P ( n l 7

Ou fomul with new deigntion E... n (l + I( nl + (l + R ( Λl ( l R nl nl (l + d + + P P dp l ( l Z d + (l + P ( v(, Λl ( ( (, l P P v, δ E HF eqution fo cloed-hell hell ytem λ... n n l, n l, nl nl nnl εn l, n l λ nl, nl /(4l + ε ε λ /(4l + nl, nl nl, nl d P ( l ( l + Z + P ( P ( + d + (4l + v(, P ( Λl (,, ( l v P ε P ( + ε P ( nl, nl nl n n 8

v HF eqution fo cloed-hell hell ytem Exmple: He tom: / fo,, Λ ll Λ fo Line : (4l + v(, P ( Λl (,, ( l v P ( v(, P ( Λ l (,, ( (, ( (, ( l v P P P v v (, P ( d P ( Z P v P P ( (, ( ( d + ε (Jut we otined elie. HF eqution fo cloed-hell hell ytem Exmple: Be tom: / fo,, Λ ll Λ fo HF eqution fo oitl (,, Line : (4 l + v(, P ( Λl (,, ( l v P v(, P ( + v(, P ( v(,, P ( v(,, P ( v (, P ( + v (, P ( v (,, P ( d P ( Z + + v(, + v(, P ( v(,, P ( d ε P ( + ε P (, 9

HF eqution fo cloed-hell hell ytem Exmple: Be tom: HF eqution fo oitl (,, Line : (4 l + v(, P ( Λl (,, ( l v P v(, P ( + v(, P ( v(,, P ( v(,, P ( v (, P ( + v (, P ( v (,, P ( d P ( Z + + v(, + v(, P ( v(,, P ( d ε P ( + ε P (, ote: we cn choe off-digonl Lgnge multiplie to e zeo fo cloed-hell ytem, i.e. ε, ε,. HF potentil V HF HF potentil i defined y pecifying it ction on n ity oitl P * ( V P ( V P ( + V P ( HF * di * exc * V P ( V di * exc * ( P ( (4l + v (, P ( Diect potentil VHF ( g g * (4l + Λ v (,*, P ( Exchnge potentil l l* [ Follow fom the deivtion] Uing thi deigntion we cn e-wite ou HF eqution fo oitl of the cloed-hell ytem d P ( Z l ( l + + V HF P ( ( ε P d +

( Clcultion of enegy ( ( VHF ( g g E h + U + g g U U V... n HF, h + ( g g ( VHF Hee ε + ( g g ( g g ε ( g g (l + ε (l + R ( Λl ( l R nl nl ε i otined fom the itetive olution of the HF eqution nlm µ