Non Fermi Liquids: Theory and Experiment. Challenges of understanding Critical and Normal Heavy Fermion Fluids

Similar documents
"From a theoretical tool to the lab"

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

Miniworkshop on Strong Correlations in Materials and Atom Traps August Superconductivity, magnetism and criticality in the 115s.

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

V, I, R measurements: how to generate and measure quantities and then how to get data (resistivity, magnetoresistance, Hall). Makariy A.

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Exciton in the Topological Kondo Insulator SmB 6

Phase diagrams of pressure-tuned Heavy Fermion Systems

Vortex States in a Non-Abelian Magnetic Field

R measurements (resistivity, magnetoresistance, Hall). Makariy A. Tanatar

Resistivity studies in magnetic materials. Makariy A. Tanatar

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

The Hubbard model in cold atoms and in the high-tc cuprates

RESUME DEPARTMENT OF PHYSICS AND ASTRONOMY IOWA STATE UNIVERSITY (2/12/2015)

Two-dimensional heavy fermions in Kondo topological insulators

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram

Topological Kondo Insulators!

!"#$%& IIT Kanpur. !"#$%&. Kanpur, How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Quantum Criticality and Emergent Phases in Heavy Fermion Metals

Hidden order in URu 2. Si 2. hybridization with a twist. Rebecca Flint. Iowa State University. Hasta: spear (Latin) C/T (mj/mol K 2 ) T (K)

Strongly Correlated Systems:

ARPES studies of cuprates. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

Heavy Fermion systems

Topological order in the pseudogap metal

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Stability of semi-metals : (partial) classification of semi-metals

Detection of novel electronic order in Fe based superconducting (and related) materials with point contact spectroscopy

Intermediate valence in Yb Intermetallic compounds

Spinon magnetic resonance. Oleg Starykh, University of Utah

Electron Correlation

Emergent Frontiers in Quantum Materials:

Orbital order and Hund's rule frustration in Kondo lattices

Can superconductivity emerge out of a non Fermi liquid.

ɛ(k) = h2 k 2 2m, k F = (3π 2 n) 1/3

Let There Be Topological Superconductors

Quantum magnetism and the theory of strongly correlated electrons

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Finite-temperature properties of the two-dimensional Kondo lattice model

Quantum criticality of Fermi surfaces

Quantum spin liquids and the Mott transition. T. Senthil (MIT)

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

c 2015 Aline Ramires Neves de Oliveira ALL RIGHTS RESERVED

Quantum Choreography: Exotica inside Crystals

Metal-Insulator Transitions

A brief Introduction of Fe-based SC

Understanding correlated electron systems by a classification of Mott insulators

Foundations of Condensed Matter Physics

SPT: a window into highly entangled phases

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

April Schafroth s bosons? 2. BCS paired electrons? 3. Lattice Bosons?! -- new paradigm of metallic conductivity

Review of typical behaviours observed in strongly correlated systems. Charles Simon Laboratoire CRISMAT, CNRS and ENSICAEN, F14050 Caen.

Quantum phases of antiferromagnets and the underdoped cuprates. Talk online: sachdev.physics.harvard.edu

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

Neutron scattering from quantum materials

The bosonic Kondo effect:

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Supplementary Figure S1: Number of Fermi surfaces. Electronic dispersion around Γ a = 0 and Γ b = π/a. In (a) the number of Fermi surfaces is even,

A New look at the Pseudogap Phase in the Cuprates.

Strongly correlated Cooper pair insulators and superfluids

From the pseudogap to the strange metal

Coexistence of magnetism and superconductivity in CeRh 1-x Ir x In 5. Florida State University, Tallahassee, FL Version Date: January 19, 2001

Order and quantum phase transitions in the cuprate superconductors

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Quantum-Criticality in the dissipative XY and Ashkin-Teller Model: Application to the Cuprates and SIT..

Quantum phase transitions in Mott insulators and d-wave superconductors

Intertwined Orders in High Temperature Superconductors

Spin liquids in frustrated magnets

Lecture 2: Deconfined quantum criticality

Ultrashort Lifetime Expansion for Resonant Inelastic X-ray Scattering. Luuk Ament

Quantum Criticality in Heavy Fermion Metals. Qimiao Si. Rice University

Advanced Spectroscopies of Modern Quantum Materials

Quantum phase transitions

Quadrupolar Ordered Phases in Pr-based Superconductors PrT 2 Zn 20 (T = Rh and Ir)

Sunday, February 17, 13

Dirac fermions in condensed matters

Quantum phase transitions and the Luttinger theorem.

The underdoped cuprates as fractionalized Fermi liquids (FL*)

Scanning Tunneling Microscopy/Spectroscopy

Haldane phase and magnetic end-states in 1D topological Kondo insulators. Alejandro M. Lobos Instituto de Fisica Rosario (IFIR) - CONICET- Argentina

Resonating Valence Bond point of view in Graphene

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron

What's so unusual about high temperature superconductors? UBC 2005

Metals without quasiparticles

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Non-centrosymmetric superconductivity

Gapless Spin Liquids in Two Dimensions

The Nernst effect in high-temperature superconductors

Quantum Theory of Matter

First, we need a rapid look at the fundamental structure of superfluid 3 He. and then see how similar it is to the structure of the Universe.

TOPMAT CEA & CNRS, Saclay, France June 14, Inti Sodemann MPI - PKS Dresden

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

II. Dynamically generated quantum degrees of freedom and their resonance & coherence properties

Quantum Spin Liquids and Majorana Metals

Surface electronic structure of the topological Kondo insulator candidate correlated electron system SmB 6

Anomalous quantum criticality in the electron-doped cuprates

Two energy scales and slow crossover in YbAl 3

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo

Quantum Phase Transitions

Transcription:

Beyond Quasiparticles: New Paradigms for Quantum Fluids Aspen Center for Physics 14-17 June, 2014 Non Fermi Liquids: Theory and Experiment. Challenges of understanding Critical and Normal Heavy Fermion Fluids 8.00-8.15 am Piers Coleman (Rutgers University) Challenges of Understanding Critical and Normal Heavy Fermion Fluids Show abstract 8.15-8.50 Collin Broholm (Johns Hopkins University) The magnetism of strongly correlated metals Show abstract 8.50-9.25 Y. Matsumoto (ISSP, University of Tokyo) Valence fluctuation and strange metal phase in YbAlB4 Show abstract 9.25-9.45 Coffee break 9.50 -.25 J. D. Thompson (Los Alamos National Laboratory) Non-Fermi Liquid Behaviors in CeRhIn5 and CeCoIn5 Show abstract.25-11.00 A. Yazdani (Princeton University) Visualizing the Emergence of Heavy Fermions, their Superconductivity, and Hidden Orders with STM Show abstract Piers Coleman Center for Materials Theory Rutgers, USA

Kmetko-Smith Phase Diagram Smith and Kmetko (1983)

Kmetko-Smith Phase Diagram Increasing localization Smith and Kmetko (1983)

Kmetko-Smith Phase Diagram Increasing localization Increasing localization Smith and Kmetko (1983)

Kmetko-Smith Phase Diagram Increasing localization Increasing localization Smith and Kmetko (1983)

Kmetko-Smith Phase Diagram Increasing localization Increasing localization Smith and Kmetko (1983) A lot of action at the brink of localization.

Heavy Fermion Primer Spin (4f,5f): basic fabric of heavy electron physics.

Heavy Fermion Primer 2j+1 Spin (4f,5f): basic fabric of heavy electron physics.

Heavy Fermion Primer 2j+1 Spin (4f,5f): basic fabric of heavy electron physics.

Heavy Fermion Primer 2j+1 Curie Spin (4f,5f): basic fabric of heavy electron physics.

Heavy Fermion Primer Electron sea 2j+1 Curie Spin (4f,5f): basic fabric of heavy electron physics. H = X k k c k c k + J ~ S ~ (0)

Heavy Fermion Primer Electron sea 2j+1 Curie Spin (4f,5f): basic fabric of heavy electron physics. H = X k k c k c k + J ~ S ~ (0) Weak Coupling FIXED POINT 0 1 AFM J>0 J(T) T>>TK TK T<<TK Strong Coupling FIXED POINT

Heavy Fermion Primer Electron sea 2j+1 Curie Spin screened by conduction electrons: entangled H = X k k c k c k + J ~ S ~ (0) Weak Coupling FIXED POINT 0 1 AFM J>0 J(T) T>>TK TK T<<TK Strong Coupling FIXED POINT

Heavy Fermion Primer Electron sea 2j+1 Curie Spin screened by conduction electrons: entangled " # #" H = X k k c k c k + J ~ S ~ (0) Weak Coupling FIXED POINT 0 1 AFM J>0 J(T) T>>TK TK T<<TK Strong Coupling FIXED POINT

Heavy Fermion Primer Electron sea T K De 1 2J Kondo temperature Pauli 2j+1 Curie Spin screened by conduction electrons: entangled " # #" H = X k k c k c k + J ~ S ~ (0) Weak Coupling FIXED POINT 0 1 AFM J>0 J(T) T>>TK TK T<<TK Strong Coupling FIXED POINT

Heavy Fermion Primer

Heavy Fermion Primer Kondo Lattice

Kondo Insulators Kondo Lattice Entangled many body state of spins and electrons gives rise to many new kinds of order.

Kondo Insulators 1968 Kondo Lattice Entangled many body state of spins and electrons gives rise to many new kinds of order. Kondo Insulators SmB6 B6 Sm 2.7+

Kondo Insulators 1968 Kondo Lattice Entangled many body state of spins and electrons gives rise to many new kinds of order. Kondo Insulators Mott Phil Mag, 30,403,1974 SmB6 Sm2.7+ B6

Kondo Insulators 1968 PH 74, NUMBER 9 VOLUME 1 1 $P -24 Persistent conduc-vity Plateauof temperatures ' :(b) bar. kba3r YSICAL REVIEW LETTERS Cooleyet al (1995) 33 kb Kondo Lattice E body state of EntangledClo many spins and electrons gives rise to many new kinds of order. 53 kb Kondo Insulators 60 kbar 66 kbar,i T(K) 0 0.0 0.2 0.4 1/T(K) 1. The electrical resistivity p as a function of temfig.mag, Mott Phil 30,403,1974 perature (a) and inverse temperature (b). (b) Q = 1 bar, = 33 kbar, A = 45 kbar, and = 25 kbar, Q = 24 kbar, A = 53 kbar. The solid lines in (b) are fits by the function [p(t)] ' = [po(p)] ' + (p,(p) exp[a(p)/k&t]) ', described in the text. over which simple linear becomes increasingly limited define with increased pressure. In co resistor formulation provides uniformly SmB6 range, and consequently pressure Sm2.7+ yie determination of A. Since there is no evidence in SmB6 B6 at or below 60 kbar structural change appearance of 5 suggests that it is not tion gap, for in that case the insulat occurs by band crossing and the gap tinuously to zero. A valence instabilit discounted, as high pressure x-ray a ments [] find that the Sm valence from +2.6 to +2.75 between 1 bar and We have used Hall effect measurem evolution of the camers in the vicinit constant RH is plotted as a function o pressures ranging from 1 bar to 66 k T bet RH is negative for temperatures and at all pressures, as well as indepe

Kondo Insulators Broken Kondo Singlets 1968 PH 74, NUMBER 9 VOLUME 1 1 $P -24. kba3r Cooleyet al (1995) 33 kb Kondo Lattice E body state of EntangledClo many spins and electrons gives rise to many new kinds of order. 53 kb Topological Kondo Insulators 60 kbar (Dzero,Sun,PC,Galitski (20) Wolgast et al (2013). Persistent conduc-vity Plateauof temperatures ' :(b) bar YSICAL REVIEW LETTERS 66 kbar,i T(K) 0 0.0 0.2 0.4 1/T(K) 1. The electrical resistivity p as a function of temfig.mag, Mott Phil 30,403,1974 perature (a) and inverse temperature (b). (b) Q = 1 bar, = 33 kbar, A = 45 kbar, and = 25 kbar, Q = 24 kbar, A = 53 kbar. The solid lines in (b) are fits by the function [p(t)] ' = [po(p)] ' + (p,(p) exp[a(p)/k&t]) ', described in the text. over which simple linear becomes increasingly limited define with increased pressure. In co resistor formulation provides uniformly SmB6 range, and consequently pressure Sm2.7+ yie determination of A. Since there is no evidence in SmB6 B6 at or below 60 kbar structural change appearance of 5 suggests that it is not tion gap, for in that case the insulat occurs by band crossing and the gap tinuously to zero. A valence instabilit discounted, as high pressure x-ray a ments [] find that the Sm valence from +2.6 to +2.75 between 1 bar and We have used Hall effect measurem evolution of the camers in the vicinit constant RH is plotted as a function o pressures ranging from 1 bar to 66 k T bet RH is negative for temperatures and at all pressures, as well as indepe

Kondo Insulators Broken Kondo Singlets Neupane, arxiv: 1306.4634 Nature(2013). 1968 VOLUME PH 74, NUMBER 9 YSICAL REVIEW LETTERS Persistent conduc-vity Plateauof temperatures ' over which simple 1 bar.:(b) Cooleyet al (1995) linear becomes increasingly limited -24 kba3r P $ define with increased pressure. In co resistor formulation provides uniformly 33 kb SmB6 range, and consequently pressure Sm2.7+ yie Kondo Lattice determination of A. E o body state of EntangledCl many Since there is no evidence in SmB6 B6 at or below 60 kbar structural change spins and electrons gives rise to appearance of 5 suggests that it is not many new kinds of order. tion gap, for in that case the insulat 53 kb Topological Kondo Insulators occurs by band crossing and the gap 60 kbar (Dzero,Sun,PC,Galitski (20) tinuously to zero. A valence instabilit 66 kbar Wolgast et al (2013). discounted, as high pressure x-ray a 0 0.0 0.2 0.4 ments [] find that the Sm valence T(K) 1/T(K) from +2.6 to +2.75 between 1 bar and tem1. FIG. The electrical resistivity p as a function of We have used Hall effect measurem perature (a) and inverse temperature (b). (b) Q = 1 bar, evolution of the camers in the vicinit = 33 kbar, A = 45 kbar, and = 25 kbar, Q = 24 kbar, Fermi and dispersion of SmB (a) Ferm constant maps A = 53 kbar. The solid FIG. as6.a function o lines in3: (b) are fitssurface RH is plotted by the function ' + ' = [p(t)] [po(p)] (p,(p) exp[a(p)/k&t]) ', described pressures ranging from 1 bar to 66 k measured by 7 ev LASER source at temperature of 7 K. A small pock in the text. T bet RH is negative for temperatures and atcircular all pressures, well dash as indepe are observed. A big elliptical and a small shaped as black lines 1,I

Kondo Insulators Broken Kondo Singlets Neupane, arxiv: 1306.4634 Nature(2013). 1968 VOLUME PH 74, NUMBER 9 YSICAL REVIEW LETTERS Persistent conduc-vity Plateauof temperatures ' over which simple 1 bar.:(b) Cooleyet al (1995) linear becomes increasingly limited -24 kba3r P $ define with increased pressure. In co resistor formulation provides uniformly 33 kb SmB6 range, and consequently pressure Sm2.7+ yie Kondo Lattice determination of A. E o body state of EntangledCl many Since there is no evidence in SmB6 B6 at or below 60 kbar structural change spins and electrons gives rise to appearance of 5 suggests that it is not many new kinds of order. tion gap, for in that case the insulat 53 kb Topological Kondo Insulators occurs by band crossing and the gap 60 kbar (Dzero,Sun,PC,Galitski (20) tinuously to zero. A valence instabilit 66 kbar Wolgast et al (2013). discounted, as high pressure x-ray a 0 0.0 0.2 0.4 ments [] find that the Sm valence T(K) 1/T(K) from +2.6 to +2.75 between 1 bar and tem1. FIG. The electrical resistivity p as a function of We have used Hall effect measurem and inverse perature (a) temperature Collin Broholm: what happens to the (b).correlations (b) Q = 1 bar, between d- and! evolution of the camers in the vicinit = 33 kbar, A = 45 kbar, and = 24 kbar, = 25 kbar, Q anddevelops? dispersion of SmB (a) Ferm f-electrons topological insulator constant maps A = 53 kbar.asthe as6.a function o lines in3: Kondo solid FIG. are fitssurface RH is plotted (b)fermi by the function ' + ' = [p(t)] [po(p)] (p,(p) exp[a(p)/k&t]) ', described pressures ranging from 1 bar to 66 k measured by 7 ev LASER source at temperature of 7 K. A small pock in the text. T bet RH is negative for temperatures and atcircular all pressures, well dash as indepe are observed. A big elliptical and a small shaped as black lines 1,I

Kondo Insulators Broken Kondo Singlets Neupane, arxiv: 1306.4634 Nature(2013). 1968 VOLUME PH 74, NUMBER 9 YSICAL REVIEW LETTERS Persistent conduc-vity Plateauof temperatures ' over which simple 1 bar.:(b) Cooleyet al (1995) linear becomes increasingly limited -24 kba3r P $ define with increased pressure. In co resistor formulation provides uniformly 33 kb SmB6 range, and consequently pressure Sm2.7+ yie Kondo Lattice determination of A. E o body state of EntangledCl many Since there is no evidence in SmB6 B6 at or below 60 kbar structural change spins and electrons gives rise to appearance of 5 suggests that it is not many new kinds of order. tion gap, for in that case the insulat 53 kb Topological Kondo Insulators occurs by band crossing and the gap 60 kbar (Dzero,Sun,PC,Galitski (20) tinuously to zero. A valence instabilit 66 kbar Wolgast et al (2013). discounted, as high pressure x-ray a 0 0.0 0.2 0.4 ments [] find that the Sm valence T(K) 1/T(K) from +2.6 to +2.75 between 1 bar and tem1. FIG. The electrical resistivity p as a function of We have used Hall effect measurem and inverse perature (a) temperature Collin Broholm: what happens to the (b).correlations (b) Q = 1 bar, between d- and! evolution of the camers in the vicinit = 33 kbar, A = 45 kbar, and = 24 kbar, = 25 kbar, Q anddevelops? dispersion of SmB (a) Ferm f-electrons topological insulator constant maps A = 53 kbar.asthe as6.a function o lines in3: Kondo solid FIG. are fitssurface RH is plotted (b)fermi by the function ' + ' = [p(t)] [po(p)] (p,(p) exp[a(p)/k&t]) ', described pressures ranging from 1 bar to 66 k measured by 7 ev LASER source at temperature of 7 K. A small pock in the text. is negative for temperatures T bet RHthe Collin Broholm: what collective excitations result from excitonic Kondo lattic and atcircular all pressures, well dash as indepe are observed. A big elliptical and a small shaped as black lines 1,I

Heavy Fermion Metals Ott et al (1976) Kondo Lattice Entangled many body state of spins and electrons gives rise to many new kinds of order. TopologicalKondo Insulators (Dzero,Sun,PC,Galitski (20) Wolgast et al (2013). Heavy Fermion Metals:

Heavy Fermion Metals Coherent HFs~Hole doped KIs ~TK Ott et al (1976) Kondo Lattice Entangled many body state of spins and electrons gives rise to many new kinds of order. TopologicalKondo Insulators (Dzero,Sun,PC,Galitski (20) Wolgast et al (2013). Heavy Fermion Metals:

Heavy Fermion Metals Coherent HFs~Hole doped KIs ~TK (T )= 0 + AT 2 Ott et al (1976) Kondo Lattice Entangled many body state of spins and electrons gives rise to many new kinds of order. TopologicalKondo Insulators (Dzero,Sun,PC,Galitski (20) Wolgast et al (2013). Heavy Fermion Metals:

Heavy Fermion Metals Coherent HFs~Hole doped KIs ~TK (T )= 0 + AT 2 Ott et al (1976) Kondo Lattice Entangled many body state of spins and electrons gives rise to many new kinds of order. TopologicalKondo Insulators (Dzero,Sun,PC,Galitski (20) Wolgast et al (2013). Heavy Fermion Metals: J N c j S V j f j Composite Fermion Singlet formation

Heavy Fermion Metals Coherent HFs~Hole doped KIs Ali Yazdani: spectroscopically! image the composite HF? ~TK Kondo Lattice Entangled many body state of spins and electrons gives rise to many new kinds of order. TopologicalKondo Insulators (Dzero,Sun,PC,Galitski (20) Wolgast et al (2013). Heavy Fermion Metals: (T )= 0 + AT 2 Ott et al (1976) J N c j S V j f j Composite Fermion Singlet formation Energy [mev] 60 40 20 0-20 -40-60 0.15 0.25 0.35 0.45 0.55 0.65 q [2π/a,0]

Heavy Fermion Metals Coherent HFs~Hole doped KIs Ali Yazdani: spectroscopically! image the composite HF? ~TK (T )= 0 + AT 2 Ott et al (1976) Energy [mev] 60 40 20 0-20 Kondo Lattice Entangled many body state of spins and electrons gives rise to many new kinds of order. TopologicalKondo Insulators (Dzero,Sun,PC,Galitski (20) Wolgast et al (2013). Heavy Fermion Metals: J N c j S V j f j Composite Fermion Singlet formation -40-60 0.15 0.25 0.35 0.45 0.55 0.65 q [2π/a,0] Ali Yazdani: and what happens to them in a HF SC?

Quantum Criticality & SC RKKY Interaction Mott 1974, Doniach, 1977 T K = D exp[ 1/2J ] >

<latexit sha1_base64="v6v64ji4wp93yrliwazduqardce=">aaactxicbzfnbxmxeiadlr8lfkxacs4wfrknanmd9fjbbxfarwpoptijvpbsxoq/zhtjiyssh/4wrvb3+m/q7bap3tlssk+ed2ypzworhq95ftnldu7df/bw91h/8zonz54p9l788kz2dmbmsopocupbcg3jiikem+uaqklcabh8vpvpf4lzwuitslywvbtsohsmhotmg9ekusm64jut+tfihcjf Quantum Criticality & SC RKKY Interaction Mott 1974, Doniach, 1977 T K = D exp[ 1/2J ] T N J 2 >

<latexit sha1_base64="hyyqqz/6g3a+hnovbqruftucsig=">aaacv3icbzfnbxmxeiad5auerxs4cbeosovautsdckwkbwsxijw0upxgxu/sxoq/zhtji2tvnpg1xogf8g9wdovubhlppffpo7bhm7kr3pk0/tnibty8dfvo1t3hvfsphj4abt/+6nrtguyyftqe5tsb4aomnnsbp8yclbmak3z5fuoffaprufbhfm1gjmmlemkz9rhnry9ie0firq3n8fwzcvzid3awxmd7u/ufif3ov818tjoo0zbwdzfdij2dp6ino/n24dspnkslkm8edw6apcbparwemwhnknqodgvlwse0skuluflow2nwy0gkxgobu3nc0ssnapxorwuekyx1c9f3nvb/3rt25btz4mruhhtrhiprgb3gm9nggltgxqyjomzy2ctmc2op83 <latexit sha1_base64="v6v64ji4wp93yrliwazduqardce=">aaactxicbzfnbxmxeiadlr8lfkxacs4wfrknanmd9fjbbxfarwpoptijvpbsxoq/zhtjiyssh/4wrvb3+m/q7bap3tlssk+ed2ypzworhq95ftnldu7df/bw91h/8zonz54p9l788kz2dmbmsopocupbcg3jiikem+uaqklcabh8vpvpf4lzwuitslywvbtsohsmhotmg9ekusm64jut+tfihcjf Quantum Criticality & SC RKKY Interaction Mott 1974, Doniach, 1977 T K De 1/(2J ) T K = D exp[ 1/2J ] T N J 2 >

<latexit sha1_base64="hyyqqz/6g3a+hnovbqruftucsig=">aaacv3icbzfnbxmxeiad5auerxs4cbeosovautsdckwkbwsxijw0upxgxu/sxoq/zhtji2tvnpg1xogf8g9wdovubhlppffpo7bhm7kr3pk0/tnibty8dfvo1t3hvfsphj4abt/+6nrtguyyftqe5tsb4aomnnsbp8yclbmak3z5fuoffaprufbhfm1gjmmlemkz9rhnry9ie0firq3n8fwzcvzid3awxmd7u/ufif3ov818tjoo0zbwdzfdij2dp6ino/n24dspnkslkm8edw6apcbparwemwhnknqodgvlwse0skuluflow2nwy0gkxgobu3nc0ssnapxorwuekyx1c9f3nvb/3rt25btz4mruhhtrhiprgb3gm9nggltgxqyjomzy2ctmc2op83 <latexit sha1_base64="v6v64ji4wp93yrliwazduqardce=">aaactxicbzfnbxmxeiadlr8lfkxacs4wfrknanmd9fjbbxfarwpoptijvpbsxoq/zhtjiyssh/4wrvb3+m/q7bap3tlssk+ed2ypzworhq95ftnldu7df/bw91h/8zonz54p9l788kz2dmbmsopocupbcg3jiikem+uaqklcabh8vpvpf4lzwuitslywvbtsohsmhotmg9ekusm64jut+tfihcjf Quantum Criticality & SC RKKY Interaction Mott 1974, Doniach, 1977 T K De 1/(2J ) T K = D exp[ 1/2J ] T N J 2 QCP >

<latexit sha1_base64="hyyqqz/6g3a+hnovbqruftucsig=">aaacv3icbzfnbxmxeiad5auerxs4cbeosovautsdckwkbwsxijw0upxgxu/sxoq/zhtji2tvnpg1xogf8g9wdovubhlppffpo7bhm7kr3pk0/tnibty8dfvo1t3hvfsphj4abt/+6nrtguyyftqe5tsb4aomnnsbp8yclbmak3z5fuoffaprufbhfm1gjmmlemkz9rhnry9ie0firq3n8fwzcvzid3awxmd7u/ufif3ov818tjoo0zbwdzfdij2dp6ino/n24dspnkslkm8edw6apcbparwemwhnknqodgvlwse0skuluflow2nwy0gkxgobu3nc0ssnapxorwuekyx1c9f3nvb/3rt25btz4mruhhtrhiprgb3gm9nggltgxqyjomzy2ctmc2op83 <latexit sha1_base64="v6v64ji4wp93yrliwazduqardce=">aaactxicbzfnbxmxeiadlr8lfkxacs4wfrknanmd9fjbbxfarwpoptijvpbsxoq/zhtjiyssh/4wrvb3+m/q7bap3tlssk+ed2ypzworhq95ftnldu7df/bw91h/8zonz54p9l788kz2dmbmsopocupbcg3jiikem+uaqklcabh8vpvpf4lzwuitslywvbtsohsmhotmg9ekusm64jut+tfihcjf Quantum Criticality & SC RKKY Interaction Mott 1974, Doniach, 1977 T K De 1/(2J ) T K = D exp[ 1/2J ] T N J 2 QCP > 1-1- 5 Materials Joe Thompson

<latexit sha1_base64="hyyqqz/6g3a+hnovbqruftucsig=">aaacv3icbzfnbxmxeiad5auerxs4cbeosovautsdckwkbwsxijw0upxgxu/sxoq/zhtji2tvnpg1xogf8g9wdovubhlppffpo7bhm7kr3pk0/tnibty8dfvo1t3hvfsphj4abt/+6nrtguyyftqe5tsb4aomnnsbp8yclbmak3z5fuoffaprufbhfm1gjmmlemkz9rhnry9ie0firq3n8fwzcvzid3awxmd7u/ufif3ov818tjoo0zbwdzfdij2dp6ino/n24dspnkslkm8edw6apcbparwemwhnknqodgvlwse0skuluflow2nwy0gkxgobu3nc0ssnapxorwuekyx1c9f3nvb/3rt25btz4mruhhtrhiprgb3gm9nggltgxqyjomzy2ctmc2op83 <latexit sha1_base64="v6v64ji4wp93yrliwazduqardce=">aaactxicbzfnbxmxeiadlr8lfkxacs4wfrknanmd9fjbbxfarwpoptijvpbsxoq/zhtjiyssh/4wrvb3+m/q7bap3tlssk+ed2ypzworhq95ftnldu7df/bw91h/8zonz54p9l788kz2dmbmsopocupbcg3jiikem+uaqklcabh8vpvpf4lzwuitslywvbtsohsmhotmg9ekusm64jut+tfihcjf Quantum Criticality & SC RKKY Interaction Mott 1974, Doniach, 1977 T K De 1/(2J ) T K = D exp[ 1/2J ] T N J 2 QCP Thompson: Linear Resistance due to magnetic quantum Criticality? > Tanatar et al, Science 2007 1-1- 5 Materials Joe Thompson CeCoIn5

<latexit sha1_base64="hyyqqz/6g3a+hnovbqruftucsig=">aaacv3icbzfnbxmxeiad5auerxs4cbeosovautsdckwkbwsxijw0upxgxu/sxoq/zhtji2tvnpg1xogf8g9wdovubhlppffpo7bhm7kr3pk0/tnibty8dfvo1t3hvfsphj4abt/+6nrtguyyftqe5tsb4aomnnsbp8yclbmak3z5fuoffaprufbhfm1gjmmlemkz9rhnry9ie0firq3n8fwzcvzid3awxmd7u/ufif3ov818tjoo0zbwdzfdij2dp6ino/n24dspnkslkm8edw6apcbparwemwhnknqodgvlwse0skuluflow2nwy0gkxgobu3nc0ssnapxorwuekyx1c9f3nvb/3rt25btz4mruhhtrhiprgb3gm9nggltgxqyjomzy2ctmc2op83 <latexit sha1_base64="v6v64ji4wp93yrliwazduqardce=">aaactxicbzfnbxmxeiadlr8lfkxacs4wfrknanmd9fjbbxfarwpoptijvpbsxoq/zhtjiyssh/4wrvb3+m/q7bap3tlssk+ed2ypzworhq95ftnldu7df/bw91h/8zonz54p9l788kz2dmbmsopocupbcg3jiikem+uaqklcabh8vpvpf4lzwuitslywvbtsohsmhotmg9ekusm64jut+tfihcjf <latexit sha1_base64="0sufaimbrcgug2ommwb4mgbffxw=">aaacsnicbzfla9taemfxsh+p+3lsqg+9la2fnoxc6omy2kupkdrnwhlnadwsf++l3vedi3zrn+k1+ud9nl1lksrkbwb+/p4z7m5m7pqmlkz/bsnenbv Quantum Criticality & SC RKKY Interaction Mott 1974, Doniach, 1977 T K De 1/(2J ) T K = D exp[ 1/2J ] Tusan Park et al, Nature (2005) T N J 2 QCP Thompson: Linear Resistance due to magnetic quantum Criticality? > Tanatar et al, Science 2007 1-1- 5 Materials Joe Thompson CeCoIn5 Thompson: How does a lo moment time-share betwe SC and AFM? b f

Strange Metals. Yosuke Matsumoto -YbAlB 4

Strange Metals. Yosuke Matsumoto Y. Matsumoto et al, Science (2011) Bc < 0.1mT Critical field, if it exists, is no bigger than the earth s magnetic field (0.06mT) -YbAlB 4

Strange Metals. Yosuke Matsumoto Y. Matsumoto et al, Science (2011) Bc < 0.1mT Critical field, if it exists, is no bigger than the earth s magnetic field (0.06mT) -YbAlB 4 Matsumoto: Strange metal phase or QCP?

<latexit sha1_base64="czhdwiez5fadmacffuc2hpjb/sm=">aaactxicbzfnb9qweia94anl+dpstncxqjdkzzx0ad1w5djtvsswvlpvvxpbsa31r7cdbldwja79lvzh7/bv8czfalnggunv887inpm8ksl5np0zsb48fpr4y/pj8omz5y9ejrzefxomtprpqjhgnuxgubsat7zwkp9vlopkjt/nf5/x/uklt04y/dwvkj5tugprcao+ovnozffu+oe4otaplncqnyg479bjw2y+2knharv4vshuxm7ba9tgyxxrce2yobxi2lmjzk2ztpkzanyl Strange Metals. Yosuke Matsumoto Y. Matsumoto et al, Science (2011) Bc < 0.1mT Critical field, if it exists, is no bigger than the earth s magnetic field (0.06mT) -YbAlB 4 Matsumoto: Strange metal phase or QCP? N(0) 1 p B Failed Kondo insulator?

<latexit sha1_base64="czhdwiez5fadmacffuc2hpjb/sm=">aaactxicbzfnb9qweia94anl+dpstncxqjdkzzx0ad1w5djtvsswvlpvvxpbsa31r7cdbldwja79lvzh7/bv8czfalnggunv887inpm8ksl5np0zsb48fpr4y/pj8omz5y9ejrzefxomtprpqjhgnuxgubsat7zwkp9vlopkjt/nf5/x/uklt04y/dwvkj5tugprcao+ovnozffu+oe4otaplncqnyg479bjw2y+2knharv4vshuxm7ba9tgyxxrce2yobxi2lmjzk2ztpkzanyl Strange Metals. Yosuke Matsumoto Y. Matsumoto et al, Science (2011) Bc < 0.1mT Critical field, if it exists, is no bigger than the earth s magnetic field (0.06mT) -YbAlB 4 Matsumoto: Strange metal phase or QCP? N(0) 1 p B Failed Kondo insulator? ML=2 Ms=1/2 MJ Aline Ramires et al, PRL (2012) Double vortex in momentum space V(k)~ (kx±iky) 2

<latexit sha1_base64="czhdwiez5fadmacffuc2hpjb/sm=">aaactxicbzfnb9qweia94anl+dpstncxqjdkzzx0ad1w5djtvsswvlpvvxpbsa31r7cdbldwja79lvzh7/bv8czfalnggunv887inpm8ksl5np0zsb48fpr4y/pj8omz5y9ejrzefxomtprpqjhgnuxgubsat7zwkp9vlopkjt/nf5/x/uklt04y/dwvkj5tugprcao+ovnozffu+oe4otaplncqnyg479bjw2y+2knharv4vshuxm7ba9tgyxxrce2yobxi2lmjzk2ztpkzanyl Strange Metals. Yosuke Matsumoto Y. Matsumoto et al, Science (2011) Bc < 0.1mT Critical field, if it exists, is no bigger than the earth s magnetic field (0.06mT) -YbAlB 4 Matsumoto: Strange metal phase or QCP? N(0) 1 p B Failed Kondo insulator? Matsumoto: Can Topology play a role! in strange metals? ML=2 Ms=1/2 MJ Aline Ramires et al, PRL (2012) Double vortex in momentum space V(k)~ (kx±iky) 2

Matsumoto: Strange metal phase or quantum critical point? Matsumoto: Can Topology play a role in strange metals?

Matsumoto: Strange metal phase or quantum critical point? Matsumoto: Can Topology play a role in strange metals? Broholm: what collective excitations result from the excitonic Kondo lattice? Broholm: what happens to the correlations between d- and! f-electrons as topological Kondo insulator develops?

Matsumoto: Strange metal phase or quantum critical point? Matsumoto: Can Topology play a role in strange metals? Broholm: what collective excitations result from the excitonic Kondo lattice? Broholm: what happens to the correlations between d- and! f-electrons as topological Kondo insulator develops? Thompson: Linear Resistance due to magnetic quantum Criticality? Thompson: How does a local moment time-share between SC and antiferromagnetism?

Matsumoto: Strange metal phase or quantum critical point? Matsumoto: Can Topology play a role in strange metals? Broholm: what collective excitations result from the excitonic Kondo lattice? Broholm: what happens to the correlations between d- and! f-electrons as topological Kondo insulator develops? Thompson: Linear Resistance due to magnetic quantum Criticality? Thompson: How does a local moment time-share between SC and antiferromagnetism? Yazdani: can one spectroscopically image the composite HF? Yazdani: and what happens to the composite HF in a HF SC?