Progressive Metamorphism. Progressive Metamorphism. P-T-t t Path. Prograde Reactions. Progressive Metamorphism. Types of Protolith

Similar documents
Chapter 21: Metamorphism. Fresh basalt and weathered basalt

Chapter 21: Metamorphism. Fresh basalt and weathered basalt

5/1/2017. Why Study Metamorphism? The Limits of Metamorphism. Low-temperature limit grades into diagenesis. Intro. to Metamorphism

Metamorphic Petrology GLY 262 Metamorphism and plate tectonics

Types of Metamorphism!

Metamorphic Facies. Fig Temperaturepressure

1 F 4. Greenschist-amphibolite facies, such as those of Western North Carolina, require an average continental crustal geotherm to form.

Metamorphic Energy Flow. Categories of Metamorphism. Inherited Protolith Character. Inherited Fabric. Chemical Composition

Metamorphic Petrology. Jen Parks ESC 310, x6999

GEOLOGY 285: INTRO. PETROLOGY

Metamorphism. Metamorphic Rocks. Sources of Heat for Metamorphism. Sources of Heat for Metamorphism. in mineral assemblages of a rock, and/or

Chapter 21: Metamorphism. Fresh basalt and weathered basalt

Metamorphic Rocks- Classification, Field Gradients, & Facies

Understanding Earth Fifth Edition

Metamorphism and Metamorphic Rocks

EENS 2120 Petrology Prof. Stephen A. Nelson. Types of Metamorphism

Introduction. Introduction. Chapter 7. Important Points: Metamorphism is driven by Earth s s internal heat

Earth and Space Sciences 212

Chemical Systems. Introduction to Metamorphism. Definition of Metamorphism. Lower Limit of Metamorphism. Upper Limit of Metamorphism

Lab: Metamorphism: minerals, rocks and plate tectonics!

METAMORPHIC ROCKS CHAPTER 8

Introduction. Introduction. Introduction 10/15/2014. The Agents of Metamorphism. Metamorphism. and Metamorphic Rocks

Lecture 5 Sedimentary rocks Recap+ continued. and Metamorphic rocks!

Metamorphic Rocks. Metamorphic rocks. Formed by heat, pressure and fluid activity

Introduction to Geology Spring 2008

Chapter 8 10/19/2012. Introduction. Metamorphism. and Metamorphic Rocks. Introduction. Introduction. The Agents of Metamorphism

Lab 6: Metamorphic Rocks

Factors cause Metamorphism:

Metamorphism: A Process of Change

Metamorphic Petrology

Big Island Field Trip

16. Metamorphic Rocks II (p )

MINERALOGY LABORATORY Metamorphic Rocks and Minerals

Metamorphism (means changed form

Metamorphism & Metamorphic Rocks

Lesson Seven: Metamorphic Rocks

"When Gregor Samsa woke up one morning from unsettling dreams, he found himself changed into a monstrous bug. Metamorphosis, by Franz Kafka

Chapter 8 Lecture. Earth: An Introduction to Physical Geology. Twelfth Edition. Metamorphism. Rocks. Tarbuck and Lutgens Pearson Education, Inc.

GEOLOGY OF THAILAND (METAMORPHIC ROCKS)

CHAPTER 3.3: METAMORPHIC ROCKS

READING QUESTIONS: Metamorphic Rocks GEOL /WI 47 pts. 3. Define metamorphic grade.(2 pts)

Questions on the characteristics and generation of subduction-related andesitic magmas at convergent margins (not covered on Midterm exam)

2.4 1 Temperature, pressure and metamorphism

Estimated ranges of oceanic and continental steady-state geotherms to a depth of 100 km using upper and lower limits based on heat flows measured

0 T 2. Many orogenic episodes produce repeated episodes of deformation and metamorphism, leaving a polymetamorphic imprint.

Igneous Rocks. Sedimentary Rocks. Metamorphic Rocks

GEOL 3313 Petrology of Igneous and Metamorphic Rocks Study Guide for Final Examination Glen Mattioli

Lab 6 - Identification of Metamorphic Rocks

Metamorphism: summary in haiku form

Metamorphic Petrology GLY 262 P-T-t paths

Which rock is shown? A) slate B) dunite C) gneiss D) quartzite

Metamorphism. Sources of Heat for Metamorphism. Sources of Heat for Metamorphism. Environments of Metamorphism. and Associated Textures

Chapter 4 Rocks & Igneous Rocks

Metamorphic Rocks. Metamorphic Rocks: Big Ideas

Table 7.1 Mineralogy of metamorphic rocks related to protolith and grade

Metamorphic Rocks. SWHS Geology

Investigation of metamorphic zonation and isogrades of Garnet rocks in Hamadan area

Metamorphism and metamorphic rocks. GEOL115 Alexander Lusk

Chapter 7 Metamorphism, Metamorphic Rocks, and Hydrothermal Rocks

Metamorphism / Metamorphic Rocks

5/1/2017. Foliated Metamorphic Rocks. Classification of Metamorphic Rocks. Classification & Textures. Metamorphic Classification. Metamorphic Textures

Naxos: metamorphism, P-T-t evolution (A)

Metamorphic Facies. Metamorphic Facies. Metamorphic Facies. ERSC 3P21 Metamorphic Petrology II 03/11/2005. Facies

As compaction and cementation of these sediments eventually occur, which area will become siltstone? A) A B) B C) C D) D

EESC 4701: Igneous and Metamorphic Petrology METAMORPHIC ROCKS LAB 8 HANDOUT

Engineering Geology ECIV 3302

ERSC 3P21. Metamorphic Petrology

Engineering Geology. Metamorphic Rocks. Hussien Al - deeky

Metamorphism: Alteration of Rocks by Temperature and Pressure

Reactions take place in a direction that lowers Gibbs free energy

GEOL Lab 11 (Metamorphic Rocks in Hand Sample and Thin Section)

Metamorphic Petrology GLY 262 Lecture 3: An introduction to metamorphism (II)

2 Britain s oldest rocks: remnants of

GEOL Introductory Geology: Exploring Planet Earth Fall 2010 Test #2 October 18, 2010

Practice Test Rocks and Minerals. Name. Page 1

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100

Figure 23-2 a. Highest strain in areas near grain contacts (hatch pattern). b. High-strain areas dissolve and material precipitates in adjacent

Metamorphic Rock Origin and Identification

Laboratory #6: METAMORPHIC ROCKS

Prof. Tejas S Patil Dept Of Geology M.J.College.

Metamorphic Rock Origin and Identification

Petrology Session 2. Metamorphism: Alteration of Rocks by Temperature and Pressure

Chapter 10. Chapter Rocks and the Rock Cycle. Rocks. Section 1 Rocks and the Rock Cycle

Laboratory 6. Metamorphic Rocks

Page 1. Name: 1) Which diagram best shows the grain size of some common sedimentary rocks?

RR#7 - Multiple Choice

Some Slides Lack Permission for Reproduction. These Slides must be deleted before posting as html or pdf! Metamorphic Rocks. GEOL 101 Lecture

A Projection for Analysis of Mineral Assemblages in Calc-Pelitic Metamorphic Rocks

Metasomatism Model. Metasomatism. Fluid Buffers. Volatile Species. C-O-H-S System. Speciation in C-O-H-S fluids

Lecture 2: Causes of metamorphism

Environments of Metamorphism and Associated Textures

Net-transfer reactions may be terminal reactions or tie-line flip reactions (discussed below).

Metamorphism and Metamorphic Rocks Earth - Chapter Pearson Education, Inc.

Lorence G. Collins. July 24, 1998

CHAPTER VI CONCLUSIONS

Rocks and the Rock Cycle. Banded Iron Formation

Metamorphic Petrology

Metamorphic Petrology GLY 262 Metamorphic fluids

Metamorphic Petrology

Transcription:

Progressive Metamorphism Reading: Winter, Chapter 21 Progressive Metamorphism Prograde: increase in metamorphic grade with time as a rock is subjected to gradually more severe conditions Prograde metamorphism: changes in a rock that accompany increasing metamorphic grade Retrograde: decreasing grade as rock cools and recovers from a metamorphic or igneous event Retrograde metamorphism: any accompanying changes Progressive Metamorphism A rock at a high metamorphic grade probably progressed through a sequence of mineral assemblages rather than hopping directly from an unmetamorphosed rock to the metamorphic rock that we find today P-T-t t Path The preserved zonal distribution of metamorphic rocks suggests that each rock preserves the conditions of the maximum metamorphic grade (temperature) All rocks that we now find must also have cooled to surface conditions At what point on its cyclic P-T-t path did its present mineral assemblage last equilibrate? Prograde Reactions Retrograde metamorphism is of only minor significance Prograde reactions are endothermic and easily driven by increasing T Devolatilization reactions are easier than reintroducing the volatiles Geothermometry indicates that the mineral compositions commonly preserve the maximum temperature Types of Protolith The common types of sedimentary and igneous rocks fall into six chemically based-groups 1. Ultramafic - very high Mg, Fe, Ni, Cr 2. Mafic - high Fe, Mg, and Ca 3. Shales (pelitic) - high Al, K, Si 4. Carbonates- high Ca, Mg, CO 2 5. Quartz - nearly pure SiO 2. 6. Quartzo-feldspathic - high Si, Na, K, Al

Examples of Metamorphism Interpretation of the conditions and evolution of metamorphic bodies, mountain belts, and ultimately the evolution of the Earth's crust rocks may retain enough inherited information from their protolith to allow us to interpret much of the pre-metamorphic history as well Orogenic Regional Metamorphism of the Scottish Highlands George Barrow (1893, 1912) SE Highlands of Scotland Caledonian orogeny ~ 500 Ma Nappes Granites The Scottish Highlands Barrow s Area Regional metamorphic map of the Scottish Highlands, showing the zones of minerals that develop with increasing metamorphic grade. From Gillen (1982) Geology. An Introduction to Tectonic and Processes. George Allen & Unwin. London. Barrow studied the pelitic rocks Could subdivide the area into a series of metamorphic zones, each based on the appearance of a new mineral as metamorphic grade increased Low Grade Barrovian Zones Chlorite zone. Pelitic rocks are slates or phyllites and typically contain chlorite, muscovite, quartz and albite Biotite zone. Slates give way to phyllites and schists, with biotite, chlorite, muscovite, quartz, and albite Garnet zone. Schists with conspicuous red almandine garnet, usually with biotite, chlorite, muscovite, quartz, and albite or oligoclase High Grade Barrovian Zones Staurolite zone. Schists with staurolite, biotite, muscovite, quart, garnet, and plagioclase. Some chlorite may persist Kyanite zone. Schists with kyanite, biotite, muscovite, quartz, plagioclase, and usually garnet and staurolite Sillimanite zone. Schists and gneisses with sillimanite, biotite, muscovite, quartz, plagioclase, garnet, and perhaps staurolite. Some kyanite may also be present (although kyanite and sillimanite are both polymorphs of Al2SiO5)

Barrovian zones The P-T conditions referred to as Barrovian-type metamorphism (fairly typical of many belts) Now extended to a much larger area of the Highlands Isograd = line that separates the zones (a line in the field of constant metamorphic grade) Regional metamorphic map of the Scottish Highlands, showing the zones of minerals that develop with increasing metamorphic grade. From Gillen (1982) Geology. An Introduction to Tectonic and Processes. George Allen & Unwin. London. Summary An isograd (in this classical sense) represents the first appearance of a particular metamorphic index mineral in the field as one progresses up metamorphic grade When one crosses an isograd, such as the biotite isograd, one enters the biotite zone Zones thus have the same name as the isograd that forms the low-grade boundary of that zone Since classic isograds are based on the first appearance of a mineral, and not its disappearance, an index mineral may still be stable in higher grade zones Banff and Buchan Districts The pelitic compositions are similar But the sequence of isograds is: chlorite biotite cordierite andalusite sillimanite The stability field of andalusite occurs at pressures less than 0.37 GPa (~ 10 km), while kyanite sillimanite at the sillimanite isograd only above this pressure Regional Burial Metamorphism Otago, New Zealand example Jurassic graywackes, tuffs, and volcanics in a deep trough metamorphosed in the Cretaceous The fine grain size and immature nature of the material is highly susceptible to alteration, even at low grades The P-T phase diagram for the system Al 2 SiO 5 showing the stability fields for the three polymorphs andalusite, kyanite, and sillimanite. Also shown is the hydration of Al 2 SiO 5 to pyrophyllite, which limits the occurrence of an Al 2 SiO 5 polymorph at low grades in the presence of excess silica and water. The diagram was calculated using the program TWQ (Berman, 1988, 1990, 1991).

Section X-Y shows more detail Geologic sketch map of the South Island of New Zealand showing the Mesozoic metamorphic rocks east of the older Tasman Belt and the Alpine Fault. The Torlese Group is metamorphosed predominantly in the prehnite-pumpellyite zone, and the Otago Schist in higher grade zones. X-Y is the Haast River Section of Figure 21-11. From Turner (1981) Petrology: Mineralogical, Field, and Tectonic Aspects. McGraw-Hill. Otago,, New Zealand Otago,, New Zealand Isograds mapped at the lower grades: 1) Zeolite 2) Prehnite-Pumpellyite 3) Pumpellyite (-actinolite) 4) Chlorite (-clinozoisite) 5) Biotite 6) Almandine (garnet) 7) Oligoclase (albite at lower grades is replaced by a more calcic plagioclase) Regional Burial Metamorphism zones of the Haast Group (along section X-Y in Figure 21-10). After Cooper and Lovering (1970) Contrib. Mineral. Petrol., 27, 11-24. Otago,, New Zealand Orogenic belts typically proceed directly from diagenesis to chlorite or biotite zones The development of low-grade zones in New Zealand may reflect the highly unstable nature of the tuffs and graywackes, and the availability of hot water Whereas pelitic sediments may not react until higher grades Paired Belts of Japan The Sanbagawa and Ryoke metamorphic belts of Japan. From Turner (1981) Petrology: Mineralogical, Field, and Tectonic Aspects. McGraw-Hill and Miyashiro (1994) Petrology. Oxford University Press. Paired Belts of Japan The NW belt ( inner belt, inward, or away from the trench) is the Ryoke (or Abukuma) Belt Low P/T Buchan-type of regional orogenic metamorphism Dominant meta-pelitic sediments, and isograds up to the sillimanite zone have been mapped A high-temperature-low-pressure belt, and granitic plutons are common

Paired Belts of Japan Outer belt, called the Sanbagawa Belt It is of a high-pressure-low-temperature nature Only reaches the garnet zone in the pelitic rocks Basic rocks are more common than in the Ryoke belt, however, and in these glaucophane is developed (giving way to hornblende at higher grades) Rocks are commonly called blueschists Paired Belts of Japan Two belts are in contact along their whole length across a major fault zone (the Median Line) Ryoke-Abukuma lithologies are similar to seds derived from a relatively mature volcanic arc Sanbagawa lithologies more akin to the oceanward accretionary wedge where distal arc-derived sediments and volcanics mix with oceanic crust and marine sediment Paired Belts of Japan The 600 o C isotherm could be as deep as 100 km in the trench-subduction zone area, and as shallow as 20 km beneath the volcanic arc Miyashiro (1961, 1973) suggested that the occurrence of coeval metamorphic belts, an outer, high-p/t belt, and an inner, lower-p/t belt ought to be a common occurrence in a number of subduction zones, either modern or ancient Some of the paired metamorphic belts in the circum-pacific region. From Miyashiro (1994) Petrology. Oxford University Press. Contact Metamorphism of Pelitic Rocks Ordovician Skiddaw Slates (English Lake District) intruded by several granitic bodies Intrusions are shallow, and contact effects overprinted on an earlier low-grade regional orogenic metamorphism Skiddaw Aureole, UK The aureole around the Skiddaw granite was subdivided into three zones, principally on the basis of textures: Increasing Grade Unaltered slates Outer zone of spotted slates Middle zone of andalusite slates Inner zone of hornfels Skiddaw granite

Geologic Map and cross-section of the area around the Skiddaw granite, Lake District, UK. After Eastwood et al (1968). Geology of the Country around Cockermouth and Caldbeck. The Skiddaw Aureole, UK Middle zone: slates more thoroughly recrystallized, contain biotite + muscovite + cordierite + andalusite + quartz Cordieriteandalusite slate from the middle zone of the Skiddaw aureole. From Mason (1978) Petrology of the Rocks. George Allen & Unwin. London. 1 mm The Skiddaw Aureole, UK 1 mm Inner zone: Thoroughly recrystallized Lose foliation Andalusite-cordierite schist from the inner zone of the Skiddaw aureole. Note the chiastolite cross in andalusite (see also Figure 22-49). From Mason (1978) Petrology of the Rocks. George Allen & Unwin. London. The Skiddaw Aureole, UK The zones determined on a textural basis Better to use the sequential appearance of minerals and isograds to define the zones But low-p isograds converge in P-T Skiddaw sequence of mineral development with grade is difficult to determine accurately Contact Metamorphism of Pelitic Rocks Inner aureole at Comrie (a diorite intruded into the Dalradian schists back up north in Scotland), the intrusion was hotter and the rocks were metamorphosed to higher grades than at Skiddaw Tilley describes coarse-grained non-foliated granofelses containing very high-temperature minerals such as orthopyroxene and K-feldspar that have formed due to the dehydration of biotite and muscovite in the country rocks Crestmore quarry in the Los Angeles basin Quartz monzonite porphry of unknown age intrudes Mgbearing carbonates (either late Paleozoic or Triassic) Brunham (1959) mapped the following zones and the mineral assemblages in each (listed in order of increasing grade):

Forsterite Zone: calcite + brucite + clinohumite + spinel calcite + clinohumite + forsterite + spinel calcite + forsterite + spinel + clintonite Monticellite Zone: calcite + forsterite + monticellite + clintonite calcite + monticellite + melilite + clintonite calcite + monticellite + spurrite (or tilleyite) + clintonite monticellite + spurrite + merwinite + melilite Vesuvianite Zone: vesuvianite + monticellite + spurrite + merwinite + melilite vesuvianite + monticellite + diopside + wollastonite Garnet Zone: grossular + diopside + wollastonite An idealized cross-section through the aureole Idealized N-S cross section (not to scale) through the quartz monzonite and the aureole at Crestmore, CA. From Burnham (1959) Geol. Soc. Amer. Bull., 70, 879-920. 1. The mineral associations in successive zones (in all metamorphic terranes) vary by the formation of new minerals as grade increases 2. This can only occur by a chemical reaction in which some minerals are consumed and others produced a) Calcite + brucite + clinohumite + spinel zone to the Calcite + clinohumite + forsterite + spinel sub-zone involves the reaction: 2 Clinohumite + SiO 2 9 Forsterite + 2 H 2 O b) Formation of the vesuvianite zone involves the reaction: Monticellite + 2 Spurrite + 3 Merwinite + 4 Melilite + 15 SiO 2 + 12 H 2 O 6 Vesuvianite + 2 CO 2 2) Find a way to display data in simple, yet useful ways If we think of the aureole as a chemical system, we note that most of the minerals consist of the components CaO-MgO-SiO 2 -CO 2 -H 2 O (with minor Al 2 O 3 ) CaO-MgO-SiO 2 diagram at a fixed pressure and temperature showing the compositional relationships among the minerals and zones at Crestmore. Numbers correspond to zones listed in the text. After Burnham (1959) Geol. Soc. Amer. Bull., 70, 879-920; and Best (1982) Igneous and Petrology. W. H. Freeman. Zones are numbered (from outside inward)