arxiv: v1 [math.ds] 2 Nov 2015

Similar documents
Multiple Positive Solutions for the System of Higher Order Two-Point Boundary Value Problems on Time Scales

WENJUN LIU AND QUÔ C ANH NGÔ

A NOTE ON SOME FRACTIONAL INTEGRAL INEQUALITIES VIA HADAMARD INTEGRAL. 1. Introduction. f(x)dx a

A General Dynamic Inequality of Opial Type

Regulated functions and the regulated integral

Communications inmathematicalanalysis Volume 6, Number 2, pp (2009) ISSN

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

ODE: Existence and Uniqueness of a Solution

Positive Solutions of Operator Equations on Half-Line

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) =

The Regulated and Riemann Integrals

Set Integral Equations in Metric Spaces

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

Some Improvements of Hölder s Inequality on Time Scales

The Delta-nabla Calculus of Variations for Composition Functionals on Time Scales

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

FRACTIONAL DYNAMIC INEQUALITIES HARMONIZED ON TIME SCALES

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN

Positive solutions for system of 2n-th order Sturm Liouville boundary value problems on time scales

The inequality (1.2) is called Schlömilch s Inequality in literature as given in [9, p. 26]. k=1

AMATH 731: Applied Functional Analysis Fall Some basics of integral equations

Wirtinger s Integral Inequality on Time Scale

HYERS-ULAM STABILITY OF HIGHER-ORDER CAUCHY-EULER DYNAMIC EQUATIONS ON TIME SCALES

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation

A New Generalization of Lemma Gronwall-Bellman

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

On Inequality for the Non-Local Fractional Differential Equation

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

The Hadamard s inequality for quasi-convex functions via fractional integrals

ON THE C-INTEGRAL BENEDETTO BONGIORNO

Optimal control problems on time scales described by Volterra integral equations on time scales

CHEBYSHEV TYPE INEQUALITY ON NABLA DISCRETE FRACTIONAL CALCULUS. 1. Introduction

Henstock Kurzweil delta and nabla integrals

Houston Journal of Mathematics. c 1999 University of Houston Volume 25, No. 4, 1999

Introduction to the Calculus of Variations

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

ON THE GENERALIZED SUPERSTABILITY OF nth ORDER LINEAR DIFFERENTIAL EQUATIONS WITH INITIAL CONDITIONS

SUPERSTABILITY OF DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS

ON MIXED NONLINEAR INTEGRAL EQUATIONS OF VOLTERRA-FREDHOLM TYPE WITH MODIFIED ARGUMENT

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

International Jour. of Diff. Eq. and Appl., 3, N1, (2001),

The presentation of a new type of quantum calculus

ON BERNOULLI BOUNDARY VALUE PROBLEM

GENERALIZED ABSTRACTED MEAN VALUES

A product convergence theorem for Henstock Kurzweil integrals

df dt f () b f () a dt

An iterative method for solving nonlinear functional equations

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015

Problem Set 4: Solutions Math 201A: Fall 2016

ON SOME NEW FRACTIONAL INTEGRAL INEQUALITIES

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

ON THE WEIGHTED OSTROWSKI INEQUALITY

Calculus of variations with fractional derivatives and fractional integrals

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1

Three solutions to a p(x)-laplacian problem in weighted-variable-exponent Sobolev space

ON CLOSED CONVEX HULLS AND THEIR EXTREME POINTS. S. K. Lee and S. M. Khairnar

A PROOF OF THE FUNDAMENTAL THEOREM OF CALCULUS USING HAUSDORFF MEASURES

Exact solutions for nonlinear partial fractional differential equations

The Banach algebra of functions of bounded variation and the pointwise Helly selection theorem

Journal of Computational and Applied Mathematics. On positive solutions for fourth-order boundary value problem with impulse

MEAN VALUE PROBLEMS OF FLETT TYPE FOR A VOLTERRA OPERATOR

Oscillatory Behavior of Solutions for Forced Second Order Nonlinear Functional Integro-Dynamic Equations on Time Scales

Math 554 Integration

A Bernstein polynomial approach for solution of nonlinear integral equations

ON A GENERALIZED STURM-LIOUVILLE PROBLEM

The Bochner Integral and the Weak Property (N)

1.9 C 2 inner variations

New Expansion and Infinite Series

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex

INTEGRAL INEQUALITIES SIMILAR TO GRONWALL INEQUALITY

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY MA205 Complex Analysis Autumn 2012

A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES. 1. Introduction

MA Handout 2: Notation and Background Concepts from Analysis

(4.1) D r v(t) ω(t, v(t))

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Research Article Existence of Nontrivial Solutions and Sign-Changing Solutions for Nonlinear Dynamic Equations on Time Scales

A Convergence Theorem for the Improper Riemann Integral of Banach Space-valued Functions

A short introduction to local fractional complex analysis

LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR DIFFERENTIAL EQUATIONS

arxiv: v1 [math.ca] 7 Mar 2012

arxiv: v1 [math.ra] 1 Nov 2014

Lyapunov-type inequalities for Laplacian systems and applications to boundary value problems

ODE: Existence and Uniqueness of a Solution

INNER PRODUCT INEQUALITIES FOR TWO EQUIVALENT NORMS AND APPLICATIONS

Some integral inequalities on time scales

1.3 The Lemma of DuBois-Reymond

Fredholm Integral Equations of the First Kind Solved by Using the Homotopy Perturbation Method

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

On some Hardy-Sobolev s type variable exponent inequality and its application

AMATH 731: Applied Functional Analysis Fall Additional notes on Fréchet derivatives

Math 31S. Rumbos Fall Solutions to Assignment #16

PENALIZED LEAST SQUARES FITTING. Manfred von Golitschek and Larry L. Schumaker

Chapter 8: Methods of Integration

Improper Integrals, and Differential Equations

Existence of Solutions to First-Order Dynamic Boundary Value Problems

Transcription:

PROPERTIES OF CERTAIN PARTIAL DYNAMIC INTEGRODIFFERENTIAL EQUATIONS rxiv:1511.00389v1 [mth.ds] 2 Nov 2015 DEEPAK B. PACHPATTE Abstrct. The im of the present pper is to study the existence, uniqueness nd some other properties of solutions of certin prtil dynmic integrodifferentil equtions.the Bnch fixed point theorem nd certin fundmentl inequlity with explicit estimtes re used to estblish our results. 1. Introduction The study of time scle clculus ws initited by Stefn Hilger in his Ph.D disserttion which unifies the continuous nd discrete clculus[4]. Since then mny uthors hve worked on vrious spects dynmic equtions on timescle clculus[5, 6, 7, 8, 9]. Bsic informtion on time scle clculus cn be found in [1, 2, 3, 4]. Mny uthors hve studied vrious types of prtil dynmic equtions on time scles[7, 8, 10, 11, 14].In [12, 13, 15] hve studied the integrodifferentil equtions nd its properties. Motivted by the results in the bove ppers in this pper we study properties of certin prtil dynmic integrodifferentil equtions. In wht follows R denotes the set of rel numbers nd T denotes the rbitrry time scles. Now we give some bsic definitions of time scle clculus. The function f : T R is sid to be rd-continuous if f is continuous t ech right dense point of T nd is denoted by C rd. Let two time scles with t lest two point be denoted by T 1 nd T 2 nd Ω = T 1 T 2. The delt prtil derivtive of rel vlued function f on T 1 T 2 hs prtil derivtive f t 1,t 2 ) with respect to t 1 if for ech ǫ > 0 there exists neighbourhood U t1 of t 1 such tht. f σ 1 t 1 ),t 2 ) f s,t 2 ) f t 1,t 2 )σ 1 t 1 ) s) ε σ 1 t 1 ) s for ll s U t2. The delt prtil derivtive of rel vlued function f on T 1 T 2 hs 2 prtil derivtive f t 1,t 2 ) with respect to t 2 if for ech η > 0 there exists neighbourhood U t2 of t 2 such tht f t1,σ 2 t 2 )) f t 1,l) f 2 t 1,t 2 )σ 2 t 2 ) l) η σ2 t 2 ) l 2010 Mthemtics Subject Clssifiction. 26E70, 34N05, 26D10. Key words nd phrses. Bnch fixed point theorem, Existence nd Uniqueness, integrl inequlity,integrodifferentil equtions, time scles. 1

2 D. B. PACHPATTE for ll u U t1. The prtil derivtive of wx, y) for x, y) Ω with respect to x,y nd xy is denoted by w x,y),w 2 x,y) nd w 2 x,y) = w 2 x,y). Suppose I = [,b] with < b nd Ω = Ω I. The prtil derivtive of ux,y,z) for x,y,z) C rd Ω,R) with respect to x,y nd xy is defined by w x,y,z),w 2 x,y,z) nd w 2 x,y,z) = w 2 x,y,z) In this pper we study the prtil dynmic integrodifferentil eqution of the form u 2 x,y,z) = F x,y,z,ux,y,z),u x,y,z),u 2 x,y,z),hu)x,y,z) ), 1.1) with the conditions for x,y) Ω where Hu)x,y,z) = ux,,z) = αx,z), u,y,z) = βy,z) 1.2) G x,y,z,q,ux,y,q),u x,y,q),u 2 x,y,q) ) q, 1.3) whereg C rd Ω R 3,R ),F C rd Ω R 4,R ) ndα,β C rd R I,R). We hve u,,z) = α,z) = β,z). Now for u,u,u 2 C rd Ω,R ), we denote. ux,y,z) W = ux,y,z) u x,y,z) u 2 x,y,z). 1.4) Let S be the spce function stisfying the condition ux,y,z) W = Oe λ x,y, z )), 1.5) where λ > 0 is positive constnt. In spce S we define norm u by u s = sup [ ux,y,z) w e Θλ x,y, z )]. 1.6) x,y,z) Ω I The norm defined 1.6) is clerly Bnch Spce. Then 1.5) implies tht there is constnt N 0 such tht ux,y,z) w N e λ x,y, z )), 1.7) nd we hve u s N. 1.8) The solution of 1.1) nd 1.2) is function ux,y,z) C ) rd Ω,R n stisfying 1.1) nd 1.2). It is esy to see tht ux,y,z) with 1.1) nd

INTEGRODIFFERENTIAL EQUATIONS 3 1.2) stisfy the following dynmic integrodifferentil eqution. ux,y,z) = αx,z)βy,z) α0,z) F s,t,z,us,t,z),u s,t,z),u 2 s,t,z),hu)s,t,z) ) t s, for x,y,z) C rd Ω,R) u x,y,z) = α x,z) F u 2 x,y,z) = β 2 y,z) x F x,t,z,ux,t,z),u x,t,z),u 2 x,t,z),hu)x,t,z) ) t, 1.9) 1.10) s,y,z,ux,t,z),u s,y,z),u 2 s,y,z),hu)s,y,z) ) s. We need following Lemm given in [3]. Lemm [[3], Theorem 2.6] Let u C rd T,R ), R for ll t T k, then for ll t T k. u t) t)ut), ut) ut 0 )e t,t 0 ), 2. Min Results 1.11) Now we give our min results Theorem 1.1 Suppose tht the functions F,G in 1.1) stisfy the condition F x,y,z,u 1,u 2,u 3,u 4 ) F x,y,z,u 1,u 2,u 3,u 4 ) M x,y,z)[ u 1 u 1 u 2 u 2 u 3 u 3 u 4 u 4 ], 2.1) Gx,y,z,q,u 1,u 2,u 3 ) Gx,y,z,q,u 1,u 2,u 3 )

4 D. B. PACHPATTE Kx,y,z,q)[ u 1 u 1 u 2 u 2 u 3 u 3 ], 2.2) where M C rd Ω,R ) nd K Crd Ω I,R ). For λ s in 1.5), there exists nonnegtive γ i i = 1,2,3) such tht M s,t,z)[e λ s,t, z ) ks,t,z,q)e λ s,t, q ) q t s γ 1 e λ x,y, z ), 2.3) M x,t,z)[e λ x,t, q ) x kx,t,z,q)e λ x,t, q ) q t γ 2 e λ x,y, z ), 2.4) M s,y,z)[e λ x,t, z ) ks,y,z,q)e λ s,y, q ) q s γ 3 e λ x,y, z ), 2.5) for x,y Ω, z I. There exist nonnegtive constnts η i i = 1,2,3) such tht αx,z) βy,z) α0,z) f s,t,z,0,0,h0)s,t,z)) t s η 1 e λ x,y, z ), 2.6) α x,z) β y,z) y F x,t,z,0,0,0,h0)x,t,z)) t η 2 e λ x,y, z ), 2.7) F s,y,z,0,0,0,h0)s,y,z)) s η 3 e λ x,y, z ), 2.8)

INTEGRODIFFERENTIAL EQUATIONS 5 where α,β re s in 1.2). If γ = γ 1 γ 2 γ 3 < 1 then problem 1.1) 1.2) hs unique solution ux,y,z) on 1.1) 1.2) in S. Proof. Let ux,y,z) S nd define the opertor T by Tu)x,y,z) = αx,z)βy,z) α0,z) F s,t,z,us,t,z),u s,t,z),u 2 s,t,z),hu)s,t,z) ) t s. 2.9) Now we show tht P mps S into itself. Tu is rd-continuous on Ω I nd Tu R. From 2.9) nd given hypotheses we hve Pu)x,y,z) αx,z) βy,z) α0,z) F s,t,z,us,t,z),u s,t,z),u 2 s,t,z),hu)s,t,z) ) F s,t,z,0,0,0,h0)s,t,z)) t s F s,t,z,0,0,0,h0)s,t,z)) t s η 1 e λ x,y, z ) M s,t,z)[e λ s,t, z ) us,t,z) e Θλ s,t, z ) kx,y,z,q)e λ s,t, q ) ux,y, q ) W e Θλ s,t, q ) q t s η 1 e λ x,y, z ) u s M s,t,z)[e λ s,t, z ) kx,y,z,q)e λ s,t, q ) q t s [η 1 Nγ 1 ]e λ x,y, z ). 2.10)

6 D. B. PACHPATTE Delt differentiting on both sides of 2.9) with respect to x nd 1.8) we hve Pu) x,y,z) α x,z) F x,t,z,ux,t,z),u x,t,z),u 2 x,t,z),hu)x,t,z) ) F x,t,z,0,0,0,h0)x,t,z)) t F x,t,z,0,0,0,h0)x,t,z)) t η 2 e λ x,y, z ) u s M x,t,z)[e λ x,t, z ) kx,t,z,q)e λ x,t, q ) q t [η 2 Nγ 2 ]e λ x,y, z ). 2.11) Similrly we hve Pu) 2 x,y,z) [η 3 Nγ 3 ]e λ x,y, z ). 2.12) From 2.10) 2.12) we hve Pu s [η 1 η 2 η 3 )Nγ]. Thus proving tht P mps S into itself. NowweshowthtopertorP iscontrctionmp. Letux,y,z),ux,y,z) S. From 2.9) we hve Pu)x,y,z) Pu)x,y,z) F s,t,z,us,t,z),u s,t,z),u 2 s,t,z),hu)s,t,z) ) F s,t,z,us,t,z),u s,t,z),u 2 s,t,z),hu)s,t,z) ) t s u u s M x,t,z)[e λ s,t, z )

INTEGRODIFFERENTIAL EQUATIONS 7 ks,t,z,q)e λ s,t, q ) q t s u u s γ 1 e λ x,y, z ). 2.13) Similrly delt differentiting both sides of 2.12) with respect to x nd y we hve Pu) x,y,z) Pu) x,y,z) u u s γ 2 e λ x,y, z ), 2.14) nd Pu) 2 x,y,z) Pu) 2 x,y,z) u u s γ 3 e λ x,y, z ). 2.15) From 2.13) 2.15) we obtin Pu Pu s γ u u s. Since γ < 1, P hs unique fixed point in S by Bnch fixed point theorem. The fixed point of P is solution of 1.1) 1.2). This completes the proof. 3. Properties of solutions Now we study the properties of solution of dynmic integrodifferentil eqution of the form u 2 x,y,z) = f x,y,z,ux,y,z),hu)x,y,z)), 3.1) with 1.2) for x,y,z) Ω where hu)x,y,z) = jx,y,z,q,ux,y,q))dq, 3.2) ) in which i C rd Ω R,R, f Crd Ω R 2,R). Now we prove the following dynmic inequlity which cn be used in studying some properties of solutions. ) ) Theorem 3.1 Let w,p C rd Ω,R, Crd Ω I,R nd c 0 constnt. If wx,y,z) c [ps,t,z)ws,t,z) rs,t,z,q)ws,t,q) q t s, 3.3)

8 D. B. PACHPATTE for x,y,z) Ω then wx,y,z) ce Qx,y,z) x, ), 3.4) where x,y,z) Ω nd Qx,y,z) = ps,t,z) Proof. For n rbitrry Z I from 3.3) we hve rs,t,z,q) q s. 3.5) Put wx,y,z) c ms,t) = ps,t,z)ws,t,z) The inequlity 3.6) becomes Now define then wx,y,z) c vx,y) = c [ps,t,z)ws,t,z) rs,t,z,q)ws,t,q) q t s. 3.6) rs,t,z,q)ws,t,q) q. 3.7) ms,t) t s. 3.8) ms,t) t s, 3.9) v0,y) = vx,0) = c,wx,y,z) vx,y). 3.10) Delt differentiting both sides of 3.9) with respect to x nd y using 3.7) nd 3.10) we hve v 2 x,y) = mx,y) = px,y,z)wx,y,z) rx,y,z,q)wx,y,q) q

INTEGRODIFFERENTIAL EQUATIONS 9 vx,y) px,y,z) rs,t,z,q) q. 3.11) By keeping x fixed in 3.11), nd tking y = t nd delt integrting with respect to second vrible from to y. Using the fct tht v x,y) px,t,z) vx,y) px,t,z) rx,t,z,q) q vx,t) t rx,t,z,q) q t vx,y)qx,y,z). 3.12) Now treting y fixed in 3.12) nd pplying Lemm we hve vx,y) ce Qx,y,Z) x, ). 3.13) Becuse Z is rbitrry nd using 3.10) we get 3.9). Theorem 3.2 Suppose the functions f, j in 3.1),3.2) stisfy the conditions f x,y,z,u,v) f x,y,z,u,v) p 1 x,y,z)[ u u v v ], 3.14) jx,y,z,q,u) jx,y,z,q,u) p 2 x,y,z,q) u u, 3.15) ) ) where p 1 C rd Ω,R, p2 C rd Ω I,R, c 0 nd p 1 s,t,z) p 1 s,t,z,q) q t s <, 3.16) then the problem 3.1) 1.1) hs t most one solution. Proof. Let u 1 x,y,z) nd u 2 x,y,z) be two solutions of problem 3.1) 1.1). u 1 x,y,z) u 2 x,y,z) f s,t,z,u 1 s,t,z),hu 1 )s,t,z)) f s,t,z,u 2 s,t,z),hu 2 )s,t,z)) t s [p 1 s,t,z) u 1 s,t,z) u 2 s,t,z)

10 D. B. PACHPATTE hu 1 )s,t,z) hu 2 )s,t,z) ] t s [p 1 s,t,z) u 1 s,t,z) u 2 s,t,z) p 1 s,t,z,q) u 1 s,t,q) u 2 s,t,q) q t s. 3.17) NowpplyingTheorem3.1to3.17)yields u 1 x,y,z) u 2 x,y,z) 0 which gives u 1 x,y,z) = u 2 x,y,z). This proves tht there is t most one solution to problem 3.1) 1.1). Now we prove the theorem which gives the boundedness of solution of 3.1) 1.1). Theorem 3.3. Suppose the function f,j,α,β in 3.1) 1.1) stisfy the conditions f x,y,z,u,v) p 1 x,y,z)[ u v ], 3.18) jx,y,z,u,v) p 2 x,y,z,q) u, 3.19) αx,z)βy,z) α0,z) c, 3.20) where p 1 C rd Ω,R ), p 2 C rd Ω I,R ), c 0 is constnt nd the condition 3.16) holds. Then solution ux, y, z) is bounded nd ux,y,z) ce Qx,y,z) x, ), 3.21) for x,y,z) Ω Proof. Since ux,y,z) is solution of 3.1) 1.1). We hve ux,y,z) αx,z)βy,z) α0,z) c f s,t,z,us,t,z),hu)s,t,z)) t s [p 1 s,t,z) us,t,z) p 2 s,t,z,q) us,t,q) q t s. 3.22) Now n ppliction of Theorem 3.1 to 3.22) yields 3.21) thus proving the boundedness of solution. Now we give the dependency of solution of eqution on given condition

INTEGRODIFFERENTIAL EQUATIONS 11 Theorem 3.4. Suppose the function f,k in 3.1),3.2) stisfy the conditions 3.14),3.15) nd the condition 3.16) holds. Let ux, y, z) nd vx,y,z) be the solutions of eqution with condition 1.2) nd vx,0,z) = αx,z), v0,y,z) = βy,z), 3.23) respectively nd αx,z)βy,z) α0,z) [ αx,z)βy,z) α0,z) ], 3.24) where α,β,α,β C rd R I,R) nd 0 is constnt. Then ux,y,z) vx,y,z) e Qx,y,z) x, ). 3.25) Proof. Since ux,y,z) nd vx,y,z) re solutions of 3.1)-1.1) nd 3.1) 3.23) nd the given conditions we hve ux,y,z) ux,y,z) αx,z)βy,z) α0,z) [ αx,z)βy,z) α0,z) ] f s,t,z,us,t,z),hu)s,t,z)) f s,t,z,vs,t,z),hu)s,t,z)) t s [p 1 s,t,z) us,t,z) vs,t,z) p 2 s,t,z,q) us,t,z) vs,t,z) q t s. 3.26) Now n ppliction of Theorem 3.1 to3.26) gives the estimte3.25) which gives the dependency of solution of eqution 3.1) on given conditions. Acknowledgement. This reserch is supported by Science nd Engineering Reserch BordSERB), New Delhi, Indi, Snct. No. SB/S4/MS:861/13 References References [1] M. Bohner nd A. Peterson, Dynmic equtions on time scles, Birkhuser Boston/Berlin, 2001). [2] M. Bohner nd A. Peterson, Advnces in Dynmic equtions on time scles, Birkhuser Boston/Berlin, 2003).

12 D. B. PACHPATTE [3] E.A.Bohner, M. Bohner nd F. Akin, Pchptte inequlities on on time scles, J. Inequl. Pure Appl. Mth.,,61)2005), Art. 6. [4] S. Hilger, Anlysis on Mesure chin-a unified pproch to continuous nd discrete clculus, Results. Mth., 18:18-56, 1990. [5] D. B. Pchptte, Explicit estimtes on integrl inequlities with time scle, J. Inequl. Pure. Appl. Mth., Vol. 7, Issue 4, Artivle 143, 2006. [6] D. B. Pchptte, Integrl Inequlitys for prtil dynmic equtions on time scles, Electron. J. Differentil Equtions,Vol. 2012 2012), No. 50, 1-7. [7] D. B. Pchptte, Properties of solutions to nonliner dynmic integrl equtions on Time Scles, Electron. J. Differentil Equtions,Vol. 20082008). No. 130. pp.1-8. [8] D. B. Pchptte, Properties of some prtil dynmic equtions on time scles, Interntionl Journl of Prtil Differentil Equtions, Vol. 2013, Art. ID 345697, 9 pges [9] D. B. Pchptte, Properties of some dynmic Integrl equtions on time scles, Ann. Funct. Anl., Vol.4, No2.,2013. [10] B. Jckson, Prtil dymic equtions on time scles, J. Comput. Appl. Mth.,Vol.186, Issue 2, Feb 2006, p. 391-415. [11] Y. Sun, T. Hssnb, Some nonliner dynmic integrl inequlities on time scles, Appl. Mth. Comput., Vol 220, 2013, P. 221-225. [12] G. Liu, X. Xing, Y. Peng Nonliner integrodifferentil equtions nd optiml control problems on time scles, Comput. Mth. Appl., Vol 61,Issue 2, Jn 2011, P. 115-169. [13] A. S. Nowk, Integrodifferentil equtions on time scles with Henstock- Kurzweil-pettis Delt Integrls, Abstr. Appl. Anl., Vol 2010,Art. ID 836347, p. 17. [14] F. Meng, J. Sho, Some new Volterr Fredholm type dynmic integrl inequlities on time scles, Appl. Mth. Comput., Vol. 223, 2013, p. 444-451. [15] Y. Xing, M. Hn, G. Zheng Initil vlue problem for first order integrodifferentil eqution of Volter type on Time scles, Nonliner Anl., Vol. 60, Issue 3,Feb 2005, p. 429-442. Deepk B. Pchptte Deprtment of Mthemtics, Dr. Bbsheb Ambedkr Mrthwd University, Aurngbd, Mhrshtr 431004, Indi E-mil ddress: pchptte@gmil.com