Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe

Similar documents
An Optical Fiber Tip Micrograting Thermometer

A refractive index sensor based on the leaky radiation of a microfiber

Efficient surface second-harmonic generation in slot micro/nano-fibers

Efficient surface second-harmonic generation in slot micro/nano-fibers

Miniaturized broadband highly birefringent device with stereo rod-microfiber-air structure

Simultaneous Temperature and Strain Sensing for Cryogenic Applications Using Dual-Wavelength Fiber Bragg Gratings

Periodic micro-structures in optical microfibers induced by Plateau-Rayleigh instability and its applications

Optical sensor based on hybrid LPG/FBG in D-fiber for simultaneous refractive index and temperature measurement

CO 2 laser induced long period gratings in optical microfibers

ARTICLE IN PRESS. Optik 119 (2008) A novel fiber Bragg grating high-temperature sensor $

Spectra Power and Bandwidth of Fiber Bragg Grating Under Influence of Gradient Strain

Design of Uniform Fiber Bragg grating using Transfer matrix method

Nuremberg, Paul-Gordan-Str. 6, Erlangen, Germany

Reconfigurable optical-force-drive chirp and delay-line in. micro/nano-fiber Bragg grating

Structural long period gratings made by drilling micro-holes in photonic crystal fibers with a femtosecond infrared laser

High sensitivity of taper-based Mach Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing

A phase mask fiber grating and sensing applications

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides

Use of dual-grating sensors formed by different types of fiber Bragg gratings for simultaneous temperature and strain measurements

Femtosecond-laser-inscribed sampled fiber Bragg grating with ultrahigh thermal stability

Near-field diffraction of irregular phase gratings with multiple phase-shifts

Application of high-precision temperature-controlled FBG f ilter and light source self-calibration technique in the BOTDR sensor system

UV femtosecond laser inscribes a 300-nm-period nanostructure. in a pure fused silica

Wavelength switchable flat-top all-fiber comb filter based on a double-loop Mach-Zehnder interferometer

Etching Bragg gratings in Panda fibers for the temperature-independent refractive index sensing

Modification of optical fibers using femtosecond laser irradiation

1 N star coupler as a distributed fiber-optic strain sensor in a white-light interferometer

A COMPACT POLARIZATION BEAM SPLITTER BASED ON A MULTIMODE PHOTONIC CRYSTAL WAVEGUIDE WITH AN INTERNAL PHOTONIC CRYSTAL SECTION

Bending insensitive sensors for strain and temperature measurements with Bragg gratings in Bragg fibers

Plasmonic nanoguides and circuits

Nanocomposite photonic crystal devices

Micromachining structured optical fibres using focused ion. beam (FIB) milling

Negative curvature fibers

Tooth-shaped plasmonic waveguide filters with nanometeric. sizes

Ultrasensitive magnetic field sensor based on an in-fiber Mach Zehnder interferometer with a magnetic fluid component

Micro-air-gap based intrinsic Fabry Perot interferometric fiber-optic sensor

Salinity sensor based on polyimide-coated photonic crystal fiber

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida

Polarization control of defect modes in threedimensional woodpile photonic crystals

Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography

Temperature Dependence of a Macrobending Edge Filter Based on a High-bend Loss Fiber

Ultra-narrow-band tunable laserline notch filter

Mechanical Modulation of Hybrid Graphene Microfiber. Structure

Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL.

A tunable corner-pumped Nd:YAG/YAG composite slab CW laser

SCIFED. Publishers. Keywords Temperature; Refractive Index; Michelson Interferometer; Up-Taper; Optical Fiber Sensor; All-Fiber Sensor

Modification and Machining on Back Surface of a Silicon Substrate by Femtosecond Laser Pulses at 1552 nm

Ultra-Abrupt Tapered Fiber Mach-Zehnder Interferometer Sensors

Strain sensors based on bragg gratings

Optimum Access Waveguide Width for 1xN Multimode. Interference Couplers on Silicon Nanomembrane

Gratings in Electrooptic Polymer Devices

Polarization-maintaining optical microfiber

Polarization Properties of Photonic Crystal Fibers Considering Thermal and External Stress Effects

CW UV light induced fibre Bragg gratings in few- and single-moded microstructured polymer optical fibres

The observation of super-long range surface plasmon polaritons modes and its application as sensory devices

Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing

Characterizing femtosecond laser inscribed Bragg grating spectra

Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite

High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials

Progress In Electromagnetics Research Letters, Vol. 42, 13 22, 2013

Fundamentals of fiber waveguide modes

Progress In Electromagnetics Research Letters, Vol. 33, 27 35, 2012

Highly Birefringent Elliptical-Hole Microstructure Fibers With Low Confinement Loss

Novel fabrication technique for phase-shifted fiber Bragg gratings using a variable-velocity scanning beam and a shielded phase mask

Optical sensor based on two in-series birefringent optical fibers

White light generation and amplification using a soliton pulse within a nano-waveguide

Sensing Rotation with Light: From Fiber Optic Gyroscope to Exceptional Points

Fabrication of fibre-bragg-gratings in various high birefringent optical fibres for advanced FBG sensing applications

Mach-zehnder interfermeter magnetic field sensor based on magntic fluid and cladding-etched fiber

Miniature optical fiber current sensor based on a graphene membrane

Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: comparison with other existing methods of fabrication

Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

C. Berrettoni, 1,2 C. Trono, 1 V. Vignoli, 2 and F. Baldini Introduction

Strain sensor based on gourd-shaped singlemode-multimode-single-mode hybrid optical

Gradient-index metamaterials and spoof surface plasmonic waveguide

A Macrobending Singlemode Fiber Based Refractometer

Long Path Industrial OCT High-precision Measurement and Refractive Index Estimation

Nanophysics: Main trends

Chapter 3. Design for manufacture of Fabry-Perot cavity sensors

ECE 484 Semiconductor Lasers

Design of waveguide grating with ultrafast tunable index contrast

Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Fiber Gratings: Basic Theory and Sensing Principle

MEASUREMENT of gain from amplified spontaneous

SENSITIVITY ENHANCEMENT OF A D-SHAPE SPR-POF LOW-COST SENSOR USING GRAPHENE

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation

MEMS Bragg grating force sensor

Periodic microstructures fabricated by multiplex interfering femtosecond laser beams on graphene sheet

Brillouin frequency shifts in silica optical fiber with the double cladding structure

. The FBG Thermal Sensitivity The Bragg grating resonance, which is the central wavelength of back-reflected light from a uniform Bragg grating is giv

Optical solitons and its applications

Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers

System optimization of a long-range Brillouin-loss-based distributed fiber sensor

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Multiplexing of polarization-maintaining. photonic crystal fiber based Sagnac interferometric sensors.

by applying two pairs of confocal cylindrical lenses

Transcription:

Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe Jun-long Kou, 1 Sun-jie Qiu, 1 Fei Xu, 1,* and Yan-qing Lu 1,2 1 College of Engineering and Applied Sciences and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China 2 yqlu@nju.edu.cn *feixu@nju.edu.cn Abstract: We experimentally demonstrate an all-silica first-order fiber Bragg grating (FBG) for high temperature sensing by focused ion beam (FIB) machining in a fiber probe tapered to a point. This 61-period FBG is compact (~36.6 μm long and ~6.5 μm in diameter) with 200-nm-deep shallow grooves. We have tested the sensor from room temperature to around 500 C and it shows a temperature sensitivity of nearly 20 pm/ C near the resonant wavelength of 1550 nm. This kind of sensor takes up little space because of its unique geometry and small size and may be integrated in devices that work in harsh environment or for detecting small objects. 2011 Optical Society of America OCIS codes: (060.2370) Fiber optics sensors; (120.6780) Temperature. References and links 1. Y. P. Wang, Review of long period fiber gratings written by CO 2 laser, J. Appl. Phys. 108(8), 081101 (2010). 2. Y.-J. Rao, Y.-P. Wang, Z. L. Ran, and T. Zhu, Novel fiber-optic sensors based on long-period fiber gratings written by high-frequency CO 2 laser pulses, J. Lightwave Technol. 21(5), 1320 1327 (2003). 3. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses, Opt. Lett. 24(10), 646 648 (1999). 4. L. B. Fu, G. D. Marshall, J. A. Bolger, P. Steinvurzel, E. C. Magi, M. J. Withford, and B. J. Eggleton, Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres, Electron. Lett. 41(11), 638 640 (2005). 5. C. Y. Lin and L. A. Wang, A wavelength- and loss-tunable band-rejection filter based on corrugated long-period fiber grating, IEEE Photon. Technol. Lett. 13(4), 332 334 (2001). 6. T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, High-temperature sensing using surface relief fiber Bragg gratings, IEEE Photon. Technol. Lett. 17(9), 1926 1928 (2005). 7. G. Brambilla, V. Pruneri, L. Reekie, C. Contardi, D. Milanese, and M. Ferraris, Bragg gratings in ternary SiO 2:SnO 2:Na 2O optical glass fibers, Opt. Lett. 25(16), 1153 1155 (2000). 8. F. Xu, G. Brambilla, J. Feng, and Y.-Q. Lu, A microfiber Bragg grating based on a microstructured rod: a proposal, IEEE Photon. Technol. Lett. 22(4), 218 220 (2010). 9. J.-l. Kou, Z.-d. Huang, G. Zhu, F. Xu, and Y.-q. Lu, Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices, Appl. Phys. B 102(3), 615 619 (2011). 10. H. Xuan, W. Jin, and M. Zhang, CO 2 laser induced long period gratings in optical microfibers, Opt. Express 17(24), 21882 21890 (2009). 11. H. Xuan, W. Jin, and S. Liu, Long-period gratings in wavelength-scale microfibers, Opt. Lett. 35(1), 85 87 (2010). 12. A. Martinez, I. Y. Khrushchev, and I. Bennion, Thermal properties of fibre Bragg gratings inscribed point-by-point by infrared femtosecond laser, Electron. Lett. 41(4), 176 178 (2005). 13. J. L. Kou, J. Feng, Q. J. Wang, F. Xu, and Y. Q. Lu, Microfiber-probe-based ultrasmall interferometric sensor, Opt. Lett. 35(13), 2308 2310 (2010). 14. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, Miniaturized fiber taper reflective interferometer for high temperature measurement, Opt. Express 18(13), 14245 14250 (2010). 15. F. Renna, D. Cox, and G. Brambilla, Efficient sub-wavelength light confinement using surface plasmon polaritons in tapered fibers, Opt. Express 17(9), 7658 7663 (2009). 16. W. Streifer, D. Scifres, and R. Burnham, Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers, IEEE J. Quantum Electron. 11(11), 867 873 (1975). (C) 2011 OSA 12 September 2011 / Vol. 19, No. 19 / OPTICS EXPRESS 18452

17. W. Streifer and A. Hardy, Analysis of two-dimensional waveguides with misaligned or curved gratings, IEEE J. Quantum Electron. 14(12), 935 943 (1978). 18. M. L. Åslund, J. Canning, M. Stevenson, and K. Cook, Thermal stabilization of Type I fiber Bragg gratings for operation up to 600 C, Opt. Lett. 35(4), 586 588 (2010). 19. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer, Opt. Lett. 33(21), 2455 2457 (2008). 20. S. Ju, P. R. Watekar, and W.-T. Han, Enhanced sensitivity of the FBG temperature sensor based on the PbO-GeO 2-SiO 2 glass optical fiber, J. Lightwave Technol. 28(18), 2697 2700 (2010). 21. J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers, Opt. Lett. 35(5), 619 621 (2010). 1. Introduction Over the last two decades, optical sensors based on fiber gratings, including fiber Bragg gratings (FBGs) and long-period gratings (LPGs), have attracted much attention due to their widespread applications in various physical or chemical parameter measurements such as refractive index, strain and temperature. Standard fiber gratings fabricated by exposing photosensitive fibers to an intense ultraviolet interference pattern can be normally used for measuring relatively low temperature below 200 C. Various fabrication methods such as CO 2 laser irradiation [1,2], femtosecond laser exposure [3,4] and etched corrugations [5,6], have been demonstrated to write gratings for high temperature sensing in different types of optical fibers [7]. However, these gratings fabricated in thick fibers have weak index modulation and the grating lengths are at least several millimeters, which greatly limit the size of sensor heads. One alternative solution is to write short and strong grating in a micrometer-order-diameter microfiber. Several kinds of techniques on fabrication microfiber gratings have been proposed, for example, wrapping a microfiber on a microstructured rod [8,9], using CO 2 lasers [10] and femtosecond lasers [11,12]. The former can be used to realize compact FBG but it needs extra polymer coating which is not suitable for high temperature sensing. The latter can only be used to write LPG or long high-order FBG which means that the grating length is still long. In this letter, we experimentally demonstrate a compact all-silica deeply-corrugated first-order-fbg for high-temperature sensing by focused ion beam (FIB) machining in a tapered non-photosensitive single-mode-fiber probe with a sharp profile. FIB technology is perfect for micro-machining and nano-fabrication due to its small and controllable spot size and high beam current density. It has been successfully used to directly micromachine micro-cavities [13,14] or to modify the tip geometry in a subwavelength fiber [15]. Here, we directly carve periodic grooves on a sharp micrometer scale tapered fiber probe (TFP), which is around 6.5 μm in diameter. The groove period is 600 nm for the first order resonance. The groove depth is 0.2 μm and the total grating length is 36.6 μm. The all-silica TFP grating (TFPG) has a temperature sensitivity of ~20 pm/ C with a reflection peak-to-trough ratio of > 10 db. Its extremely small size, all fiber connection, high sensitivity and especially unique structure offer possible potentials for fast-response high temperature sensing, particularly in small object, e.g. bubbles. 2. Fabrication of the TFPG A commercial pipette puller (model P2000) is utilized to fabricate the TFPG [15]. In order to get a sharp and smooth taper profile, we have optimized the CO 2 laser power and pulling velocity. The manufactured TFPG has a long pigtail to allow prompt link to other optical fiber components. The tip is first coated with a thin layer of aluminum (Al) by magnetron sputtering. The Al layer is used as a conductive layer to prevent gallium ion accumulation in the FIB micromachining process. Then, the Al-coated fiber tip is fixed stably in the FIB machining chamber (Strata FIB 201) using a copper tape. We use a gallium ion beam perpendicular to the fiber axis. The shape of the beam is cylindrical symmetric with a diameter of about 20 nm. With such accuracy, groove length can be controlled precisely. In our experiment, the grating is made through a two-step process where the second step under the same beam current is used to improve the surface smoothness. Finally, the TFP is immersed in hydrochloric acid for about 20 (C) 2011 OSA 12 September 2011 / Vol. 19, No. 19 / OPTICS EXPRESS 18453

minutes to totally remove the Al layer before it is cleaned with deionized water. Figure 1 shows the FIB picture of the periodic structures from the side view. The grating has shallow corrugations of period Λ = 600 nm with 61 periods. The total length is about 36.6 μm, which is extremely short. The groove face is very sharp and smooth. Every groove is 200 nm in depth, located at the position with the local radius around r = 3.25 μm. Fig. 1. (a) FIB picture of the TFPG with 61 periods (~36.6 μm in length and Λ = 600 nm). (b) Magnified picture of the grating. Fig. 2. The cross-sections of (a) an un-etched fiber, (b) an etched fiber and (c) an equivalent unperturbed geometry, respectively. h g is the groove height and h eff is effective height. As in a planar corrugated Bragg grating, the Bragg wavelength of the grating is expressed by λ B = 2n eff Λ, where n eff is the mode effective refractive index in the equivalent unperturbed geometry, and Λ is the period. The mode field and n eff in the equivalent unperturbed waveguide geometry can be derived from the perturbed (straight) geometry using the method developed by W. Streifer [16,17]. Figure 2 shows the cross-sections of an un-etched fiber, an etched fiber and the equivalent unperturbed geometry with this method, which shifts the boundary between air and silica to compensate for the different geometry [16,17], respectively. The effective groove height h eff of the equivalent unperturbed geometry satisfies: (1 τ)( θ sinθ cos θ ) = θ sinθ cosθ θg = arccos{( r hg) / r} θeff = arccos{( r heff ) / r} g g g eff eff eff where τ is the grating duty cycle, h g is the groove height and r is the fiber radius, respectively. In our device, r = 3.25 μm, τ = 0.5 and h g = 0.2 μm. We find h eff = 0.125 μm by solving Eq. (1) and n eff = 1.433 by utilizing a finite element analysis. Thus, the Bragg wavelength is 1720 nm for the (1) (C) 2011 OSA 12 September 2011 / Vol. 19, No. 19 / OPTICS EXPRESS 18454

fundamental mode. It is different with the following experimental results (~1550 nm). The possible reason is that higher order mode is excited in the multi-mode fiber taper because the higher order mode has more overlap with the side corrugated surface. Moreover, the grating is nearly liner chirped because the taper is nonuniform. It agrees well with the following experimental results. The chirp can be cancelled if we use uniform tapered fiber. 3. Experiments and discussions The reflection of the TFPG in Fig. 1 is measured with a broadband source near 1550 nm and an Ando AQ6317B optical spectrum analyzer (OSA) through a circulator, the same setup as in [13]. Same as our previous experiment, before micromachining the tapered fiber probe; it displays an ignorable reflection of less than 100 db over the whole broadband spectrum. Hence, the reflection at the tip end is negligible and the detected signal only results from the light reflected by the grating. For most of these applications the required operational temperature only needs to be as high as 400 C [18]. So we characterize the thermal response of the TFPG from room temperature (21 C) to 440 C which can meet conventional applications. The TFPG is heated up in a micro-furnace and the temperature is measured by a thermocouple (TES-1310, Type K, TES Electrical Electronic Corp.). The spectrum and temperature are recorded when both of them are stable for several minutes. We have to point out that 440 C is not the temperature measurement limitation of the grating sensor. In [6], a geometric-modulated or surface-relief grating on a d-shaped silica fiber works up to > 1000 C. Our grating has the same work mechanism with [6] and is also a physical change in the geometry. It can work before the geometry is destroyed. The limitation of the temperature measurement should be much higher than 440 oc. Furthermore, in our previous work about a fiber tip temperature sensor based on FIB-machined micro-cavity, we have measured the temperature up to ~550 C [14]. Reflection (a. u.) 1 0.5 21 C 124 C 187 C 440 C 0 1540 1550 1560 1570 Wavelength (nm) Fig. 3. Reflection spectra of the TFPG in air at different temperatures. The resonant spectra of the TFPG at different temperatures (21 C, 124 C, 187 C and 440 C) are shown in Fig. 3. The Bragg wavelength is ~1550 nm, with excited higher order mode as deduced from our theoretical calculation. The spectra indicate an extinction ratio of ~11 db at the Bragg wavelength which is achieved with a 36.6 μm long Bragg grating and is similar with or even better than some other long length fiber gratings, enough for sensing applications. The temperature sensitivity S T is defined as the resonant wavelength shift divided by the corresponding temperature change. S T depends on temperature through the thermo-optics and/or thermal expansion effect [19]: (C) 2011 OSA 12 September 2011 / Vol. 19, No. 19 / OPTICS EXPRESS 18455

dλ n r eff neff S = = 2 σ Λ + rλ α +Λα n dt nsilica r T T T T eff (2) where σ T (1.4 10 5 / C) is the thermo-optics coefficient and α T (5.5 10 7 / C) is the thermal expansion coefficient. Temperature change influences three items: temperature-induced index variation, taper volume variation and temperature-induced grating length variation. According to our calculations, thermal expansion effect [the second and third part of Eq. (2)] contributes little to the total sensitivity (< 6%), mainly due to the low thermal expansion coefficient of silica. The first one is about 15 ~25 pm/ C and dominates in temperature sensing. Moreover, in the first part of Eq. (2), neff / nsilica is nearly 1 and does not change much with the microfiber diameter, which means that the most efficient method to increase temperature sensitivity is to use fiber with higher thermo-optics coefficient. Wavelength shift (nm) 8 6 4 2 λ=1.484 10-5 T 2 +9.008 10-3 T-2.583 10-1 Experimetal data Poly fitting 0 100 200 300 400 Temperature ( C) Fig. 4. Dependence of the measured wavelength shift on temperature. The asterisk represents the measured results while the solid line is the linear fitting result. Figure 4 displays the measured resonant wavelength shifts (Δλ) on temperature (T). As the temperature increases, the resonant wavelength shifts to longer wavelength. A poly fitting is used across the entire calibration range. The average sensitivity of the device is ~20 pm/ C, which is very close to the theoretical result, higher than or similar with previous fiber grating sensors. Higher sensitivity can be obtained by optimizing the profile of the TFPG or use special fiber taper with higher thermo-optics coefficient. The resolution of a sensor is limited by several practical terms, e.g. the width of reflection peak, detection method, spectral variation and intrinsic sensor noise. For our devices, the bandwidth of the reflection peak (several nm) and the OSA resolution are the main issues. The reflection peak bandwidth can be narrowed by fabricating the grating with more periods in a more uniform taper region. On the other hand, we can use a power meter accompanied by a tunable laser with higher resolution which will give a more precise peak value. The reproducibility and stability of a geometric-modulated grating depend on the geometric stability. The experimental results in [6] show a good reproducibility and stability by heating and cooling it between room temperature to 1000 C. Our grating has the same working mechanism thus it can be stable and keep good reproducibility before the material melts and the structure is destroyed. 4. Discussions and Conclusions Conventional FBG is fabricated by writing variation of refractive index into the core of Ge-doped silica fiber using UV light by phase mask. The index modulation is very weak and is (C) 2011 OSA 12 September 2011 / Vol. 19, No. 19 / OPTICS EXPRESS 18456

unstable when temperature is high. Compared with the standard FBG grating, the main advantages of our proposed grating are the compact size, stable geometric modulation, and flexible fabrication technique without the limitation of fiber material. First, the standard FBG is usually up to centimeters in length [20] which is much longer than our FIB-milled one. Device with long length is usually much difficult to handle and move in air or fluid and it is often easy to be influenced by other effect, e.g., bending, strain and vibration. However, our FIB-milled FBG in a tapered fiber tip is much compact (~36.6 μm long located in ~6.5 μm in diameter) which may be useful in detecting ultra-tiny object, e.g. bubbles. Second, the common FBG fabricated by UV light usually cannot serve in environment with temperature above 200 C, because the index modulation will degrade after long-time exposure in high temperature environment. However, FIB-machined grating is different because the index modulation results from the corrugations on the fiber tip surface. It means that the grating can be very stable if the fiber material (silica) does not melt and the corrugations will not be destroyed. Third, we emphasize on the method (i.e. FIB) of fabricating the grating. The FIB milling can be extended to micromachining fibers made of different materials such as sapphire whose melting point can be well above 2000 C [21], which means that it is possible to realize an ultra-high temperature sensor. In summary, we experimentally demonstrate an all-silica FBG for high-temperature sensing by FIB machining in a tapered fiber probe with a sharp profile. The grating is relatively short (only 36.6 μm) with shallow corrugations in a fiber taper with diameter around 6.5 μm. The calibration of the sensor is carried out from room temperature to around 500 C and shows a temperature sensitivity of ~20 pm/ C. The resonance at the Bragg wavelength is achieved with as few as 61-period and 200-nm-deep corrugations on the taper surface. All these performance are better than or similar with other fiber gratings with much bigger size or length. Its advantages of compact size, high sensitivity, easy interrogation, simple fabrication and unique geometry offer great possible prospects for developing novel high temperature sensors for small space. Acknowledgments This work is supported by National 973 program under contract No. 2010CB327803, 2012CB921803 and 2011CBA00200, NSFC program No. 11074117 and 60977039. The authors also acknowledge the support from the Priority Academic Program Development of Jiangsu (PAPD) and the Fundamental Research Funds for the Central Universities. (C) 2011 OSA 12 September 2011 / Vol. 19, No. 19 / OPTICS EXPRESS 18457