CK-12 FOUNDATION. Separating Mixtures. Say Thanks to the Authors Click (No sign in required)

Similar documents
Suspensions. Ck12 Science. Say Thanks to the Authors Click (No sign in required)

Significant Figures. CK12 Editor. Say Thanks to the Authors Click (No sign in required)

Solving Absolute Value Equations and Inequalities

Solids, Liquids, Gases, and Plasmas

Electron Arrangement

Two-Column Proofs. Bill Zahner Lori Jordan. Say Thanks to the Authors Click (No sign in required)

Inverse Functions. Say Thanks to the Authors Click (No sign in required)

Vectors (Trigonometry Explanation)

Inside the Atom. Say Thanks to the Authors Click (No sign in required)

Inverse Functions and Trigonometric Equations - Solution Key

Inclined Planes. Say Thanks to the Authors Click (No sign in required)

History of the Atom. Say Thanks to the Authors Click (No sign in required)

Intermediate Algebra

Types of Chemical Reactions

Area of Circles. Say Thanks to the Authors Click (No sign in required)

The Pythagorean Theorem and Its Converse

Determining the Best Method to Solve a Linear System

Inside the Atom. Say Thanks to the Authors Click (No sign in required)

Inequalities. CK12 Editor. Say Thanks to the Authors Click (No sign in required)

Anastacia.kudinova s Condensed Phases: Solids and Liquids

Acids and Bases. Say Thanks to the Authors Click (No sign in required)

Radical Expressions. Say Thanks to the Authors Click (No sign in required)

Complex Numbers CK-12. Say Thanks to the Authors Click (No sign in required)

Applying the Pythagorean Theorem

Electron Configuration and the Periodic Table C-SE-TE

The Shape, Center and Spread of a Normal Distribution - Basic

Correlation Using Relative Ages

Using Similar Right Triangles

Circumference and Arc Length

Experiment Nine Thin Layer Chromatography

IGCSE (9-1) Edexcel - Chemistry

Ions and Ion Formation

Ozone Depletion. Dana Desonie, Ph.D. Say Thanks to the Authors Click (No sign in required)

Polynomials. Eve Rawley, (EveR) Anne Gloag, (AnneG) Andrew Gloag, (AndrewG)

Intermediate Algebra Textbook for Skyline College

Chemistry 11. Unit 3 The Physical Properties and Physical Changes of Substances

The Law of Cosines. Say Thanks to the Authors Click (No sign in required)

Photosynthesis Worksheets

Electricity Worksheets

Properties of Arcs. Say Thanks to the Authors Click (No sign in required)

Chromatography Lab # 4

Predicting Formulas of Ionic Compounds

LAB #6 Chromatography Techniques

Gravity. James H Dann, Ph.D. Say Thanks to the Authors Click (No sign in required)

History of the Pythagorean Theorem

MAHS-DV Algebra 1-2 Q4

Galaxies. Say Thanks to the Authors Click (No sign in required)

Simple Harmonic Motion

SEPARATION TECHNIQUES

Chromatography & instrumentation in Organic Chemistry

Midpoints and Bisectors

Chromatography and Functional Group Analysis

5072 CHEMISTRY (NEW PAPERS WITH SPA) TOPIC 1: EXPERIMENTAL CHEMISTRY 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC 1: EXPERIMENTAL CHEMISTRY

IGCSE(A*-G) Edexcel - Chemistry

Electrochemistry Worksheets

Methods of Separation. Vacuum Filtration. Distillation. The Physical Separation of Matter Chemistry 11 2/17/2014

Chromatography. What is Chromatography?

not to be republished NCERT THE technique of chromatography is vastly used for the separation, Chromatography UNIT-5 EXPERIMENT 5.

Empirical and Molecular Formulas

Cell Division - Teacher s Guide (Human Biology)

Edexcel GCSE Chemistry. Topic 2: States of matter and mixtures. Methods of separating and purifying substances. Notes.

Physical Separations and Chromatography

Trigonometric Ratios. Lori Jordan Kate Dirga. Say Thanks to the Authors Click (No sign in required)

Chromatography 1 of 26 Boardworks Ltd 2016

PROGRAMMING THE RINSE ROBOT INTRODUCTION

States of matter. Particles in a gas are widely spread out and can both vibrate and move around freely. They have the most energy of the three states.

Separations: Chromatography of M&M and Ink Dyes

Electric Circuits: Capacitors

Mixtures 1 of 38 Boardworks Ltd 2016

Elements, Compounds and Mixtures

Chromatography What is it?

Principles of Thin Layer Chromatography

Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen. Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco

Density: The property that compares an object s mass to its volume. Mass is the measure of the amount of matter that makes up an object.

Matter and Its Properties

Evidence of Evolution

Chromatography: Thin-Layer Chromatography (TLC) & Column Chromatography

Chemical Basis of Life Worksheets

Applications in Forensic Science. T. Trimpe

MIXTURES, COMPOUNDS, & SOLUTIONS

Laboratory Exercise: Chromatographic Separation

Separation of the Components of a Mixture

3. Separation of a Mixture into Pure Substances

Chemical Periodicity

Ch 2.1 Properties Of Matter. Ch 2.4 Changes In Matter

Disadvantage: Destructive Technique once analyzed by GC, the sample is lost

Matter Properties and Changes

Experimental techniques

Name Period Date. Lab 10: Paper Chromatography

Chromatography. Read pages 366 to 375 in your text to answer the following questions.

Paper Chromatography. Identifying the components of a mixture

The Basis for Paper Chromatography

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

PAPER AND THIN LAYER CHROMATOGRAPHY (TLC)

CHROMATOGRAPHY. The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments.

CHEMISTRY Unit 3, Area of Study 1: Chemical Analysis

Thin Layer Chromatography

EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS

CfE Higher Chemistry. Unit 3: Chemistry in Society. Chemical Analysis as part of quality control

Thin Layer Chromatography

Transcription:

CK-12 FOUNDATION Separating Mixtures Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) Forsythe Robinson

To access a customizable version of this book, as well as other interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the FlexBook, CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning, powered through the FlexBook Platform. Copyright 2011 CK-12 Foundation, www.ck12.org The names CK-12 and CK12 and associated logos and the terms FlexBook, and FlexBook Platform, (collectively CK-12 Marks ) are trademarks and service marks of CK-12 Foundation and are protected by federal, state and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share Alike 3.0 Unported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc-sa/3.0/), as amended and updated by Creative Commons from time to time (the CC License ), which is incorporated herein by this reference. Complete terms can be found at http://www.ck12.org/terms. Printed: November 23, 2011

Authors Therese Forsythe, Shonna Robinson Contributor Dolly Kim Editor Richard Parsons i www.ck12.org

Contents 1 Separating Mixtures 1 1.1 Separating Mixtures........................................ 1 www.ck12.org ii

Chapter 1 Separating Mixtures 1.1 Separating Mixtures Lesson Objectives list and describe methods of separating mixtures. explain the principles involved in chromatographic separation. identify the mobile and stationary phases in a chromatography set up. calculate R f values from appropriate data. Vocabulary chromatography column chromatography distillation fractional distillation gas chromatography paper chromatography retention factor thin-layer chromatography Introduction Mixtures occur very commonly in chemistry. When a new substance is synthesized, for example, the new substance usually must be separated from various side-products, catalysts, and any excess reagent still present. When a substance must be isolated from a natural biological source, the substance of interest is generally found in a very complex mixture with many other substances, all of which must be removed. Chemists have developed a series of standard methods for the separation of mixtures. In fact, the separation of mixtures into their constituent substances defines an entire sub-field of chemistry referred to as separation science. 1 www.ck12.org

Differing Solubilities Mixtures of solids may often be separated on the basis of differences in their solubilities. If one component of the mixture is soluble in water while the other components are insoluble in water, the water-soluble component can be removed from the mixture by dissolving the mixture in water and filtering the mixture through filter paper. The component dissolved in water will pass through the filter while the undissolved solids will be caught in the filter. Since the solubility of substances is greatly influenced by temperature, it may also be possible to separate the components by controlling the temperature at which the solution occurs or at which the filtration is performed. Often times, a sample is added to water and heated to boiling. The hot sample is then filtered to remove completely insoluble substances. The sample is then cooled to room temperature or below, which causes crystallization of those substances whose solubilities are very temperature dependent. These crystals can then be separated by another filtration, and the filtrate (the material that went through the filter) will then contain only those substances whose solubilities are not as temperature dependent. Distillation Homogeneous solutions are most commonly separated by distillation. In general, distillation involves heating a liquid to its boiling point, then collecting, cooling, and condensing the vapor produced into a separate container. A common distillation setup is illustrated below. In solutions of non-volatile (resistant to vaporization) solid solutes in liquid solvent, when the solution is boiled, only the solvent boils off and all of the solid remains in the solution. As the solvent vaporizes and all of the solute remains behind, the same amount of solute is now dissolved in less solvent. Since the concentration increases, the boiling point of the solution is also increasing. As the solution boils, increased temperature is necessary to keep the solution boiling because its boiling point has increased. This is a quick method of determining if a liquid is a pure substance or a solution: start boiling the solution, and if www.ck12.org 2

it continues to boil at the same temperature, it is a pure substance, whereas if its boiling point increases, it is a solution. For a mixture of liquids in which several components of the mixture are likely to be volatile (easily vaporized), the separation is not as easy. If the components of the mixture differ reasonably in their boiling points, it may be possible to separate the mixture simply by monitoring the temperature of the vapor produced as the mixture is heated. Liquid components of a mixture will each boil in turn as the temperature is gradually increased, with a sharp rise in the temperature of the vapor being distilled indicating when a new component of the mixture has begun to boil. By changing the receiving flask at the correct moment, a separation can be accomplished. This process is known as fractional distillation. Chromatography Chromatography is another method for separating mixtures. The word chromatography means colorwriting. The name was chosen around 1900 when the method was first used to separate colored components from plant leaves. Chromatography in its various forms is perhaps the most important known method for the chemical analysis of mixtures. Paper and thin-layer chromatography are simple techniques that can be used to separate mixtures into the individual components. The methods are very similar in operation and principle. They differ primarily in the medium used. Paper chromatography uses ordinary filter paper as the medium upon which the mixture to be separated is applied. Thin-layer chromatography (TLC) uses a thin coating of aluminum oxide or silica gel on a glass microscope slide or plastic sheet to which the mixture is applied. A single drop of the unknown mixture to be separated is applied about half an inch from the end of a strip of filter paper or TLC slide. The filter paper or TLC slide is then placed in a shallow layer of solvent in a jar or beaker. Since the filter paper and the TLC slide coating are permeable to liquids, the solvent begins rising up the paper by capillary action. As the solvent rises to the level of the mixture spot, various effects can occur, depending on the constituents of the spot. Those components of the spot that are completely soluble in the solvent will be swept along with the solvent front as it continues to rise. Those components that are not at all soluble will be left behind at the original location of the spot. Most components of the mixture will move up the paper or slide at an intermediate speed somewhat less than the solvent front speed. In this way, the original mixture spot is spread out into a series of spots or bands, with each spot representing one single component of the mixture, as seen in the illustration of a paper chromatography strip below. 3 www.ck12.org

The separation of a mixture by chromatography is not only a function of the solubility in the solvent used. The filter paper or TLC coating consists of molecules that may interact with the molecules of mixture as they are carried up the medium. The primary interaction between the mixture components and the medium is due to the polarity of the components and that of the medium. Each component of the mixture is likely to interact with the medium to a different extent, thus slowing the components of the mixture differentially depending on the level of interaction. In chromatography analysis, there is a mathematical function called the retention factor. The retention factor, R f, is defined as R f = distance traveled by spot distance traveled by solvent front R f is the ratio of the distance a substance moves up the stationary phase to the distance the solvent have moved. The retention factor depends on what solvent is used and on the specific composition of the filter paper or slide coating used. The R f value is characteristic of a substance when the same solvent and the same type of stationary phase is used. Therefore, a set of known substances can be analyzed at the same time under the same conditions. In the case shown below, the R f for the green spot is R f = 2.7cm 5.7 cm = 0.47 and for the yellow spot R f = 1.8 cm 5.7 cm = 0.32 www.ck12.org 4

Paper chromatography and TLC are only two examples of many different chromatographic methods. Mixtures of gases are commonly separated by gas chromatography. In this method, a mixture of liquids are vaporized and passed through a long tube of solid absorbent material. A carrier gas, usually helium, is used to carry the mixture of gases through the tube. As with paper chromatography, the components of the mixture will have different solubilities and different attractions for the solid absorbent. Separation of the components occurs as the mixture moves through the tube. The individual components exit the tube one by one and can be collected. Another form of chromatography is column chromatography. In this form, a vertical column is filled with solid absorbent, the mixture is poured in at the top, and a carrier solvent is added. As the mixture flows down the column, the components are separated, again, by differing solubilities in the carrier solvent and different absorbencies to the solid packing. As the liquid drips out the bottom of the column, components of the solution will exit at different times and can be collected. Lesson Summary Mixtures of solids may be separated by differing solubilities of the solids. Components of a solution composed of a non-volatile solid solute and a liquid solvent can be separated by distillation. Mixtures of liquids with reasonably different boiling points can also be separated by distillation. Solutions with several components can be separated by paper or thin-layer chromatography. Gas chromatography and column chromatography are also used to separate the components of a solution. 5 www.ck12.org

Further Reading / Supplemental Links An interactive video on separating mixtures is available at the link below. http://www.bbc.co.uk/schools/ks3bitesize/science/chemical_material_behaviour/compounds_mixtures/activity.shtml Review Questions 1. In a paper chromatography experiment to separate the various pigments in chlorophyll, a mixture of water and ethanol was used as the solvent. What is the stationary phase in this separation? 2. Do you think that paper chromatography or TLC would be useful for separating a very large quantity of a mixture? Explain why or why not. 3. If the mobile phase in a chromatographic experiment moved 15.0 cm and one of the compounds in the mixture moved 12.7 cm, what is the R f value for this compound? 4. If the stationary phase in a paper chromatography experiment was very polar and the solvent was moderately polar, would the polar components in the mixture be closer to the bottom of the paper or toward the top of the paper? All images, unless otherwise stated, are created by the CK-12 Foundation and are under the Creative Commons license CC-BY-NC-SA. www.ck12.org 6