Current-induced Domain Wall Dynamics

Similar documents
Spin wave assisted current induced magnetic. domain wall motion

Concepts for Domain Wall Motion in Nanoscale Ferromagnetic Elements due to Spin Torque and in Particular Oersted Fields

Domain walls, domain wall transformations and structural changes in permalloy nanowires when subjected to current pulses

Magnetic Race- Track Memory: Current Induced Domain Wall Motion!

Current Driven Domain Wall Depinning in Notched Permalloy Nanowires

Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires

Injecting, Controlling, and Storing Magnetic Domain Walls in Ferromagnetic Nanowires

Fast domain wall motion in nanostripes with out-of-plane fields. Andrew Kunz and Sarah C. Reiff

Universities of Leeds, Sheffield and York

Magnetic Force Microscopy practical

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR)

arxiv: v1 [cond-mat.mtrl-sci] 19 Jun 2015

Unidirectional spin-wave heat conveyer

Walls in Nanowires

arxiv: v2 [cond-mat.mes-hall] 6 Mar 2014

SPIE - Spintronics San Diego 28 Aug 1 Sep Staffa Island, Scotland

S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

9. Spin Torque Majority Gate

arxiv: v2 [cond-mat.mes-hall] 23 Jul 2008

Current-induced vortex displacement and annihilation in a single permalloy disk

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

arxiv: v1 [cond-mat.other] 19 May 2009

Electrical switching of vortex core in a magnetic disk

arxiv: v2 [cond-mat.mtrl-sci] 30 Jul 2013

Current and field stimulated motion of domain wall in narrow permalloy stripe

Magnetic domain-wall velocity oscillations in permalloy nanowires

Fabrication and Domain Imaging of Iron Magnetic Nanowire Arrays

Techniques for inferring M at small scales

introduction: what is spin-electronics?

A simple vision of current induced spin torque in domain walls

Nanomagnetism a perspective from the dynamic side

Damping of magnetization dynamics

Subtractively Prepared Permalloy Nanowires for Spin-Torque Experiments

Domain wall motions in perpendicularly magnetized CoFe/Pd multilayer

Page 1. A portion of this study was supported by NEDO.

Theory of magnetoelastic dissipation due to domain wall width oscillation

Magnetization dynamics for the layman: Experimental Jacques Miltat Université Paris-Sud & CNRS, Orsay

Magnetic domain-wall motion twisted by nanoscale probe-induced spin transfer

Magneto Optical Kerr Effect Microscopy Investigation on Permalloy Nanostructures

MatSci 224 Magnetism and Magnetic. November 5, 2003

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors

DYNAMICS of a QUANTUM VORTEX

Phase Coherent Precessional Magnetization Reversal in Microscopic Spin Valve Elements

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

Magnon-drag thermopile

ELECTRON HOLOGRAPHY OF NANOSTRUCTURED MAGNETIC MATERIALS. Now at: Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK

DOMAIN WALL DYNAMICS IN FERROMAGNETIC CYLINDRICAL AND PLANAR NANOSTRUCTURES

Spin-transfer torques and emergent electrodynamics in magnetic Skyrmion crystals

Magnetism and Magnetic Switching

MSE 7025 Magnetic Materials (and Spintronics)

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 16 Jan 2003

Mesoscopic Spintronics

Wouldn t it be great if

Exchange Splitting of Backward Volume Spin Wave Configuration Dispersion Curves in a Permalloy Nano-stripe

Enhanced spin orbit torques by oxygen incorporation in tungsten films

Introduction to Spintronics and Spin Caloritronics. Tamara Nunner Freie Universität Berlin

Giant Magnetoresistance

Interaction of Magnetization and Heat Dynamics for Pulsed Domain Wall Movement with Joule Heating

Fokker-Planck calculation of spintorque switching rates: comparison with telegraph-noise data

Magnetic domain theory in dynamics

Spin-torque nano-oscillators trends and challenging

Lecture 6. Alternative storage technologies. All optical recording. Racetrack memory. Topological kink solitons. Flash memory. Holographic memory

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

SUPPLEMENTARY INFORMATION

Systèmes Hybrides. Norman Birge Michigan State University

VORTICES in SUPERFLUIDS & SUPERCONDUCTORS. CIFAR Q MATERIALS SUMMER SCHOOL (May 14-16, 2012) LECTURE 2 VORTICES

Spin-transfer-torque efficiency enhanced by edge-damage. of perpendicular magnetic random access memories

CURRENT-INDUCED MAGNETIC DYNAMICS IN NANOSYSTEMS

Introduction to Ferromagnetism. Depto. Física de Materiales, Facultad de Química, Universidad del País Vasco, San Sebastián, Spain

Femtosecond Heating as a Sufficient Stimulus for Magnetization Reversal

High-frequency measurements of spin-valve films and devices invited

Microwave fields driven domain wall motions in antiferromagnetic nanowires. Microstructures, Nanjing University, Nanjing , China

Advanced Lab Course. Tunneling Magneto Resistance

Supplementary material for : Spindomain-wall transfer induced domain. perpendicular current injection. 1 ave A. Fresnel, Palaiseau, France

Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function

The zero field magnetic ground state of a flat cylindrical, soft ferromagnetic nanodisk (thickness h of

Correlated 2D Electron Aspects of the Quantum Hall Effect

FERROMAGNETIC RESONANCE MEASUREMENTS AND SIMULATIONS ON PERIODIC HOLE AND DISC ARRAYS. MISM Conference August, 2011

Anisotropy Distributions in Patterned Magnetic Media

Accelerator Physics NMI and Synchrotron Radiation. G. A. Krafft Old Dominion University Jefferson Lab Lecture 16

01 Development of Hard Disk Drives

Supplementary Notes of spin-wave propagation in cubic anisotropy materials

Domain wall resistance in (Co/Pt) 10 -nanowires

Depinning transition for domain walls with an internal degree of freedom

Contents. 1 Imaging Magnetic Microspectroscopy W. Kuch 1

A detailed study of magnetization reversal in individual Ni nanowires

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

SUPPLEMENTARY INFORMATION

Spin Torque Oscillator from micromagnetic point of view

Voyage au pays du Nanomagnétisme

Many-body correlations in a Cu-phthalocyanine STM single molecule junction

Ferromagnetic resonance in Yttrium Iron Garnet

One-Dimensional Coulomb Drag: Probing the Luttinger Liquid State - I

Ultrafast MOKE Study of Magnetization Dynamics in an Exchange-Biased IrMn/Co Thin Film

Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model

SUPPLEMENTARY INFORMATION

Universal domain wall dynamics under electric field in Ta/CoFeB/MgO devices with perpendicular anisotropy

Magnonics in skyrmion-hosting chiral magnetic materials

Nanomagnetism. Part 2 Domains and domain walls. Olivier Fruchart. Institut Néel (Univ. Grenoble Alpes CNRS) Grenoble France

Transcription:

Current-induced Domain Wall Dynamics M. Kläui, Fachbereich Physik & Zukunftskolleg Universität Konstanz Konstanz, Germany Starting Independent Researcher Grant Motivation: Physics & Applications Head-to-head domain wall spin structures Behaviour of domain walls at constrictions (pinning sites) Spin Torque Theory and simulations of CIDM Observation of CIDM in different materials(velocities, etc...) Current-induced domain wall quasiparticle excitations Magnetic Shift Register Device

1. Domain walls & currents exciting physics & applications DW Magnetoresistance effects: D. Buntinx et al., PRL 94, 17204 (2005); A. Aziz et al., PRL 97, 206602 (2006). Magnetic Logic NOT gate Current-induced domain wall motion (CIDM) A. Yamaguchi, Phys. Rev. Lett. 92, 77205 (2004) M. Yamanouchi, Nature 428, 539 04 M. Kläui, et al. Phys. Rev. Lett. 94, 106601 (2005) 95, 26601 (2005) 96, 57207 (2006) 97, 46602 (2006) 99, 146601 (2007) 100, 66603 (2008) Storage Racetrack memory D. Allwood et al., Science 296, 2003 (2002). S. S. P. Parkin, Science 320, 190 (2008); Patent 6834005.

2. Head-to-head Domain Walls - Theory? Transverse Walls Domain 1 Domain 2 Large stray field energetically favourable in thin and narrow structures. 1,2 Vortex Walls Domain 1 Domain 2 Large exchange energy energetically favourable in thick and wide structures. 1,2 1 R.D. McMichael et al., IEEE Trans. Mag. 33, 4167 (1997), 2 Y. Nakatani JMMM 290, 750 (2005).

2. Head-to-head Domain Walls - Experiment Co Rings, D=1.7µm; W=0.4 µm, 0.25 µm; t=34 nm; Spin-SEM & Electron holography Vortex Walls in wide elements1,2 Transverse Walls in narrow elements1,2 M. Eltschka, MK et al., Appl. Phys. Lett. 92, 222508 (2008) 1M. Kläui et al., PRB 68, 134426 (2003); PRL 86, 1098 (2001), APL 84, 951 (2004); APL 86, 32504 (2005);

3. Pinning of TW & VWs at constrictions - Theory Permalloy (NiFe) Rings, D=1.6 µm, W=200 nm, t=32 nm, micromagnetic simulations Energy Energy depth Position Energy width Transverse walls are attracted into the notch (single attractive potential well). Vortex walls are repelled by the constriction but pinned adjacent to the constriction due to the reduced stray field (double potential well). There is a definite sense of rotation of the vortex wall depending on the position. M. Kläui et al., PRL 90, 97202 (2003); APL 87, 102509 (2005)

3. Pinning of TW and VW at constrictions - Experiment Permalloy Rings, W=200 nm; t=27 nm; Electron holography and magnetotransport (a),(b) show transverse walls (<50nm) (c)-(g) show vortex walls (>50nm). (e), (g) show a head-to-head and a tail-to-tail wall after reversing H. 1 M. Kläui et al., APL 87, 102509 (2005); 2 M. Kläui et al., PRL 90, 97202 (2003) Depinning field (exp. black) increases as potential well DEPTH (red) with decreasing constriction width (factor 6). 1 The WIDTH of the potential well extends far beyond the physical size of the notch. 2

4. Current induced domain wall propagation Incoming Electron 1. Reflection Domain Wall 2. Transmission Spin rotates Two possible mechanisms: 1. Narrow wall: Linear momentum transfer 2. Wide wall: Angular momentum transfer (non-adiabatic transport) (adiabatic transport) Description using the Landau Lifshitz Gilbert equation: r r r m&r r r r r r r r = γ 0H m + α m m&r ( u ) m + β m [( u ) m] r r u = jgpµ B /( 2eM s Adiabatic spin torque: proportional to ) β-term torque (sources: spin relaxation and non-adiabatic transport): β = α? G. Tatara A. Thiaville et al., J. Appl. Phys. 95, 7049 (2004); G. Tatara et al., Phys. Rev. Lett. 92, 86601 (2004); C. Schieback, Eur. J. Phys. B 59, 429 ( 07)

4. Current-induced domain wall motion Experiment Permalloy (NiFe) Wires W=50-500nm, t=5-50 nm, Spin-SEM and XMCDPEEM (Py Wavy lines/au contacts: W=500nm; 40µm long; t=28nm Py, PEEM) H 200 µm 10 µm Zig-zag permalloy (Ni 80 Fe 20 ) wires with variable geometries are used. Depending on the geometry, vortex or transverse walls are present Zig-zag wires allow one to generate head-to-head domain walls at the kinks by applying the field in the direction indicated by the arrow. The magnetization is pointing in opposite directions in adjacent branches of the wire. The kinks are ¼ ring elements with a radius >> wire width (wires magnetically smooth). M. Kläui et al., APL 88, 232507 (2006); PRL 94, 106601 (2005)

4. Current-induced domain wall motion Experiment Permalloy (NiFe) Wires W=50-500nm, t=5-50 nm, Spin-SEM und XMCDPEEM SEM topography image Spin-SEM magnetization image e - 25µs 25µs 10µs 5µs W=300nm; 60µm long; t=27nm Py, Spin-SEM measurement Head-to-head vortex walls are formed at kinks. j crit =2,3 10 12 A/m 2 Walls move in the direction of the electron flow. Pulse length t is varied. Velocity is independent of the pulse length: 1 m/s Walls move beyond kinks. Head-to-head and tail-totail walls move in the same direction no field effect. M. Kläui et al., PRL 95, 026601 (2005), P.-O. Jubert, M. Kläui et al. JAP 99, 08G523 (2006);

4. High resolution imaging of wall spin structures Permalloy Wires, W=1.5µm, t=7 nm, XMCDPEEM j = e - 2.5 10 12 A m 2 j = e - 2.5 10 12 A m 2 j = e - 2.5 10 12 A m 2 Domain walls move in the direction of the electron flow and high-resolution imaging reveals the domain wall spin structures (vortex, transverse, etc.). M. Kläui et al., PRL 94, 106601 (2005); PRL 95, 026601 (2005); PRL 100, 66603 (2008)

5. Resonant Domain Wall Dynamics Permalloy (NiFe) Rings, W=200 nm; t=30 nm; Magnetotransport and Simulations D. Bedau, M. Kläui et al., PRL 99, 146601 (2007) Measurement of of the the depinning field field as as a function of of µ-wave frequency.. Depinning field field is is strongly reduced for for certain µ-wave frequencies (resonance). TW TW has has higher resonance frequency than than VW; VW; Narrow dip dip high high Q-factor.

5. Electrical detection of domain wall oscillations Py rings, W=200 nm, D=1.5 µm, t=30 nm, Magnetotransport From the fit the Non-adiabaticity parameter is deduced: β=4! E. Martinez, PRB 77, 144417 (2008) U DC [µv] Mixing of of AC AC current (with (with frequency f=ω) f=ω) and and resistance change R (with (withf=ω): DC DC signal (and (and 2ω). 2ω). Homodyne detection (DC (DC signal): U DC = DC I AC I * AC * R R ** cos(φ) withφthe phase shift. shift. 1 1 For For an an undamped oscillation φ(ω)=90 at resonance dispersion-like signal. For For TW TW asymmetric dip dip (φ 90 at ω=ω ω=ω res due res due to to asymmetric potential or or damping). Independent check of of the the resonant frequencies possible (at (at variable fields!). 1 D. Bedau, M. Kläui et al., PRL 99, 146601 (2007); R. Moriya et al., Nature Phys. 5, 368 (2008)

5. Current-induced vortex core displacement Permalloy Discs, W=4µm, t=25 nm, High resolution MFM, holography & XMCDPEEM Imaging with high resolution electron holography 3 Out-of-plane vortex core In-plane magnetization Using TEM electron holography, the size and the polarity (out-of-plane component) of the vortex core is determined. 3 Using current pulses with alternating polarity, the vortex core can be moved perpendicular to the current reproducibly between two positions. 2 The direction depends on the vortex core polarity. The displacement direction and the total displacement is in agreement with theoretical predictions. 1 1 H. Kohno et al., JMMM 310, 2020 ( 07); 2 L. Heyne, MK et al., PRL 100, 66603 ( 08); 3 APL 92, 112502 ( 08).