In its simplest form the prime number theorem states that π(x) x/(log x). For a more accurate version we define the logarithmic sum, ls(x) = 2 m x

Similar documents
Chapter Taylor Theorem Revisited

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

Partition Functions and Ideal Gases

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

PURE MATHEMATICS A-LEVEL PAPER 1

A Simple Proof that e is Irrational

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

1985 AP Calculus BC: Section I

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

An Application of Hardy-Littlewood Conjecture. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.China

Restricted Factorial And A Remark On The Reduced Residue Classes

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

Law of large numbers

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

+ x. x 2x. 12. dx. 24. dx + 1)

H2 Mathematics Arithmetic & Geometric Series ( )

Probability & Statistics,

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06

DIOPHANTINE APPROXIMATION WITH FOUR SQUARES AND ONE K-TH POWER OF PRIMES

Chapter 4 - The Fourier Series

On the approximation of the constant of Napier

STIRLING'S 1 FORMULA AND ITS APPLICATION

Session : Plasmas in Equilibrium

Problem Value Score Earned No/Wrong Rec -3 Total

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

Trigonometric functions

Chapter (8) Estimation and Confedence Intervals Examples

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

A Review of Complex Arithmetic

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Discrete Fourier Transform (DFT)

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

Character sums over generalized Lehmer numbers

cycle that does not cross any edges (including its own), then it has at least

Chapter 3 Fourier Series Representation of Periodic Signals

3-2-1 ANN Architecture

Taylor and Maclaurin Series

An Introduction to Asymptotic Expansions

Physics 43 HW #9 Chapter 40 Key

FORBIDDING RAINBOW-COLORED STARS

Minimum Spanning Trees

A GENERALIZED RAMANUJAN-NAGELL EQUATION RELATED TO CERTAIN STRONGLY REGULAR GRAPHS

APPENDIX: STATISTICAL TOOLS

ONLINE SUPPLEMENT Optimal Markdown Pricing and Inventory Allocation for Retail Chains with Inventory Dependent Demand

Solution to 1223 The Evil Warden.

10. Joint Moments and Joint Characteristic Functions

SOME IDENTITIES FOR THE GENERALIZED POLY-GENOCCHI POLYNOMIALS WITH THE PARAMETERS A, B AND C

Calculus & analytic geometry

Chapter At each point (x, y) on the curve, y satisfies the condition

CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

EECE 301 Signals & Systems Prof. Mark Fowler

Ideal crystal : Regulary ordered point masses connected via harmonic springs

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

NET/JRF, GATE, IIT JAM, JEST, TIFR

The Matrix Exponential

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2014 Lecture 20: Transition State Theory. ERD: 25.14

Linear Algebra Existence of the determinant. Expansion according to a row.

Lectures 9 IIR Systems: First Order System

The Matrix Exponential

LECTURE 2 LEAST SQUARES CROSS-VALIDATION FOR KERNEL DENSITY ESTIMATION

DFT: Discrete Fourier Transform

Deift/Zhou Steepest descent, Part I

Derivation of a Predictor of Combination #1 and the MSE for a Predictor of a Position in Two Stage Sampling with Response Error.

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,...

ln x = n e = 20 (nearest integer)

Washington State University

EEO 401 Digital Signal Processing Prof. Mark Fowler

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point:

Brief Introduction to Statistical Mechanics

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

MDIV. Multiple divisor functions

Chapter 10. The singular integral Introducing S(n) and J(n)

Digital Signal Processing, Fall 2006

National Quali cations

International Journal of Advanced and Applied Sciences

1973 AP Calculus BC: Section I

UNIVERSALITY LIMITS INVOLVING ORTHOGONAL POLYNOMIALS ON AN ARC OF THE UNIT CIRCLE

PHY 410. Final Examination, Spring May 4, 2009 (5:45-7:45 p.m.)

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Bernadette Faye, Florian Luca, and Amadou Tall

Prelab Lecture Chmy 374 Thur., March 22, 2018 Edited 22mar18, 21mar18

Class #24 Monday, April 16, φ φ φ

Part I: Covers Sequence through Series Comparison Tests

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P

COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

Transcription:

THREE PRIMES T Hardy Littlwood circl mtod is usd to prov Viogradov s torm: vry sufficitly larg odd itgr is t sum of tr prims Toy Forbs Nots for LSBU Matmatics Study Group Fbruary Backgroud W sall closly follow Modr Prim Numbr Tory by T Estrma CUP 96 W adopt t covtio tat t variabl p wit or witout a subscript always rags ovr t prims Lt us also gt som fuctio dfiitios out of t way: x πix ; if v is suar-fr µv p v t Möbius fuctio; otrwis φv Eulr s pi fuctio; c v <v gcdv < gcd v Ramauja s sum Obsrv tat c v is just t sum of t v-t powrs of t primitiv -t roots of Lmma i For ay X ad ay itgr v X+ X vxdx if v ad if v ii T Möbius fuctio ad Eulr s pi fuctio ar multiplicativ Ramauja s sum is multiplicativ ovr iii If gcdv t c v c iv If gcdv t c v µ Proof Proprty i is fudamtal to a lot of wat follows Its proof is straigtforward If gcd t c vc v v + v + c + sic rus ovr t primitiv -t roots of Tat taks car of Ramauja s sum T otr two ar lmtary umbr tory Tis provs ii Part iii is obvious I tik For iv w ca assum v by iii If k c p k is t sum of t p k -t roots of mius t sum of t p k -t roots of ; tat is w k ad otrwis Part iv follows by multiplicativity I its simplst form t prim umbr torm stats tat πx x/log x For a mor accurat vrsio w dfi t logaritmic sum lsx log m mx Tis is lik t logaritmic itgral xcpt tat it is a sum ad it is asily s tat t diffrc btw t two is boudd: lsx lix O

Torm T9 : Torm 9 i Estrma s book log x πx lsx + O x xp Tis wit lix istad of lsx was provd by d la Vallé Poussi i 898is Lik t lix form it is a vry good approximatio Tat complicatd rror trm is ultimatly suprior to x/log x m for ay fixd positiv m but it is wors ta x δ for ay fixd δ > owvr small T bst rror trm for t prim umbr torm is still t 45-yar-old rsult of H-E Ricrt 967 Tr xists a positiv costat C suc tat πx lix + O x xp C log x 3/5 log log x /5 provd by stablisig tat t Rima zta fuctio ζσ + it as o zros wit σ C log t /3 log log t /3 for som positiv costat C T Holy Grail of t subjct is of cours to xtd t zro-fr rgio wstwards all t way up to t li σ / wit t cosut improvmt i t rror trm of Torm to O x log x Tis is t Rima Hypotsis I t otr dirctio Littlwood sowd tat πx lix Ω ± x / log log x log x W will also d t prim umbr torm for aritmtic progrssios Torm T55 Lt u > Lt log x u ad gcd T t umbr of prims p x p mod is giv by πx; lsx log x φ + O x xp wr t costat implid by t O otatio is idpdt of ad T proof ruirs t svr rstrictio o to guarat uiformity wit rspct to wic is vital for our applicatio Uiformity wit rspct to is trivial A log-stadig problm i tis ara is to xtd t rag of Writ Ex max πx gcd πx; φ T Torms ad stat tat for log x 5 say log x Ex O x xp T Elliott Halbrstam cojctur is tat o avrag o ca rlax t coditio o : for vry θ < ad A > tr xists a costat C 3 > suc tat x θ Ex C 3x log x A Bombiri ad Viogradov sowd tat t Elliott Halbrstam cojctur olds for θ < /

Tr prims Viogradov provd i 937 tat vry sufficitly larg odd itgr ca b rprstd i t form p + p + p 3 Prviously i 93 Hardy ad Littlwood ad sow tat tis is tru if tr xists a umbr δ < 3/4 suc tat o of Diriclt s L-fuctios as zros i t alf-pla Rz > δ Mor rctly i 989 C & Wag sowd tat t tr prims rprstatio olds ucoditioally for odd > 43 Lt r dot t umbr of solutios of p + p + p 3 ; tat is r p + p + p 3 prim p p p 3 Rptitios ar allowd ad ordr is rlvat; so r 6 bcaus ++7 +7+ 3 + 3 + 5 3 + 5 + 3 5 + 3 + 3 7 + + Lt ρ log m log m log m 3 m + m + m 3 m m m 3 Ultimatly w wat t followig Torm 3 Lt T S µ φ 3 c r Sρ + O log 4 T proof will occupy t xt tr sctios of ts Nots For ow w obsrv tat t tig big summd i Torm 3 µc /φ 3 is multiplicativ as a fuctio of s Lmma Morovr µ µp ad µp k for k So S as t simpl product form: S p c p p 3 If is v t c / S ad Torm 3 dos t say aytig itrstig O t otr ad w is odd w av c c p p for odd p ad c S p> c p p 3 p> p m m Furtrmor w ca stimat ρ For 6 t umbr of trms i t sum for ρ is 4 m 3 4 5 ad ac trm is at last /log 3 Trfor m ρ > log 3 4 m m 3 > 3log 3 3

for sufficitly larg Tus w av our dsird rsult: r > 3log + O 3 log 4 T computatio of r For v lt fx v pv px T ad fx v 3 p v p + p + p 3 x p v p 3 v x + r fx 3 xdx x Curiously tis formula actually works at last for small Puttig it ito Matmatica givs tis tabl 6 7 8 9 3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 r 3 3 4 6 6 9 6 6 9 9 5 8 3 5 3 But our mai task is to fid a o-trivial gral lowr boud for r by provig Torm 3 W sall stimat t itgral i Hcfort w will assum tacitly tat is sufficitly larg For covic w fix log 5 x wic w wat to b small ad it will b providd is sufficitly larg It apps tat fx 3 is small ulss x is ar a ratioal umbr wit a small suar-fr domiator Ev for t tiy valu 6 w ca clarly s t spiks at / /3 /3 /6 ad 5/6 as wll as lssr paks at j/ for j 9 j 5; but tr ar o at /4 3/4 /8 3/8 5/8 ad 7/8 It turs out tat t alf-widt of t six most promit spiks is about ad if w itgrat fx 6 3 x ovr just t itrvals a ± a / /3 /3 /6 5/6 w obtai 766 compard wit t tru valu r6 835 4

W split t itrval [x x + ] ito major arcs ad mior arcs T major arcs will cosist of all tos umbrs tat ar witi x of a ratioal umbr wit a domiator ot xcdig log 5 T mior arcs cosist of vrytig ls i [x x + ]; as w sall s latr Torms 6 ad 7 ts umbrs ar always witi x of a ratioal umbr wit a domiator i t rag log 5 /log 5 W attmpt to fid a rasoably accurat stimat of t itgral for r ovr t major arcs wr w oft xpct fx to b larg O t mior arcs w ar cott to fid a o-trivial uppr boud for fx For a typical major arc w writ J /+x / x fx 3 xdx W ca assum is so larg tat t major arcs do ot ovrlap Hc r J + fx 3 xdx log 5 < gcd mior arcs T mior arcs W stimat t itgral ovr t mior arcs wit t xt fw torms bgiig wit a uality wic says tat addig somtig small to x opfully wo t cag fx v too muc Torm 4 5 : Estrma 5 T fuctio fx v satisfis t idtity fx + y v vyfx v πiy uyfx udu Proof Obsrv tat Hc fx + y v pv vy wy πiy uydu w pxpy pv px vy πiy vy px πiy uy pxdu pv pu vyfx v πiy uyfx udu Torm 5 T56 Lt ad v T log 5 < f v gcd log 5 log 3 p uydu Proof Torm 5 is t vital mior arcs stimat tat maks t circl mtod work for t tr prims problm Tis is wr Viogradov succdd aftr H & L faild T proof is lmtary but complicatd ad is omittd S Estrma pp 54 6 5

Torm 6 T57 Giv ay x ad ay y tr xist ad wit y ad gcd suc tat x < y Proof W may assum < x < Lt m y T [ + x or x + [ + + wr / ad / ar coscutiv fractios i t Fary suc of ordr m; so tat ad + m + If x is i t first itrval w tak / / sic x < + + m + y Similarly w tak / / if x is i t scod itrval Torm 7 5 Suppos x is i a mior arc T fx O log 3 Proof Suppos x is i a mior arc T by Torm 6 wit y /log 5 tr xist coprim ad wit log 5 < < log 5 ad x < log 5 x t first iuality bcaus otrwis x would b i a major arc Trfor by Torm 5 f v log v 3 Puttig z x / ad usig Torm 4 w av fx f + z zf πiz sic z x / < x / < / log + πz 3 + π log 3 log 3 du uzf u du W ar ow rady to stablis t dsird o-trivial uppr boud for t r itgral ovr t mior arcs Torm 8 W av mior arcs fx 3 xdx O log 4 6

Proof By Torm 7 mior arcs fx 3 xdx O log 3 fx dx But fx dx p p p p xdx p π ad t rsult follows from t prim umbr torm Torm T major arcs Lt gx v mv mx log m for v for v < So gx v is lik fx v but istad of summig ovr prims w sum ovr itgrs m wit wigt /log m to accout for t approximat dsity of t prims at m Torm 9 4 T fuctio gx v satisfis t idtity gx + y v vygx v πiy uygx udu Proof Similar to Torm 4 Torm T58 Suppos T log 5 gcd ad y x f + y µ φ gy log 69 log 5 Proof Suppos v W av f v pv p p p < But pv p p <l gcdl l pv p l mod <l gcdl l πv; l ad from t prim umbr torm for aritmtic progrssios Torm lsv πv; l φ < gcdl log 7

Furtrmor by Lmma µ c <l gcdl l Hc obsrvig tat g v lsv f v µ g v φ < + + + pv p <l gcdl log < p µ φ lsv l πv; l lsv φ log 85 Hc by Torm 4 ad Torm 9 f + y µ gy φ f y µ g πiy φ f µ g φ + πx f v + πx 4 < < log 85 log 7 log 69 vy f v µ φ g v dv µ φ g v dv Obsrv tat for o-suar-fr µ ad fx is small w x is ar / Torm T59 Suppos < log 5 gcd ad y x T 3 f + y µ 3 3 gy 3 φ 3 log 69 Proof Tis follows from Torm togtr wit t trivial stimats fx ad gx Substitutig x / + y i t xprssio for J givs Puttig J x 3 f x + y ydy K x x gy 3 ydy w av by Torm ad rcallig tat x log 5 / µ J φ K 6 3 log 54 8

providd tat gcd ad log 5 Just as r ca b xprssd as a itgral ivolvig fx ρ as a similar formula usig gx : ρ / / gy 3 ydy Now for w > ad < y / w my w + y y y m By Abl s lmma summatio by parts gy log + my m k k m my provd by rvrsig t ordr of summatio Hc gy y log + + y log k logk + k si πy y logk + log k y for < y / ad trfor rcallig tat K is lik ρ but itgratig ovr t sortr itrval [ x x ] ρ K x / dy y 3 + / x dy y 3 / x dy y 3 < x log 3 From tis ad w gt a good stimat for a sigl major arc: µ J ρ φ 6 3 log + 54 φ 3 log 3 agai providd tat gcd ad log 5 Summig ovr t major arcs ad usig t dfiitio of Ramauja s sum µ J ρ φ c 3 log 5 < gcd 6 log 4 + log 3 log 5 < φ log 5 7 log 4 3 sic φ is boudd rcall tat φ > 3 9 ad at last w av t stimat ovr t major arcs tat w wat Combiig 3 wit t mior arcs stimat Torm 8 givs µ r ρ φ c O 3 log 4 log 5 ad it is asily sow tat t sam stimat olds w w tak t sum to ifiity Rcallig t dfiitio of S from Torm 3 w trfor av r ρs O log 4 ad t proof of Torm 3 is complt 9