The Riddle of Primes

Similar documents
Some new representation problems involving primes

Journal of Combinatorics and Number Theory 1(2009), no. 1, ON SUMS OF PRIMES AND TRIANGULAR NUMBERS. Zhi-Wei Sun

Polygonal Numbers, Primes and Ternary Quadratic Forms

Various new observations about primes

ON UNIVERSAL SUMS OF POLYGONAL NUMBERS

Sieving 2m-prime pairs

Colloq. Math. 145(2016), no. 1, ON SOME UNIVERSAL SUMS OF GENERALIZED POLYGONAL NUMBERS. 1. Introduction. x(x 1) (1.1) p m (x) = (m 2) + x.

Towards the Twin Prime Conjecture

Zhi-Wei Sun. Department of Mathematics Nanjing University Nanjing , P. R. China

(n = 0, 1, 2,... ). (2)

SOME FAMOUS UNSOLVED PROBLEMS. November 18, / 5

Super congruences involving binomial coefficients and new series for famous constants

Some New Diophantine Problems

SOME VARIANTS OF LAGRANGE S FOUR SQUARES THEOREM

On Arithmetic Properties of Bell Numbers, Delannoy Numbers and Schröder Numbers

Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing , People s Republic of China

A talk given at the City Univ. of Hong Kong on April 14, ON HILBERT S TENTH PROBLEM AND RELATED TOPICS

2017 Number Theory Days in Hangzhou

Some sophisticated congruences involving Fibonacci numbers

k 2r n k n n k) k 2r+1 k 2r (1.1)

Introduction to Lucas Sequences

Goldbach and twin prime conjectures implied by strong Goldbach number sequence

A talk given at the University of California at Irvine on Jan. 19, 2006.

An Approach to Goldbach s Conjecture

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 32 (2016), ISSN

Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing , People s Republic of China. Received 8 July 2005; accepted 2 February 2006

Department of Mathematics, Nanjing University Nanjing , People s Republic of China

On Snevily s Conjecture and Related Topics

arxiv:math/ v2 [math.gm] 4 Oct 2000

Here is another characterization of prime numbers.

Introduction to Number Theory

A proof of strong Goldbach conjecture and twin prime conjecture

Goldbach Conjecture: An invitation to Number Theory by R. Balasubramanian Institute of Mathematical Sciences, Chennai

Euclid-Euler-Jiang Prime Theorem

Apéry Numbers, Franel Numbers and Binary Quadratic Forms

Divisibility. 1.1 Foundations

Math 412: Number Theory Lecture 3: Prime Decomposition of

Addendum to Conjecture 50, by Patrick Capelle. November, 17, 2006.

SQUARE PATTERNS AND INFINITUDE OF PRIMES

Problems and Results in Additive Combinatorics

arxiv: v5 [math.nt] 22 Aug 2013

A talk given at Suzhou Univ. (June 19) and Nankai Univ. (June 25, 2008) Zhi-Wei Sun

ON THE RESIDUE CLASSES OF π(n) MODULO t

A SHARP RESULT ON m-covers. Hao Pan and Zhi-Wei Sun

Research Statement. Enrique Treviño. M<n N+M

Why is the Riemann Hypothesis Important?

Lecture 7. January 15, Since this is an Effective Number Theory school, we should list some effective results. x < π(x) holds for all x 67.

Elementary Proof That There are Infinitely Many Primes p such that p 1 is a Perfect Square (Landau's Fourth Problem)

Sifting the Primes. Gihan Marasingha University of Oxford

Introduction to Sets and Logic (MATH 1190)

M381 Number Theory 2004 Page 1

Summary Slides for MATH 342 June 25, 2018

198 VOLUME 46/47, NUMBER 3

Basic Proof Examples

Elementary Number Theory

PATTERNS OF PRIMES IN ARITHMETIC PROGRESSIONS

arxiv:math/ v1 [math.nt] 9 Aug 2004

The Conjecture and Related Topics

Fermat numbers and integers of the form a k + a l + p α

. As the binomial coefficients are integers we have that. 2 n(n 1).

Combinatorial Number Theory in China

< 1. p 3 (3, 328) < 4 p4 (3, 328) and 6 p 6 (23, 346) < 7 p 7 (23, 346). p 5 (13, 46). Also,

Hans Wenzl. 4f(x), 4x 3 + 4ax bx + 4c

Primes. Rational, Gaussian, Industrial Strength, etc. Robert Campbell 11/29/2010 1

(Primes and) Squares modulo p

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2

A talk given at Université de Saint-Etienne (France) on Feb. 1, and at Institut Camille Jordan, Univ. Lyon I (France) on March 3, 2005

ASSIGNMENT Use mathematical induction to show that the sum of the cubes of three consecutive non-negative integers is divisible by 9.

joint with Katherine Thompson July 29, 2015 The Wake Forest/Davidson Experience in Number Theory Research A Generalization of Mordell to Ternary

arxiv: v1 [math.nt] 6 Sep 2017

Results of modern sieve methods in prime number theory and more

Part II. Number Theory. Year

p-regular functions and congruences for Bernoulli and Euler numbers

Practice Final Solutions

arxiv: v1 [math.nt] 22 Jun 2014

MATH CSE20 Homework 5 Due Monday November 4

A PROOF FOR GOLDBACH S CONJECTURE

Quadratic Forms and Congruences for l-regular Partitions Modulo 3, 5 and 7. Tianjin University, Tianjin , P. R. China

The ranges of some familiar arithmetic functions

DIVISIBILITY AND DISTRIBUTION OF PARTITIONS INTO DISTINCT PARTS

A talk given at the Institute of Mathematics (Beijing, June 29, 2008)

Sieve theory and small gaps between primes: Introduction

A New Sieve for the Twin Primes

Partition Congruences in the Spirit of Ramanujan

Definition 6.1 (p.277) A positive integer n is prime when n > 1 and the only positive divisors are 1 and n. Alternatively

REPRESENTATION OF A POSITIVE INTEGER BY A SUM OF LARGE FOUR SQUARES. Byeong Moon Kim. 1. Introduction

Acta Arith., 140(2009), no. 4, ON BIALOSTOCKI S CONJECTURE FOR ZERO-SUM SEQUENCES. 1. Introduction

ON THE LENGTH OF THE PERIOD OF A REAL QUADRATIC IRRATIONAL. N. Saradha

Contradictions in some primes conjectures

A Study of Goldbach s conjecture and Polignac s conjecture equivalence issues

Numbers. 2.1 Integers. P(n) = n(n 4 5n 2 + 4) = n(n 2 1)(n 2 4) = (n 2)(n 1)n(n + 1)(n + 2); 120 =

Math Real Analysis

Solutions of the Diophantine Equation p x + (p+6) y = z 2 when p, (p + 6) are Primes and x + y = 2, 3, 4

CONGRUENCES CONCERNING LUCAS SEQUENCES ZHI-HONG SUN

arxiv: v6 [math.nt] 6 Nov 2015

arxiv: v2 [math.nt] 27 Sep 2013

On the parity of k-th powers modulo p

THE SEVENTH CHINA-JAPAN SEMINAR ON NUMBER THEORY. Kyushu University October 28-November 1, 2013

Ramanujan-type congruences for overpartitions modulo 16. Nankai University, Tianjin , P. R. China

Transcription:

A talk given at Dalian Univ. of Technology (Nov. 16, 2012) and Nankai University (Dec. 1, 2012) The Riddle of Primes Zhi-Wei Sun Nanjing University Nanjing 210093, P. R. China zwsun@nju.edu.cn http://math.nju.edu.cn/ zwsun Dec. 1, 2012

Abstract In November 2012 the speaker posed many new conjectures about prime numbers. In this talk we will mainly introduce the speaker s various refinements of some famous conjectures on primes including the twin prime conjecture, Goldbach s conjecture, Lemoine s conjecture, Legendre s conjecture and Oppermann s conjecture. We will also talk about some new-type conjectures made by the speaker. 2 / 32

Part I. Introduction to Goldbach s conjecture, Lemoine s conjecture and the twin prime conjecture 3 / 32

Goldbach s conjecture Goldbach s Conjecture (1742): Every even number n > 2 can be written in the form p + q with p and q both prime. Goldbach s weak Conjecture. Each odd number n > 6 can be written as a sum of three primes. Goldbach s conjecture implies Goldbach s weak conjecture, for, if n > 6 is odd then n 3 > 2 is even and hence n 3 = p + q for some primes p and q. Goldbach s conjecture implies that for any n > 2 there is a prime p [n, 2n] since 2n p + q if p and q are smaller than n. 4 / 32

Vinogradov s Theorem Vinogradov s Theorem (1937). Each sufficiently large odd number can be written as a sum of three primes. Ming-Chit Liu & Tian-Ze Wang (2002) Any odd integer n > e 3100 2 10 1346 is a sum of three primes. Deshouillers, Effinger, Zinovier (1997). The Generalized Riemann Hypothesis implies Goldbach s weak conjecture. 5 / 32

Lemoine s conjecture Lemoine s Conjecture (1894). Any odd integer n > 6 can be written as p + 2q, where p and q are primes. Examples: 7 = 3 + 2 2, 11 = 5 + 3 3, 19 = 5 + 2 7. Lemoine s conjecture is stronger than Goldbach s weak conjecture, and it is essentially as difficult as the Goldbach conjecture for even numbers. 6 / 32

Twin primes If p and p + 2 are both prime, then {p, p + 2} is called a twin prime pair. Examples: {5, 7}, {11, 13}, {17, 19}, {29, 31}, {41, 43}. Twin Prime Conjecture. There are infinitely many twin prime pairs. Polignac s Conjecture (1849). For any positive even integer n, there are infinitely many cases of two consecutive primes with difference n. If p and p + 4 are both prime, then {p, p + 4} is called a cousin prime pair. If p and p + 6 are both prime, then {p, p + 6} is called a sexy prime pair. 7 / 32

Hardy and Littlewood s Conjecture Let n be any positive even number. Define p 1 C n = C 2 p 2, where C 2 = p>2 Note that C 2 = C 4 = C 6 /2. p n, p>2 ( ) 1 1 (p 1) 2 0.6601618. Hardy-Littlewood Conjecture. We have n {{p, q} : p and q < p are primes with p + q = n} 2C n log 2 n. If π n (x) denotes the number of prime gaps of size n below x, then x π n (x) 2C n log 2 x. 8 / 32

Chen s Theorem The linear equations p + q = 2n and p q = 2 with p and q prime variables are of the same level of difficulty. Chen s Theorem (1973). All large even numbers can be written as p + q where p is a prime and q has at most two prime factors. A prime p is called a Chen prime if p + 2 is a product of at most two primes. For example, 19 is a Chen prime since 21 = 3 7. Chen Jing-run (1966): There are infinitely many Chen primes. 9 / 32

Part II. The speaker s refinements of known conjectures 10 / 32

Ordowski s conjecture and Ming-Zhi Zhang s problem As conjectured by Fermat and proved by Euler, any prime p 1 (mod 4) can be written uniquely as a sum of two squares. Tomasz Ordowski s Conjecture (Oct. 3-4, 2012) For any prime p 1 (mod 4) write p = a 2 p + b 2 p with a p > b p > 0. Then and lim N lim N p N, p 1 (mod 4) a p p N, p 1 (mod 4) b p p N, p 1 (mod 4) a2 p p N, p 1 (mod 4) b2 p = 1 + 2 = 9 2. Ming-Zhi Zhang s Problem (1990s) Whether any odd integer n > 1 can be written as a + b with a, b Z + and a 2 + b 2 prime? (Cf. http://oeis.org/a036468) 11 / 32

My conjecture involving x 2 + xy + y 2 It is known that any prime p 1 (mod 3) can be written uniquely in the form x 2 + xy + y 2 with x > y > 0. Conjecture (Sun, Nov. 3, 2012). (i) For any prime p 1 (mod 3) write p = x 2 p + x p y p + y 2 p with x p > y p > 0. Then lim N p N, p 1 (mod 3) x p p N, p 1 (mod 3) y p = 1 + 3 and lim N p N, p 1 (mod 3) x 2 p p N, p 1 (mod 3) y 2 p = 52 9. (ii) Any integer n > 1 with n 8 can be written as x + y, with x, y Z + and x 2 + xy + y 2 prime. 12 / 32

My conjectures involving x 2 + 3xy + y 2 Conjecture (Sun, Nov. 4, 2012). (i) For any prime p ±1 (mod 5) write p = xp 2 + 3x p y p + yp 2 with x p > y p > 0. Then p N, p ±1 (mod 5) lim x p N p N, p ±1 (mod 5) y = 1 + 5. p (ii) Any integer n > 1 can be written as x + y, with x, y Z + and x 2 + 3xy + y 2 prime. Conjecture (Sun, Nov. 5, 2012). For any integer n 1188, there are primes p and q with p 2 + 3pq + q 2 prime such that p + (1 + {n} 2 )q = n, where {n} m denotes the least nonnegative residue of n mod m. 13 / 32

A refinement of Lemoine s conjecture Conjecture (Sun, Nov. 7-8, 2012) (i) Each odd integer n > 15 can be written as p + 2q with p, q, p 2 + 60q 2 all prime. (ii) Any odd integer n > 1424 can be written as p + 2q with p, q, p 4 + (2q) 4 all prime. (iii) In general, for any a, b Z + all sufficiently large odd numbers can be written as p + 2q, where p and q are primes with p 2a + (2 b 1)(2q) 2a prime. Remark. It is not yet proven that there are infinitely many primes in the form x 4 + y 4 with x, y Z. 14 / 32

Another conjecture Conjecture (Sun, Nov. 7-8, 2012) (i) For any a = 0, 1, 3, 4,..., any sufficiently large integer n can be written as p + (1 + {n} 2 )q, where p and q are primes with (2 a + 2)(p + q) 2 + pq prime. In particular, any integer n 105 can be written as p + (1 + {n} 2 )q with p, q, (2 a + 2)(p + q) 2 + pq all prime. (ii) For any integer n 9608 there are primes p and q with (p + q) 4 + (pq) 2 prime such that p + q = 2n. Remark. In 1998 Friedlander and Iwaniec [Ann. of Math.] proved that there are infinitely many primes in the form x 4 + y 2 with x, y Z +. 15 / 32

A conjecture involving p 2 + q 2 1 Conjecture (Sun, Nov. 11, 2012). (i) Any integer n 785 can be written as p + (1 + {n} 2 )q with p, q, p 2 + q 2 1 all prime. (ii) Let d be any integer with d 1 (mod 3). Then large even numbers can be written as p + q with p, q, p 2 + q 2 + d all prime. If 5 d, then all large odd numbers can be represented as p + 2q with p, q, p 2 + q 2 + d all prime. Remark. I have verified part (i) for n up to 1.4 10 8. Conjecture (Sun, Nov. 11, 2012). For any integer n 7830 there are primes p and q < p with p 4 + q 4 1 prime such that p + (1 + {n} 2 )q = n. 16 / 32

A conjecture involving pq ± 6 Conjecture (2012-11-11) (i) For any integer n > 14491 there are primes p and q < p with pq + 6 prime such that p + (1 + {n} 2 )q = n. For any integer n > 22093 there are primes p and q < p with pq 6 prime such that p + (1 + {n} 2 )q = n. (ii) Let d be any nonzero multiple of 6. Then any sufficiently large integer n can be written as p + (1 + {n} 2 )q with p > q and p, q, pq + d all prime. Remark. I have verified part (i) for n up to 5 10 7. 17 / 32

Conjecture on sexy primes Conjecture (Sun, 2012-11-11). (i) For any even n > 8012 and odd n > 15727, there are primes p and q < p with p 6 and q + 6 also prime such that p + (1 + {n} 2 )q = n. (ii) If d 1 and d 2 are integers divisible by 6, then any sufficiently large integer n can be written as p = (1 + {n} 2 )q with p > q and p, q, p d 1, q + d 2 all prime. Remark. I have verified part (i) for n up to 10 8. 18 / 32

Conjecture on twin primes and cousin primes Conjecture (Sun, Nov. 12-13, 2012). (i) Any integer n > 62371 with n 2 (mod 6) can be written as p + (1 + { n} 6 )q, where p and q < p are primes with p 2 and q + 2 also prime. Also, any integer n > 6896 with n 2 (mod 6) can be written as p q with q < n/2 and p, q, p 2, q + 2 all prime. (ii) Any integer n > 66503 with n 4 (mod 6) can be written as p + (1 + {n} 6 )q, where p and q < p are primes with p 4 and q + 4 also prime. Also, any integer n > 7222 with n 4 (mod 6) can be written as p q with q < n/2 and p, q, p 4, q + 4 all prime. Remark. I have verified part (i) for n up to 10 8. 19 / 32

A conjecture implying the twin prime conjecture Conjecture (Sun, Nov. 13, 2012). For any odd n > 4676 and even n > 30986, there are primes p and q < p such that {3(p q) ± 1} is a twin prime pair and p + (1 + {n} 2 )q = n. Remark. I have verified this for n up to 10 8. Note that if p + q = 2n and p q = 2d then the interval [n s, n + d] of length 2d contains p and q. As the interval [m! + 2, m! + m] od length m 2 contains no prime for each m = 2, 3,..., the above conjecture implies that there are infinitely many twin primes. 20 / 32

A conjecture implying Oppermann s conjecture Legendre s Conjecture For any integer n > 1 there is a prime between n 2 and (n + 1) 2. Oppermann s Conjecture. For any integer n > 1, both of the intervals (n 2 n, n 2 ) and (n 2, n 2 + n) contain primes. Conjecture (Sun, Nov. 10, 2012). (i) For any integer n 2733, there is a prime p < n such that n 2 n + p and n 2 + n p are both prime. (ii) For any integer n 3513, there is a prime p (n, 2n) such that n 2 n + p and n 2 + n p are both prime. Clearly this conjecture implies Oppermann s Conjecture. 21 / 32

Part III. Some conjectures of new types 22 / 32

A conjecture on 6n ± p Conjecture (2012-11-10). (i) For any integer n > 5 there is a prime p < n such that both 6n p and 6n + p are prime. (ii) For any given non-constant integer-valued polynomial P(x) with positive leading coefficient, if n Z + is large enough then there is a prime p < n such that 6P(n) ± p are both prime. Remark. I have verified part (i) for n up to 10 8. If we take P(x) = x(x + 1)/2, x 2, x 3 in part (ii), then it suffices to require that n is greater than 1933, 2426, 6772 respectively. 23 / 32

A conjecture joint with Olivier Gerard Conjecture (O. Gerard and Z. W. Sun, 2012-11-18). Any integer n 400 different from 757, 1069, 1238 can be written as p + (1 + {n} 2 )q, where p and q are odd primes with ( ) p q = ( ) q p = 1, where ( ) denotes the Legendre symbol. Remark. We have verified the conjecture for n up to 10 8. It was announced via a message to Number Theory Mailing List on Nov. 19, 2012 with the title Refining Goldbach s conjecture by using quadratic residues. 24 / 32

More on Legendre symbols Conjecture (Sun, 2012-11-22). Let m be any integer. Then, for any sufficiently large integer n there are primes p > q > 2 such that ( ) ( ) p m q + m p + q = n and = = 1 if 2 n, q p and p + 2q = n and ( ) ( ) p 2m q + m = = 1 if 2 n. q p Remark. Note that (p m) + (q + m) = p + q and (p 2m) + 2(q + m) = p + 2q. 25 / 32

A conjecture involving prime differences Conjecture (Sun, 2012-11-27) (i) Any integer n > 3120 can be written as x + y with x, y Z + and {xy 1, xy + 1} a twin prime pair. (ii) Let m be any positive integer. Then any sufficiently large integer n with (m 1)n even can be written as x + y with x, y Z + such that xy m and xy + m are both prime. Remark. (a) We have verified part (i) for n up to 2 10 8. (b) Amarnath Murthy (2005) conjectured that any integer n > 3 can be written as x + y (x, y Z + ) with xy 1 prime. (Cf. http://oeis.org/a109909) (c) Clearly part (ii) implies that for any positive even integer d there are infinitely many primes p and q with difference d. 26 / 32

A general conjecture Conjecture (Sun, 2012-11-27) (i) Any n Z + not among 1, 8, 10, 18, 20, 41, 46, 58, 78, 116, 440 can be written as x + y with x, y Z + such that n 2 xy = x 2 + xy + y 2 and n 2 + xy = x 2 + 3xy + y 2 are both prime. For any integer n 4687 there are x, y Z + such that n 4 + xy and n 4 xy are both prime. (ii) In general, for any a = 0, 1, 2, 4, 5, 6,... and positive odd integer m, each sufficiently large integer n can be written as x + y with x, y Z + such that mn a xy and mn a + xy are both prime. 27 / 32

More conjectures involving xy Conjecture (Sun, 2012-11-28) (i) Any n Z + different from 1, 6, 16, 24 can be written as x + y (x, y Z + ) with (xy) 2 + 1 prime. (ii) In general, for each a = 0, 1, 2,..., any sufficiently large integer n can be written as x + y (x, y Z + ) with (xy) 2a + 1 prime. Remark. Part (i) implies a well known conjecture which states that there are infinitely many primes of the form x 2 + 1. Conjecture (Sun, 2012-11-29) (i) Any integer n > 1 can be written as x + y (x, y Z + ) with (xy) 2 + xy + 1 prime. (ii) In general, for each prime p, any sufficiently large integer n can be written as x + y (x, y Z + ) with ((xy) p 1)/(xy 1) prime. 28 / 32

A conjecture requiring 2xy + 1 prime Conjecture (Sun, 2012-11-29) (i) Every n = 2, 3, 4,... can be written as x + y (x, y Z + ) with 2xy + 1 prime. Moreover, any integer n > 357 can be written as x + y (x, y Z + ) with 2xy ± 1 twin primes. (ii) In general, for each positive odd integer m, any sufficiently large integer n can be written as x + y with x, y Z + such that 2xy m and 2xy + m are both prime. Remark. I have verified part (i) for n up to 10 8. 29 / 32

A conjecture of new type Conjecture (Sun, 2012-11-30) (i) Any integer n > 7 can be written as p + q (q Z + ) with p and 2pq + 1 prime. (ii) For each odd integer n 5 (mod 6), sufficiently large integer n can be written as p + q (q Z + ) with p and 2pq + m both prime. Remark. I have verified part (i) for n up to 4 10 8. Concerning part (ii), for m = 3, 3, 7, 9, 9, 11, 13, 15 it suffices to require that n is greater than respectively. 1, 29, 16, 224, 29, 5, 10, 52 30 / 32

More conjectures of the new type Conjecture (Sun, 2012-12-01) (1) Any integer n > 2572 with n 6892 can be written as p + q with p and pq ± n all prime. (2) Any integer n > 2162 can be written as p + q with n 2 pq = p 2 + pq + q 2 and n 2 + pq = p 2 + 3pq + q 2 both prime. (3) Any integer n > 2 not among 13, 16, 46, 95, 157 can be written as p + q with (pq) 2 + pq + 1 prime. (4) Any integer n > 2 different from 5, 10, 34, 68 can be written as p + q with p and (2pq) 4 + 1 prime. I have many other conjectures similar to the above ones. 31 / 32

For sources of my conjectures, you may look at my preprint Conjectures involving primes and quadratic forms available from http://arxiv.org/abs/1211.1588 You are welcome to solve my conjectures! Thank you! 32 / 32