Global polynomial optimization with Moments Matrices and Border Basis

Similar documents
Optimization over Polynomials with Sums of Squares and Moment Matrices

A Sparse Flat Extension Theorem for Moment Matrices

Real solving polynomial equations with semidefinite programming

An Exact Jacobian SDP Relaxation for Polynomial Optimization

Tensor decomposition and moment matrices

How to generate weakly infeasible semidefinite programs via Lasserre s relaxations for polynomial optimization

On Polynomial Optimization over Non-compact Semi-algebraic Sets

Strange Behaviors of Interior-point Methods. for Solving Semidefinite Programming Problems. in Polynomial Optimization

POLYNOMIAL OPTIMIZATION WITH SUMS-OF-SQUARES INTERPOLANTS

Strong duality in Lasserre s hierarchy for polynomial optimization

Real eigenvalues of nonsymmetric tensors

Semidefinite Programming

arxiv:math/ v3 [math.oc] 5 Oct 2007

Detecting global optimality and extracting solutions in GloptiPoly

Sparse representations from moments

Detecting global optimality and extracting solutions in GloptiPoly

arxiv: v1 [math.oc] 31 Jan 2017

Towards Solving Bilevel Optimization Problems in Quantum Information Theory

4TE3/6TE3. Algorithms for. Continuous Optimization

Optimization over Nonnegative Polynomials: Algorithms and Applications. Amir Ali Ahmadi Princeton, ORFE

Representations of Positive Polynomials: Theory, Practice, and

Ranks of Real Symmetric Tensors

Global Optimization of Polynomials Using Generalized Critical Values and Sums of Squares

The moment-lp and moment-sos approaches

Hilbert s 17th Problem to Semidefinite Programming & Convex Algebraic Geometry

Certified Roundoff Error Bounds using Semidefinite Programming

Semidefinite Programming

Interior Point Algorithms for Constrained Convex Optimization

Global Minimization of Rational Functions and the Nearest GCDs

Semi-definite representibility. For fun and profit

SUMS OF SQUARES, MOMENT MATRICES AND OPTIMIZATION OVER POLYNOMIALS. February 5, 2008

Formal Proofs, Program Analysis and Moment-SOS Relaxations

ALGEBRAIC DEGREE OF POLYNOMIAL OPTIMIZATION. 1. Introduction. f 0 (x)

Chapter 2 The Approach of Moments for Polynomial Equations

9. Interpretations, Lifting, SOS and Moments

10 Numerical methods for constrained problems

12. Interior-point methods

The moment-lp and moment-sos approaches in optimization

Lecture 3: Semidefinite Programming

Semidefinite Relaxations Approach to Polynomial Optimization and One Application. Li Wang

Semialgebraic Relaxations using Moment-SOS Hierarchies

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma

Lecture 18: Optimization Programming

Minimum Ellipsoid Bounds for Solutions of Polynomial Systems via Sum of Squares

LOWER BOUNDS FOR A POLYNOMIAL IN TERMS OF ITS COEFFICIENTS

De Nugis Groebnerialium 5: Noether, Macaulay, Jordan

on Semialgebraic Sets for Nonnnegative Polynomials Finding Representations

that a broad class of conic convex polynomial optimization problems, called

Notes on the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre by M. Laurent, December 13, 2012

Tutorial on Convex Optimization: Part II

Lagrange duality. The Lagrangian. We consider an optimization program of the form

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC

Optimization for Communications and Networks. Poompat Saengudomlert. Session 4 Duality and Lagrange Multipliers

4. Algebra and Duality

Convex Optimization & Parsimony of L p-balls representation

Exact SDP Relaxations for Classes of Nonlinear Semidefinite Programming Problems

Global Optimization with Polynomials

SPECTRAHEDRA. Bernd Sturmfels UC Berkeley

Solving Global Optimization Problems with Sparse Polynomials and Unbounded Semialgebraic Feasible Sets

Completely Positive Reformulations for Polynomial Optimization

Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets

Optimization Methods. Lecture 23: Semidenite Optimization

Fast ADMM for Sum of Squares Programs Using Partial Orthogonality

Convex Optimization and Modeling

Applications of Linear Programming

Linear and Combinatorial Optimization

Transpose & Dot Product

Advanced SDPs Lecture 6: March 16, 2017

Semidefinite programming and convex algebraic geometry

15.083J Optimization over Integers. Lectures 13-14: Algebraic geometry and integer optimization

NORMS ON SPACE OF MATRICES

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings

Transpose & Dot Product

On the local stability of semidefinite relaxations

A new approximation hierarchy for polynomial conic optimization

Global Optimization of Polynomials

BBCPOP: A Sparse Doubly Nonnegative Relaxation of Polynomial Optimization Problems with Binary, Box and Complementarity Constraints

Lagrange Relaxation and Duality

APPROXIMATE OPTIMAL DESIGNS FOR MULTIVARIATE POLYNOMIAL REGRESSION

COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS. Didier HENRION henrion

Sum of Squares Relaxations for Polynomial Semi-definite Programming

Semidefinite Programming, Combinatorial Optimization and Real Algebraic Geometry

Implicit matrix representations of rational Bézier curves and surfaces

Robust and Optimal Control, Spring 2015

Primal-Dual Interior-Point Methods

Comparison of Lasserre s measure based bounds for polynomial optimization to bounds obtained by simulated annealing

Special Classes of Fuzzy Integer Programming Models with All-Dierent Constraints

Real Symmetric Matrices and Semidefinite Programming

ON THE ARITHMETIC-GEOMETRIC MEAN INEQUALITY AND ITS RELATIONSHIP TO LINEAR PROGRAMMING, BAHMAN KALANTARI

New applications of moment-sos hierarchies

Applications of semidefinite programming in Algebraic Combinatorics

Convex Optimization. Newton s method. ENSAE: Optimisation 1/44

Numerical Optimization

INDEFINITE TRUST REGION SUBPROBLEMS AND NONSYMMETRIC EIGENVALUE PERTURBATIONS. Ronald J. Stern. Concordia University

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 5 Fall 2009

CONVEXITY IN SEMI-ALGEBRAIC GEOMETRY AND POLYNOMIAL OPTIMIZATION

A Moment Matrix Approach to Multivariable Cubature

LECTURE 6: VECTOR SPACES II (CHAPTER 3 IN THE BOOK)

Lecture 15 Newton Method and Self-Concordance. October 23, 2008

Transcription:

Global polynomial optimization with Moments Matrices and Border Basis Marta Abril Bucero, Bernard Mourrain, Philippe Trebuchet Inria Méditerranée, Galaad team Juillet 15-19, 2013 M. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 1 / 21

Our Problem inf x Rnf (x) s.t. g 1 (x) = = g n1 (x) = 0 h 1 (x) 0,..., h n2 (x) 0 (1) where S = {x R n g 1 (x) = = g n1 (x) = 0, h 1 (x) 0,..., h n2 (x) 0} and H = {h 1,..., h n2 }. M. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 2 / 21

Our Objectives 1 Show that the hierarchy of relaxation problems is exact.. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 3 / 21

Our Objectives 1 Show that the hierarchy of relaxation problems is exact. 2 Find a criterion to detect when the optimum is reached and show that this criterion is eventually satised.. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 3 / 21

Our Objectives 1 Show that the hierarchy of relaxation problems is exact. 2 Find a criterion to detect when the optimum is reached and show that this criterion is eventually satised. 3 When this criterion is satised, recover all the points where this optimum is achieved.. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 3 / 21

Related works First work Global optimization with polynomials and the problem of the moments - J.B. Lasserre. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 4 / 21

Related works First work Global optimization with polynomials and the problem of the moments - J.B. Lasserre Finite convergence SemiDenite Representation for nite varieties - M. Laurent - V(G) nite Minimizing polynomials via sum of squares over gradient ideal - Nie, Demmel, Sturmfels - Gradient ideal is radical Representations of non-negatives polynomials via critical, degree bounds and applications to optimization - M. Marshall - BHC Representation of positive polynomials on non-compact semialgebraic sets via KKT ideals - Demmel, Nie, Powers - KKT ideal is radical An exact Jacobian Sdp Relaxation - Nie - regularity conditions. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 4 / 21

Related works First work Global optimization with polynomials and the problem of the moments - J.B. Lasserre Finite convergence SemiDenite Representation for nite varieties - M. Laurent - V(G) nite Minimizing polynomials via sum of squares over gradient ideal - Nie, Demmel, Sturmfels - Gradient ideal is radical Representations of non-negatives polynomials via critical, degree bounds and applications to optimization - M. Marshall - BHC Representation of positive polynomials on non-compact semialgebraic sets via KKT ideals - Demmel, Nie, Powers - KKT ideal is radical An exact Jacobian Sdp Relaxation - Nie - regularity conditions Convergence certicate Certifying convergence via Flat truncation - Nie. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 4 / 21

Related works First work Global optimization with polynomials and the problem of the moments - J.B. Lasserre Finite convergence SemiDenite Representation for nite varieties - M. Laurent - V(G) nite Minimizing polynomials via sum of squares over gradient ideal - Nie, Demmel, Sturmfels - Gradient ideal is radical Representations of non-negatives polynomials via critical, degree bounds and applications to optimization - M. Marshall - BHC Representation of positive polynomials on non-compact semialgebraic sets via KKT ideals - Demmel, Nie, Powers - KKT ideal is radical An exact Jacobian Sdp Relaxation - Nie - regularity conditions Convergence certicate Certifying convergence via Flat truncation - Nie How to recover the minimizer ideal Real Radical Computation - Lasserre, Laurent, Mourrain, Trebuchet M. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 4 / 21

Gradient Variety With Lagrange Multipliers: inf (x,u,v,s)=z R n+n 1 +2 n 2 f (x) where F (x, u, v, s) = f (x) P n1 i=1 u i g i (x) P n2 j=1 v j (h j (x) s 2 j ), u = (u 1,..., u n 1 ), v = (v 1,..., v n 2 ) and s = (s 1,..., s n 2 ). Denition s.t. F (x, u, v, s) = 0 (2) I grad = ( F (z)) = (F 1,..., F n, g 1,..., g n 1, h 1 s 2 1,..., hn 2 s2 n2, v 1s 1,..., v n 2 sn 2 ) R[z] V grad = V(I grad ) C n+n 1+2n2 M. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 5 / 21

KKT Variety inf (x,u,v)=y R n+n 1 +n 2 f (x) s.t. F 1 = = F n = 0 g 1 = = g n 1 = 0 v 1 h 1 = = v n 2 hn 2 = 0 h 1 0,..., h n 2 0 (3) where F i = f P n1 x i j=1 u g j j x i P n2 j=1 v h j j. x i Denition x is a KKT point if there exists u 1,..., u n 1, v 1,..., v n 2 R s.t. n1x n2x f (x ) u i g i (x ) v i h i (x ) = 0, g i (x ) = 0, v i h i (x ) = 0 i=1 S KKT = set of KKT point of S. j=0 A KKT-minimizer of f on S is a point x S KKT such that f (x ) = min x S KKT f (x). I KKT = (F 1,..., F n, g 1,..., g n 1, v 1h 1,..., v n 2 hn 2 ) R[y]. V KKT = V(I KKT ) C n+n 1+n2 M. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 6 / 21

Minimizer Variety Denition V min = {z R n+n 1+2 n 2 I min = I(V min ) s.t F (z ) = 0 and f (x ) is minimum}. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 7 / 21

Minimizer Variety Denition V min = {z R n+n 1+2 n 2 I min = I(V min ) s.t F (z ) = 0 and f (x ) is minimum} Proposition V R KKT W +(H) = π y (V R grad ), W +(H) = {y R n h(x) 0 h H}. I KKT = I grad R[y] = I y grad. M. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 7 / 21

Our contributions When f is reached in a KKT-minimizer of f on S. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 8 / 21

Our contributions When f is reached in a KKT-minimizer of f on S Hierarchy of relaxations problem asociated to problem 3 or to its projection is exact.. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 8 / 21

Our contributions When f is reached in a KKT-minimizer of f on S Hierarchy of relaxations problem asociated to problem 3 or to its projection is exact. When f is attained we nd the generators of I min.. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 8 / 21

Our contributions When f is reached in a KKT-minimizer of f on S Hierarchy of relaxations problem asociated to problem 3 or to its projection is exact. When f is attained we nd the generators of I min. New representation of positive polynomials on S.. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 8 / 21

Our contributions When f is reached in a KKT-minimizer of f on S Hierarchy of relaxations problem asociated to problem 3 or to its projection is exact. When f is attained we nd the generators of I min. New representation of positive polynomials on S. And if V min is nite we propose:. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 8 / 21

Our contributions When f is reached in a KKT-minimizer of f on S Hierarchy of relaxations problem asociated to problem 3 or to its projection is exact. When f is attained we nd the generators of I min. New representation of positive polynomials on S. And if V min is nite we propose: New criterion for deciding when the minimum is reached.. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 8 / 21

Our contributions When f is reached in a KKT-minimizer of f on S Hierarchy of relaxations problem asociated to problem 3 or to its projection is exact. When f is attained we nd the generators of I min. New representation of positive polynomials on S. And if V min is nite we propose: New criterion for deciding when the minimum is reached. Satised Certicate for high degree. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 8 / 21

Our contributions When f is reached in a KKT-minimizer of f on S Hierarchy of relaxations problem asociated to problem 3 or to its projection is exact. When f is attained we nd the generators of I min. New representation of positive polynomials on S. And if V min is nite we propose: New criterion for deciding when the minimum is reached. Satised Certicate for high degree New algorithm to nd the minimizer ideal of a real polynomial function on S.. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 8 / 21

Our contributions When f is reached in a KKT-minimizer of f on S Hierarchy of relaxations problem asociated to problem 3 or to its projection is exact. When f is attained we nd the generators of I min. New representation of positive polynomials on S. And if V min is nite we propose: New criterion for deciding when the minimum is reached. Satised Certicate for high degree New algorithm to nd the minimizer ideal of a real polynomial function on S. Reduction of the size of SDP problems for using border basis.. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 8 / 21

Our contributions When f is reached in a KKT-minimizer of f on S Hierarchy of relaxations problem asociated to problem 3 or to its projection is exact. When f is attained we nd the generators of I min. New representation of positive polynomials on S. And if V min is nite we propose: New criterion for deciding when the minimum is reached. Satised Certicate for high degree New algorithm to nd the minimizer ideal of a real polynomial function on S. Reduction of the size of SDP problems for using border basis.. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 8 / 21

Hierarchy of relaxation problems Denition Given a vector space E R[y] with 1 E, and nite subsets G, H R[y], we dene P E,H = { P ɛ {0,1} n 2 sɛ hɛ 1 1 hɛn 2 n2 s ɛ P E 2, s ɛ h ɛ 1 1 hɛn 2 n2 E E }. P E,G,H := {g + q g G E E, q P E,H } L E,G,H := {Λ E E Λ(p) 0, p P E,G,H } f µ E,G,H = inf {Λ(f ) s.t. Λ L E,G,H, Λ(1) = 1} f sos E,G,H = max {γ s.t. f γ P E,G,H} f = inf x S KKT f (x).. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 9 / 21

Hierarchy of relaxation problems Denition Given a vector space E R[y] with 1 E, and nite subsets G, H R[y], we dene P E,H = { P ɛ {0,1} n 2 sɛ hɛ 1 1 hɛn 2 n2 s ɛ P E 2, s ɛ h ɛ 1 1 hɛn 2 n2 E E }. P E,G,H := {g + q g G E E, q P E,H } L E,G,H := {Λ E E Λ(p) 0, p P E,G,H } f µ E,G,H = inf {Λ(f ) s.t. Λ L E,G,H, Λ(1) = 1} f sos E,G,H = max {γ s.t. f γ P E,G,H} f = inf x S KKT f (x). Hierarchy For t N, consider the prolongation G 2t of G to degree 2t and E = R[y] t L t+1,g,h L t,g,h and P t,g,h P t+1,g,h Properties If V y min 0 and V y min V R (G) W +(H), f µ t,g,h f µ t+1,g,h f and f sos t,g,h f sos t+1,g,h f and f sos t,g,h f µ t,g,h f M. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 9 / 21

Truncated Hankel operators and Generic linear form Denition Let E R[x] be a vector space and let Λ E E be a linear form, the map MΛ E : E E by MΛ E (p) = p Λ for p E is a truncated Hankel operator. ker MΛ E = {p E p Λ = 0, i.e, Λ(pq) = 0 q E} The matrix MΛ E is the Moment Matrix: [ME Λ ] = (Λ(xα+β )) α E,β E. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 10 / 21

Truncated Hankel operators and Generic linear form Denition Let E R[x] be a vector space and let Λ E E be a linear form, the map MΛ E : E E by MΛ E (p) = p Λ for p E is a truncated Hankel operator. ker MΛ E = {p E p Λ = 0, i.e, Λ(pq) = 0 q E} The matrix MΛ E is the Moment Matrix: [ME Λ ] = (Λ(xα+β )) α E,β E Denition Λ L E,G,H is generic for f if rankm E Λ = max Λ LE,G,H,Λ(f )=f µ E,G,H rankm E Λ. How to nd Λ L E,G,H generic for f? Solve the SDP program with interior point methods. Existing tools: SDPA, CSDP,... M. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 10 / 21

Representation of positive polynomials Theorem Let f R[x]. 1 If f 0 on S KKT, then f P x H + q I x grad = P x H + p I x KKT. 2 If f > 0 on S KKT, then f P x H + I x grad = P x H + I x KKT.. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 11 / 21

Representation of positive polynomials Theorem Let f R[x]. 1 If f 0 on S KKT, then f P x H + q I x grad = P x H + p I x KKT. 2 If f > 0 on S KKT, then f P x H + I x grad = P x H + I x KKT. Proposition - Demmel, Nie and Powers 2007 Let f R[x]. 1 If f 0 on S KKT, then f P H + I KKT. 2 If f > 0 on S KKT, then f P H + I KKT.. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 11 / 21

Representation of positive polynomials Theorem Let f R[x]. 1 If f 0 on S KKT, then f P x H + q I x grad = P x H + p I x KKT. 2 If f > 0 on S KKT, then f P x H + I x grad = P x H + I x KKT. Proposition - Demmel, Nie and Powers 2007 Let f R[x]. 1 If f 0 on S KKT, then f P H + I KKT. 2 If f > 0 on S KKT, then f P H + I KKT. Corollary - Nie, Demmel and Sturmfels 2005 If n 1 = n 2 = 0 then I grad = ( f ) = ( f,..., f ). x 1 xn 1 If f 0 on V R ( f ), then f P x + p ( f ). 2 If f > 0 on V R ( f ), then f P x + ( f ). M. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 11 / 21

Finite convergence Theorem - Finite Convergence and minimizer ideal For G R[x] with hyp{g, V min } : [V x min V R (G) W + (H) π x (V R KKT ) and V min ], t 2 N s.t. t t 2, for Λ L t,g,h generic for f, we have Λ (f ) = f µ t,g,h = f. (ker M t Λ ) = I x min. If V(G) π x (V KKT ) then f sos t,g,h = f µ t,g,h = f. Similar result for G R[y] with V y min V R (G) W + (H) V R KKT M. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 12 / 21

Convergence certication and satisfaction Theorem - Convergence Certication Let B be a monomial set connected to 1, E R[x] with (1) f E E, (2) B + E, G B E E, H B B E E and hyp{g, V min } + V min is nite and let Λ L E,G,H generic for f with: (3) rank M E Λ = rank M B Λ = B. Then f = f µ E,G,H = f sos E,G,H (ker M E Λ ) = I x min. B + = B x 1 B x nb Theorem - Satised Certication Let G, H R[x] with hyp{g, V min } + V min is nite. Then, t 3 N s.t. t t 3, and Λ L t,g,h generic for f, a vector space E R[x] t and B connected to 1 such that the properties (1), (2) and (3) of the above theorem are satised. M. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 13 / 21

Consequences Generic case: Generalization of Nie 2011 A J := [ f, g 1,..., g n 1, h j1,..., h j k ], J = {j 1,..., j k }. V( J 1,..., J ) = {x C n rank(a l J ) n 1 + J }. J G = (g 1,, g n 1, g Q J,i ) with g J,i := J i j J h j for i = 1,..., l J, J [0, n 2 ]. Conclusion: If (g 1,... g n 1 ; h 1,..., h n 2 ) is C-regular ( points x Cn with J(x) = {j 1,..., j k }, g 1 (x),..., g n 1 (x), h j1 (x),..., h j k (x) s. t. h jl (x) = 0 are l. i.) +f reaches its minimum at x S Finite Convergence and minimizer ideal Theorem.. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 14 / 21

Consequences Generic case: Generalization of Nie 2011 A J := [ f, g 1,..., g n 1, h j1,..., h j k ], J = {j 1,..., j k }. V( J 1,..., J ) = {x C n rank(a l J ) n 1 + J }. J G = (g 1,, g n 1, g Q J,i ) with g J,i := J i j J h j for i = 1,..., l J, J [0, n 2 ]. Conclusion: If (g 1,... g n 1 ; h 1,..., h n 2 ) is C-regular ( points x Cn with J(x) = {j 1,..., j k }, g 1 (x),..., g n 1 (x), h j1 (x),..., h j k (x) s. t. h jl (x) = 0 are l. i.) +f reaches its minimum at x S Finite Convergence and minimizer ideal Theorem. Regular case: Generalization of Ha and Pham 2010 A J := [ f, g 1,..., g n 1, h j1,..., h j k ], J = {j 1,..., j k }. Over R n, J i = J = det(a J A T J ) G = (g 1,, g n 1, g J) with g J := J Qj J h j for i = 1,..., l J, J [0, n 2 ]. Conclusion: If S is regular ( x S, g 1 (x),..., g n 1 (x), h j1 (x),..., h j k (x) s. t. h jl (x) = 0 are l. i.) +f reaches its minimum at x S Finite Convergence and minimizer ideal Theorem. If (g 1,... g n 1 ; h 1,..., h n 2 ) is C-regular we have not duality gap. M. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 14 / 21

Algorithm We suppose V min nite. Input:f R[x], G R[x] s.t. V x min VR (G) W + (H) π x (V R KKT ), H = {h 1,..., h n2 }. 1 t := 1 2 max{deg(f ), deg(g i), deg(h j )} ; 2 Compute Λ L t,g,h generic for f (solving a nite dimensional SDP problem by an interior point method); 3 Check the convergence certicate for M t Λ ; 4 If it is not satised, t := t + 1 and repeat from step (2); Otherwise compute K = ker M t Λ and Λ (f ) = f. Output: f = Λ (f ), K generators of I x min. we combine this algorithm with the border basis algorithm in order to reduce the size of the moments matrices. M. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 15 / 21

Example - Robinson polynomial f (x, y) = 1 + x 6 x 4 x 2 + y 6 y 4 y 2 x 4 y 2 x 2 y 4 + 3x 2 y 2 ; Iteration Order Size min Λ(f ) Gap dim kerh Λ 1 3 10-0.93 N - 2 4 15 0 N 7 3 5 19 0 N 11 4 6 22 0 N - In the second iteration we obtain B = {1, x, y, x 2, xy, y 2, x 2 y, xy 2, x 2 y 2 } there exits an element with degree 4. In the third iteration we obtain B = {1, x, y, x 2, xy, y 2, x 2 y, xy 2 } After fourth iteration the algoritm stops because kerh B 5 Λ = 0 and we obtain 1 I min = (x 3 x, y 3 y, x 2 y 2 x 2 y 2 + 1). 2 The basis B = {1, x, y, x 2, xy, y 2, x 2 y, xy 2 }. 3 The real roots {(x = 1, y = 1), (x = 1, y = 1), (x = 1, y = 1), (x = 1, y = 1), (x = 1, y = 0), (x = 1, y = 0), (x = 0, y = 1), (x = 0, y = 1)}. M. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 16 / 21

Example with constraints f (x, y) = 12x 7y + y 2 ; s.t 2x 4 + 2 y = 0; 0 x 2; 0 y 3; Iteration Order Size min Λ(f ) Gap dim kerh Λ 1 1 7(3) -36 N - 2 2 10(6) -16.7 N 9(5) 3 3 14(10) -16.7 N - In the second iteration we obtain B = {1}. After third iteration the algoritm stops because kerh B 2 Λ = 0 and we obtain 1 I min = (x 0,7175, y 1,4698). 2 The basis B = {1}. 3 The real roots {(x = 0,7175, y = 1,4698)}. M. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 17 / 21

Implementation and comparasion with Gloptipoly Implementation This algorithm is implemented in the package BORDERBASIX of MATHEMAGIX software. SDP problems are computed using SDPA or CSDP software.. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 18 / 21

Implementation and comparasion with Gloptipoly Implementation This algorithm is implemented in the package BORDERBASIX of MATHEMAGIX software. SDP problems are computed using SDPA or CSDP software. Comparasions with Gloptipoly The size of the moments matrices in our method is smaller due to the use of border basis We obtain the mininum with only one execution instead of many executions in the case of Gloptipoly Example variables degree Gloptipoly Our method Motzkin 2 6 order 9 - size 55 order 5 - size 19 Robinson 2 6 order 7 - size 36 order 6 - size 22 Nie 3 4 order 4 - size 34 order 3 - size 9 Simplices 14 2 - order 1 M. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 18 / 21

Ongoing and Future works Applications: Tensor decomposition of rank 1 or 2 What happens when I min is not zero-dimensional? What happens when f is not reached? Solver numerical problem of the SDPA M. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 19 / 21

Numerical problem f (x, y) = 16 + x 2 y 4 + 2x 2 y 3 4x 3 y 3 + 4xy 2 + 20x 2 y 2 + 8x 3 y 2 + 6x 4 y 2 + 8xy 16x 2 y f = 0,60902 and (x, y ) = ( 3,3884, 0,1434) We nd the minimum in order 4. Behavior in gloptipoly (nd local minimum not global minimum) msdp(min(f)) status =-1 (infeasible) msdp(min(f),di(f)==0) status=0 (not global optimality), f = 0,601 msdp(min(f),di(f)==0,10) status=1,f = 15,8283 and (x, y ) = (0,1156, 0,4839) Possible solution: use orthogonal basis instead of monomial basis M. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 20 / 21

THANK YOU FOR YOUR ATTENTION!!! M. Abril-Bucero, B. Mourrain, P. Trebuchet Constrained (Inria Méditerranée, polynomial Galaad optimization team ) Juillet 15-19, 2013 21 / 21