Hadley Circulation in Action. MET 200 Lecture 12! Global Winds: The General Circulation of the Atmosphere. Scales of Motion

Similar documents
Wind: Global Systems Chapter 10

General Circulation. Nili Harnik DEES, Lamont-Doherty Earth Observatory

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook

Winds and Global Circulation

ATMO 436a. The General Circulation. Redacted version from my NATS lectures because Wallace and Hobbs virtually ignores it

The Planetary Circulation System

General Atmospheric Circulation

Weather Notes. Chapter 16, 17, & 18

CHAPTER 9 ATMOSPHERE S PLANETARY CIRCULATION MULTIPLE CHOICE QUESTIONS

Atmospheric Circulation

Weather Systems. Section

GEO1010 tirsdag

Divergence, Spin, and Tilt. Convergence and Divergence. Midlatitude Cyclones. Large-Scale Setting

Chapter 9 External Energy Fuels Weather and Climate

ESS 111 Climate & Global Change. Week 1 Weather vs Climate Structure of the Atmosphere Global Wind Belts

Lecture 5: Atmospheric General Circulation and Climate

Science 1206 Chapter 1 - Inquiring about Weather

CHAPTER 6 Air-Sea Interaction Pearson Education, Inc.

Clouds, Precipitation

Quiz 2 Review Questions

Global Weather Trade Winds etc.notebook February 17, 2017

Weather is the of the Earth s atmosphere at a place and time. It is the movement of through the atmosphere o Energy comes from the

- tornadoes. Further Reading: Chapter 08 of the text book. Outline. - cyclones and anti-cyclones. -tropical storms. -Storm surge

warmest (coldest) temperatures at summer heat dispersed upward by vertical motion Prof. Jin-Yi Yu ESS200A heated by solar radiation at the base

- tornadoes. Further Reading: Chapter 08 of the text book. Outline. -tropical storms. -Storm surge

Week: Dates: 3/2 3/20 Unit: Climate

Name SOLUTIONS T.A./Section Atmospheric Science 101 Homework #6 Due Thursday, May 30 th (in class)

ATSC 2000 Final Fall 2005

The Transfer of Heat

Introduction to Atmospheric Circulation

Chapter 8 Circulation of the Atmosphere

Hurricanes. April 14, 2009

Meteorology 311. General Circulation/Fronts Fall 2017

1. The and the act as one interdependent system. 2. Why do we have to study both to understand the relationship?

Part-8c Circulation (Cont)

The Atmosphere. Characteristics of the Atmosphere. Section 23.1 Objectives. Chapter 23. Chapter 23 Modern Earth Science. Section 1

Unit Three Worksheet Meteorology/Oceanography 2 WS GE U3 2

Atmospheric circulation

Go With the Flow From High to Low Investigating Isobars

Examples of Pressure Gradient. Pressure Gradient Force. Chapter 7: Forces and Force Balances. Forces that Affect Atmospheric Motion 2/2/2015

Global Wind Patterns

The Atmosphere - Chapter Characteristics of the Atmosphere

Chapter 9 Atmosphere Study Guide

CHAPTER 2 - ATMOSPHERIC CIRCULATION & AIR/SEA INTERACTION

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9

METEOROLOGY. 1 The average height of the tropopause at 50 N is about A 14 km B 16 km C 11 km D 8 km

Energy Transfer in the Atmosphere

Climate and the Atmosphere

ATMOSPHERIC CIRCULATION AND WIND

True or false: The atmosphere is always in hydrostatic balance. A. True B. False

Seasons, Global Wind and Climate Study Guide

Air Masses, Fronts, Storm Systems, and the Jet Stream

Wind, Water, Weather and Seasons Test Review

10.1 TEMPERATURE, THERMAL ENERGY AND HEAT Name: Date: Block: (Reference: pp of BC Science 10)

Earth s Climate Patterns

Climate versus Weather

Lecture 8. Monsoons and the seasonal variation of tropical circulation and rainfall

Chapter 2 Weather Patterns Guided Notes Objective(s): 7.E.1.4 Predict weather conditions and patterns based on information obtained from:

Topic # 11 HOW CLIMATE WORKS continued (Part II) pp in Class Notes

What is wind? Moving air... Friday, 21 November, 14

Climate vs. Weather. Weather: Short term state of the atmosphere. Climate: The average weather conditions in an area over a long period of time

THE ATMOSPHERE IN MOTION

ESCI 344 Tropical Meteorology Lesson 7 Temperature, Clouds, and Rain

What a Hurricane Needs to Develop

2. Meridional atmospheric structure; heat and water transport. Recall that the most primitive equilibrium climate model can be written

General Circulation of the Atmosphere. René Garreaud

Chapter 12 Fronts & Air Masses

Observation: predictable patterns of ecosystem distribution across Earth. Observation: predictable patterns of ecosystem distribution across Earth 1.

Global Circulation. Local weather doesn t come from all directions equally Everyone s weather is part of the global circulation pattern

ATMOSPHERE PACKET CHAPTER 22 PAGES Section 1 page 546

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures?

Anticipation Guide #2

Weather & Ocean Currents

Chapter 24 Tropical Cyclones

Climate System. Sophie Zechmeister-Boltenstern

Observation Homework Due 11/24. Previous Lecture. Midlatitude Cyclones

Transient and Eddy. Transient/Eddy Flux. Flux Components. Lecture 3: Weather/Disturbance. Transient: deviations from time mean Time Mean

Space Atmospheric Gases. the two most common gases; found throughout all the layers a form of oxygen found in the stratosphere

Geography Review Exam I

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures?

Waves and Weather. 1. Where do waves come from? 2. What storms produce good surfing waves? 3. Where do these storms frequently form?

Composition of the Atmosphere

The general circulation: midlatitude storms

Composition of the Atmosphere

ATMOSPHERIC CIRCULATION

b. The boundary between two different air masses is called a.

Introduction to Meteorology & Climate. Climate & Earth System Science. Atmosphere Ocean Interactions. A: Structure of the Ocean.

Earth Science Chapter 16 and 17. Weather and Climate

not to be republished NCERT ATMOSPHERIC CIRCULATION AND WEATHER SYSTEMS ATMOSPHERIC PRESSURE

MFE 659 Lecture 1a Intro

Topic # 11 HOW CLIMATE WORKS PART II

also known as barometric pressure; weight of the air above the surface of the earth; measured by a barometer air pressure, high

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

Fluid Circulation Review. Vocabulary. - Dark colored surfaces absorb more energy.

Contents. Section 1: Climate Factors. Section 2: Climate Types. Section 3: Climate Effects

Background: What is Weather?

Ch22&23 Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Topic # 12 How Climate Works

COMPOSITION OF THE ATMOSPHERE

K32: The Structure of the Earth s Atmosphere

Transcription:

Hadley Circulation in Action MET 200 Lecture 12! Global Winds: The General Circulation of the Atmosphere 1 2 Previous Lecture Local Winds cales of Motion Eddies ea Breeze Mountain-Valley Circulations Chinook - now Eater Drainage Wind - Katabatic Wind cales of Motion What balance of forces operates at these scales? Phenomena with large length scales occur over long time scales and vice versa. 3 4

Hawaii has Combined ea Breeze and Mountain - Valley Circulations Kona ea-breeze Front In Hawaii, the sea-breeze and mountain-valley circulations are combined to produce an island scale circulation that can be quite vigorous, especially when trade winds are light. Hawaii sea breeze has insufficient kinetic energy to overcome the large altitude of the Big Island s volcanoes. 5 6 Chinook Downslope Winds Lecture 12!!! Global Winds Main source of heating is compression during downslope flow Key is loss of moisture on upwind slope so downslope heating occurs at higher dry adiabatic rate Latent heat release from condensation during upwind ascent also contributes If condensed water is removed as precipitation on upwind slope General Circulation of winds at the surface and aloft Idealized 3-cell model of the winds ITCZ & Monsoons ubtropical & Polar Jet treams 7 8

Global Wind Circulation Global Wind Circulation The circulations of the atmosphere and oceans are ultimately driven by differential solar heating and the local radiation imbalance between incoming solar (short wavelength) radiation and outgoing terrestrial (long wavelength) radiation. Early explorers were very familiar with the global circulation and used their knowledge in planning their voyages. 9 10 Radiation Budget at the top of the Earth s Atmosphere Global urface Temperature Red Line is incoming radiation from the sun Blue Line is outgoing radiation emitted by the earth 11 12

A ingle Cell Convection Model Does the Earth Exhibit a ingle Cell? olar heating leads to formation of a convection cell in each hemisphere Energy transported from equator toward poles What would prevailing wind direction be over. America with this flow pattern on a rotating earth? 13 14 Hadley Circulation in Action Idealized 3-Cell Model A schematic of the Earth s weather machine bringing warm moist air northward and cold dry air southward (latent and sensible heat). Polar Cell Ferrel Cell Hadley Cell Hadley Cell Ferrel Cell 15 16

Key features of 3-Cell Model Hadley cell - driven by differential heating by the sun - air rises near equator and descends near 30 - explains deserts, trade winds, ITCZ, and subtropical jet Ferrel Cell - driven by heat transports of winter storms - air rises near 60 and descends near 30 - explains surface westerlies from 30-60, and polar jet Polar Cell - driven by radiational cooling - air sinks over the pole and rises near 60 - explains surface easterlies from 60 - pole - explains why polar regions are as dry as deserts Idealized 3-Cell Model Weak winds found near Equator (doldrums), 30 degrees (horse latitudes), and over poles. Boundary between cold polar air and mid-latitude warmer air is the polar front 17 18 The Real World is More Messy General Circulation - July The presence of continents, mountains, and ice fields alters the general circulation from the ideal 3-cell model. 19 During winter, highs form over land; lows over oceans. Vice versa during summer. Consistent with differences in surface temperature. 20

General Circulation - January General Circulation - July During winter, highs form over land; lows over oceans. Vice versa during summer. Consistent with differences in surface temperature. The general circulation shifts and with the sun. 21 22 urface Pressure & Wind over the orth Pacific Based on historical ship reports Trade Winds 50 40 30 20 10 0 50 40 30 Winter ummer Trade winds are the most common winds over Hawaiian waters, accounting for 70% of all winds in Hawaii. These persistent winds, which blow from a E to EE direction, became known as trade winds centuries ago when trade ships carrying cargo depended on the broad belt of easterly winds encircling the globe in the subtropics for fast passage. Winds blow from each of the other quadrants (E, W, and W) 10% of the time. 20 10 0 120 E 140 160 180 160 140 120 100 W m/s 23 24

urface Pressure & Wind in ummer and Winter 50 40 30 20 10 0 50 40 30 20 10 Winter ummer 0 120 E 140 160 180 160 140 120 100 W Based on ship reports m/s Percentage of Days Frequency of Trade Wind Days 100" 90" 80" 70" 60" 50" 40" 30" 20" 10" 0" January" February" March" April" May" June" July" August" eptember" October" ovember" December" Month 25 26 trong Trade Wind Days (25-33 kt) Trade Winds umber of Days 12" 10" 8" 6" 4" 2" Though often refreshingly cool, strong, gusty trade winds can cause problems for Hawaii. Blowing from the E through East direction, these strong trades funnel through the major channels between the islands at speeds 5-20 knots faster than the speeds over the open ocean. In addition, terrain enhancement of trade winds can cause even greater acceleration to more than hurricane force. 0" January" February" March" April" May" June" July" August" eptember" October" ovember" December" Month 27 28

Hadley Cell, Cumulonimbus, and Marine tratus Evolution of Trade Wind Inversion 29 30 Intertropical Convergence Zone The Monsoon The Monsoon is easonal Common in eastern and southern Asia imilar to huge land/sea breeze systems 40 July 180 0 40 July 180 0 20 0 20 January July January 20 0 20 January July January 40 The Intertropical Convergence Zone (ITCZ) shifts southward in January and northward in July. Why? 40 31 32

The Monsoon During winter strong cooling produces a shallow high pressure area over iberia ubsidence, clockwise circulation and flow out from the high provide fair weather for southern and eastern Asia During summer, air over the continent heats and rises, drawing moist air in from the oceans Convergence and topography produce lifting and heavy rain. Cherrapunji received 30 feet of rain in July 1861! The Monsoon During summer, air over the continent heats and rises, drawing moist air in from the oceans. Convergence and topography produce lifting and heavy rain. Cherrapunji received 30 feet of rain in July 1861! 33 34 Jet treams Fast air currents in the upper troposphere, 1000 s of km s long, a few hundred km wide, a few km thick Typically find two jet streams (subtropical and polar front) at tropopause in H Rotation speed (m/s) 500 400 300 200 100 ubtropical Jet tream The subtropical jet stream results from the Coriolis acceleration of the poleward branch of the convection (Hadley) cell. Equator Rotation speed around the Earth s axis ew York City 0 0 20 40 60 80 Latitude Rotation speed due to rotation of the earth orth Pole 35 36

Pressure Patterns and Winds Aloft The subtropical jet stream results from the Coriolis acceleration of the poleward branch of the Hadley(convection) cell. Westerly Jet treams Maximum (> 60 m/s) near Japan & secondary max (40 m/s) along the U east coast. Responsible for longer return flights to Japan from orth America. How does the polar jet stream form? Wind velocity (m/s) at 300 hpa in January, viewed from the orth Pole 37 38 Heating, Pressure Patterns, and Winds Cool the left column & Warm the right column 500 mb level The cooled column contracts The heated column expands 500 mb original 500 mb level Earth s surface 500 mb 1000 mb 1000 mb tart with two columns of air with the same temperature and the same distribution of mass 1000 mb 1000 mb 39 40

Air moves from high to low pressure in middle of column, causing surface pressure to change. Air moves from high to low pressure at the surface Where would rising motion be? Low High original 500 mb level Low High original 500 mb level 1003 mb 997 mb High Low 1003 mb 997 mb 41 42 What have we just observed? tarting with a uniform atmosphere at rest, we heat the tropics and cool the poles. The differences in heating cause different rates of expansion in the air (warm air takes up more space). The differing rates of expansion result in horizontal pressure gradients (differences). The pressure gradients produce wind. This is a simple model of how the atmosphere turns heating into motions. Constant Pressure Charts Constant pressure charts are often used by meteorologists. Constant pressure charts plot variation in height on a constant pressure surface (e.g., 500 mb). In this example a gradient between warm and cold air produces a sloping 500 mb pressure surface. Pressure decreases faster with height in a colder (denser) air mass. Where the slope of the pressure surface is steepest the height contours are closest together. 43 44

The Polar Jet tream The Polar Jet tream 0 mb 0 mb 200 mb 400 mb 600 mb Imagine the atmosphere is a block of air that pushes down with 1000 mb of pressure at the bottom. The block starts out at a uniform temperature the thickness of the atmosphere is the same everywhere. 200 mb 400 mb The 1000 mb pressure surface is still flat there is the same amount of fluid above the surface whether you are on the cold side or the warm side. But above the surface a pressure gradient appears, which drives wind. 800 mb ow we make the block cold on the north side (polar night) and warm on the south side (tropical sun). 600 mb 800 mb COLD WARM 1000 mb 1000 mb Y L H 45 X 46 The Polar Jet tream The Polar Jet tream 0 mb 200 mb The 1000 mb pressure surface is still flat there is the same amount of fluid above the surface whether you are on the cold side or the warm side. 0 mb 200 mb The 1000 mb pressure surface is still flat there is the same amount of fluid above the surface whether you are on the cold side or the warm side. 400 mb But above the surface a pressure gradient appears, which gets stronger as you go up. o the wind gets stronger as you go up. 400 mb But above the surface a pressure gradient appears, which gets stronger as you go up. o the wind gets stronger as you go up. 600 mb 600 mb 800 mb 800 mb L H L H 1000 mb Y 1000 mb Y X 47 X 48

The Polar Jet tream Polar Front Jet tream 0 mb 200 mb 400 mb 600 mb 800 mb 1000 mb The 1000 mb pressure surface is still flat there is the same amount of fluid above the surface whether you are on the cold side or the warm side. But above the surface a pressure gradient appears, which gets stronger as you go up. o the wind gets stronger as you go up. Y L H Polar front jet stream forms along polar front where strong thermal gradient causes a strong pressure gradient trong pressure gradient force and Coriolis force produce strong west wind parallel to contour lines. The jet stream is nearly in geostrophic balance. X 49 50 Polar Jet tream and the Thermal Wind Deriving the Thermal Wind Relationship If we differentiate the geostrophic wind, (where f is the Coriolis parameter, k is the vertical unit vector, and the subscript "p" on the gradient operator denotes gradient on a constant pressure surface) with respect to pressure, and integrate from pressure level from p0 to p1, we obtain the thermal wind equation: ubstituting the hypsometric equation, one gets a form based on temperature,. The jet stream associated with the polar front owes it existence to the differential solar heating from equator to pole. Thus, the jet is stronger in winter than in summer and moves north and south with the sun. 51 52

Thermal Wind in Component Form Thermal Wind and Advection COLD COLD V500mb V850mb 850-500mb VT Thermal Wind 850-500mb VT Thermal Wind V500mb V850mb (a) ut = -R/f ( T/ y)p ln(p1/p2) WARM (b) WARM Wind vectors at 500 and 850 mb and the wind shear vector or thermal wind for (a) cold advection: wind direction is backing with height and (b) warm advection: wind direction is veering with height. vt = -R/f ( T/ x)p ln(p1/p2) 53 54 Polar Jet tream - hifts with the un 55 56

Waves form along Jet Troughs and Ridges Contour lines are usually not straight. Ridges (elongated highs) occur where air is warm. Troughs (elongated lows) occur where air is cold. Temperature gradients lead to pressure gradients. Height contours decrease in value toward cold air. 57 58 Pressure patterns and winds aloft Waves determine Track and Intensity of Winter torms At upper levels winds blow parallel to the pressure/ height contours. Troughs are cold, ridges are warm. http://profhorn.meteor.wisc.edu/wxwise/kinematics/jetcore2.html Temperature gradient across the polar front determines the strength of the polar jet stream. 59 60

Jet tream has Waves Jet tream has Wind Maxima http://www.atmos.washington.edu/~ovens/loops/ 500-mb heights 250-mb heights and isotachs (contours of constant wind speed) 61 62 Global Wind Circulation Idealized 3-Cell Model is till Useful General Circulation of winds at the surface and aloft Idealized 3-cell model of the winds ITCZ & Monsoons ubtropical & Polar Jet treams 63 64

ummary of General Circulation Questions? 1. Driven by differential solar heating between the equator and poles, atmospheric winds generally act to move heat poleward. 2. In Hadley cell, warmer air rises and moves poleward. 3. Ferrel cell is driven by heat and winds in winter storms. 4. In the orthern Hemisphere, air is deflected to the right as it moves; in the outhern Hemisphere, air is deflected toward the left as it moves - Therefore rotation yields trade winds; midlatitude westerlies; subtropical jet, polar easterlies, etc. 5. Along axes of of high pressure light winds and low precipitation prevail. 65 66