EE 560 MOS INVERTERS: STATIC CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania

Similar documents
CMOS Inverter (static view)

Integrated Circuit Design ELCT 701 (Winter 2017) Lecture 2: Resistive Load Inverter

VLSI Design and Simulation

THE INVERTER. Inverter

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

MOSFET and CMOS Gate. Copy Right by Wentai Liu

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

ESE 570 MOS INVERTERS STATIC (DC Steady State) CHARACTERISTICS. Kenneth R. Laker, University of Pennsylvania, updated 12Feb15

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

MOS Transistor Theory

The CMOS Inverter: A First Glance

DC and Transient Responses (i.e. delay) (some comments on power too!)

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

Lecture 12 Digital Circuits (II) MOS INVERTER CIRCUITS

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

Lecture 12 Circuits numériques (II)

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Lecture 13 - Digital Circuits (II) MOS Inverter Circuits. March 20, 2003

CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.

ESE319 Introduction to Microelectronics. Output Stages

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Digital Integrated Circuits

Lecture 23. CMOS Logic Gates and Digital VLSI I

EEE 421 VLSI Circuits

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

MOS Transistor Theory

Integrated Circuits & Systems

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

EE 330 Lecture 36. Digital Circuits. Transfer Characteristics of the Inverter Pair One device sizing strategy Multiple-input gates

EE 434 Lecture 33. Logic Design

ECE 546 Lecture 10 MOS Transistors

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Lecture 14 - Digital Circuits (III) CMOS. April 1, 2003

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

CHAPTER 15 CMOS DIGITAL LOGIC CIRCUITS

Name: Answers. Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015

EE5311- Digital IC Design

CMOS Technology for Computer Architects

MICROELECTRONIC CIRCUIT DESIGN Second Edition

EE5780 Advanced VLSI CAD

Lecture 5: DC & Transient Response

EE105 Fall 2014 Microelectronic Devices and Circuits

At point G V = = = = = = RB B B. IN RB f

Chapter 4 Field-Effect Transistors

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

DC & Transient Responses

The CMOS Inverter: A First Glance

RIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIB-R T7. Detailed Explanations. Rank Improvement Batch ANSWERS.

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

5. CMOS Gate Characteristics CS755

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

EE105 - Fall 2005 Microelectronic Devices and Circuits

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

ECE 342 Solid State Devices & Circuits 4. CMOS

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Practice 3: Semiconductors

Electronic Circuits Summary

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor. EE141-Fall 2007 Digital Integrated Circuits. Review: What is a Transistor? Announcements. Class Material

Robert W. Brodersen EECS140 Analog Circuit Design

The Physical Structure (NMOS)

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

MOS Inverters. Digital Electronics - INEL Prof. Manuel Jiménez. With contributions by: Rafael A. Arce Nazario

EEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation

VLSI Design I; A. Milenkovic 1

Chapter 3-7. An Exercise. Problem 1. Digital IC-Design. Problem. Problem. 1, draw the static transistor schematic for the function Q = (A+BC)D

EE40 Lec 20. MOS Circuits

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

COMP 103. Lecture 10. Inverter Dynamics: The Quest for Performance. Section 5.4.2, What is this lecture+ about? PERFORMANCE

Lecture 5: DC & Transient Response

Lecture 4: DC & Transient Response

Chapter 13 Small-Signal Modeling and Linear Amplification

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS

DC and Transient. Courtesy of Dr. Daehyun Dr. Dr. Shmuel and Dr.

CS/EE N-type Transistor

ECE 342 Electronic Circuits. 3. MOS Transistors

EE5311- Digital IC Design

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

VLSI Design and Simulation

Lecture 6: DC & Transient Response

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

ENEE 359a Digital VLSI Design

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

Homework Assignment #3 EE 477 Spring 2017 Professor Parker , -.. = 1.8 -, 345 = 0 -

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

ECE 497 JS Lecture - 12 Device Technologies

4.10 The CMOS Digital Logic Inverter

EE 434 Lecture 34. Logic Design

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Transcription:

1 EE 560 MOS INVETES: STTIC CHCTEISTICS Kenneth. aker, University of Pennsylvania

IDE INVETE VOTGE TNSFE CHTEISTIC (VTC) B = 0 1 B 1 0 ogic 1 output ogic 0 output / Kenneth. aker, University of Pennsylvania

Vin CTU INVETE VOTGE TNSFE CHTEISTIC (VTC) OD + - V C out -> max output voltage when output is 1 V O -> min output voltage when output is 0 3 V I -> max input voltage which can be interprete as 0 V IH -> min input voltage which can be interprete as 1 V O = Kenneth. aker, University of Pennsylvania V I V th V IH

NOISE IMMUNITY ND NOISE MGINS 4 -> max output voltage when output is 1 V O -> min output voltage when output is 0 V I -> max input voltage which can be interprete as 0 V IH -> min input voltage which can be interprete as 1 max allowable 0 voltage min allowable 1 voltage V O V I V IH V O interconnect interconnect NOISE NOISE Kenneth. aker, University of Pennsylvania

NOISE IMMUNITY ND NOISE MGINS -> max output voltage when output is 1 V O -> min output voltage when output is 0 V I -> max input voltage which can be interprete as 0 V IH -> min input voltage which can be interprete as 1 5 V IH V I NM H Transition egion NM H = - V IH NM = V I - V O NM V O JUSTIFICTION FO V I, V IH : ET: = f( ), V out = f( + V noise ) ' = f( ) + 0 V V noise + H.O.term in Perturbe Output = Nominal Output + Gain x Ext. Perturbation Kenneth. aker, University of Pennsylvania

FIVE CITIC VOTGES: V O,, V I, V IH, V th etermine: --> DC Output Voltage Behavior --> Noise Margins --> ith an ocation of Transition egion 6 POE DISSIPTION ND DIE E Power Dissipation -> HET T j = T a + Θ P P --> P DC, P ynamic T j -> junction Temp T a -> ambient Temp Φ -> Thermal esistance P -> Power Dissipate P DC = C SSUME: = 1 50% of Op Time, 0 50% of Op Time Kenneth. aker, University of Pennsylvania P DC = [ I (V ="0")+ I (V ="1") DC in DC in ] DIE E --> MIN x

ESISTIVE-OD INVETE 7 = V GS + - V = V BS = 0 => V T,n = V T0,n = V DS CUTOFF: = V GS < V T0,n, = 0 INE: = V GS > V T0,n, = V DS < - V t0,n [ ] = (V V )V V in T 0,n out out STUTION: = V GS > V T0,n = V DS > - V T0,n = ( V T 0,n ) here: = µ n C ox, λ = 0 Kenneth. aker, University of Pennsylvania

= V GS + - V = = V DS B V O V I VIH = - V T0,n ST C IN 8 CCUTION OF : = < V T0,n => nmos Cut-off V T0,n = 0 = = 0 => = Kenneth. aker, University of Pennsylvania

B = - V T0,n ST C IN 8a V O V I VIH V T0,n = - V T0,n ST B C IN V O V I VIH V T0,n

+ - V = CCUTION OF V O : C C 9 = V GS = = V O where = V O = V DS V O = (V V )V V DD T 0,n O O V O V T 0,n + 1 V + O V DD = 0 [ ] where = = 0 < V O < V T0,n V O = V T 0,n + 1 ± V DD V T 0,n + 1 Kenneth. aker, University of Pennsylvania

= V GS + - V = CCUTION OF V I : = B 10 = ( V T 0,n ) Differentiate wrt to, i.e. B = 1 @ = V I => Kenneth. aker, University of Pennsylvania = V DS 1 = ( V T 0,n ) 1 ( 1) = (V I V T 0,n ) V I = V T 0,n + Fin : ( = V I ) ( = V I ) = 1 = (V V I T 0,n ) 1

= V GS + - V = CCUTION OF V IH : C C 11 = = V DS [ ] = (V V )V V in T 0,n out out Differentiate wrt to, i.e. 1-1 = k V IH n (V V ) in T 0,n V IH = V T 0,n + 1 = 1 @ = V IH => V O -1-1 V + out Kenneth. aker, University of Pennsylvania

CCUTION OF V IH : C V C DD Fin : = (V V ) V V IH T 0,n out out I where V IH = V T 0,n + 1 D = k n (V + V 1 T 0,n out V T 0,n ) 3 k V n out = 0 [ ] ( = V IH ) = 3 1 V IH = V T 0,n + 3 1 Kenneth. aker, University of Pennsylvania

CCUTION OF V th : = = V th => V DS = V GS > V GS - V T0,n B 13 = V th V th = ( V T 0,n ) V th = (V th V T 0,n ) V th V T 0,n 1 V + V th T 0,n = 0 V th = V T 0,n 1 ± V T0,n 1 + V T 0,n Kenneth. aker, University of Pennsylvania

SUMMY - ESISTIVE OD INVETE V th = V T 0,n 1 + V T0,n 1 + V T 0,n 1 V I = V T 0,n + 1 V out ( = V I ) = k V IH = V T 0,n + 1 n V 3 out ( = V IH ) = 3 V O = V T 0,n + 1 ± V DD V T 0,n + 1 14 = 5V = 5V V T0,n = 1 V = 8V -1 = V -1 = 4V -1 Kenneth. aker, University of Pennsylvania 5V

POE DISSIPTION - ESISTIVE OD INVETE 15 P DC = [ I (V ="0")+ I (V ="1") DC in DC in ] HEN = V O : DIVE nmos in CUT-OFF = = 0 => P( = 0) = 0 = 0 HEN = : C P DC (average) = V O Kenneth. aker, University of Pennsylvania

EXMPE 5.1 Consier the following inverter esign problem: 16 GIVEN: = 5 V, = 30 µ/v an V T0,n = 1.0 V Determine the / ratio of the river transistor an the value of the loa resistor to realize V O = 0. V. C For = V O => = = V O 5 0. = k ' n = (V V ) V V DD T 0,n O O 30x10 6 [ ] [ (5 1)0. (0.)] =.05x105 Ω NO UNIQUE /, Kenneth. aker, University of Pennsylvania

EXMPE 5.1 Cont. =.05x105 Ω (/) - TIO [kω] P DC (average) [µ] 17 1 3 4 5 6 05.0 10.5 68.4 51.3 41.0 34. 58.5 117.1 175.4 33.9 9.7 350.8 n + Polysilicon (ope) Metal 1 n + resistor 0-100 Ω/sq. Kenneth. aker, University of Pennsylvania GND

EXMPE 5. Consier a resistive-loa inverter with = 5 V, = 0 µ/v, V T0n = 0.8 V, = 00 kω, / = Calculate the critical voltages (V O,, V I, V IH ) on the VTC an etermine the noise margins. 18 = = 5 V = (/) = 40 µ/v => = 8 V -1 V O = V T 0,n + 1 ± V DD V T 0,n + 1 V O =0.147 V V I = V T 0,n + 1 V I =0.95 V Kenneth. aker, University of Pennsylvania

EXMPE 5. Cont. Consier a resistive-loa inverter with = 5 V, = 0 µ/v, V T0n = 0.8 V, = 00 kω, / = Calculate the critical voltages (V O,, V I, V IH ) on the VTC an etermine the noise margins. V IH = V T 0,n + 3 1 V IH =1.97 V 19 = = 5 V V O =0.147 V V I =0.95 V NM H = - V IH = 5V - 1.97V = 3.03V NM = V I - V O = 0.93V - 0.15V = 0.78V GOOD DESIGN => NM > /4 = 1.5 V Kenneth. aker, University of Pennsylvania

STUTED ENHNCEMENT-OD INVETE 0 = V GS, + - = B = - V T0,n ST C IN = V DS, V BS, = 0 => V T, = V T0,n V BS, < 0 => V T, = V T0,n V O V I VIH V T0,n OD: V GS, = V DS, => ST conition is YS STISFIED = k ' n ( V GS, V T. ) = ' ( ) V T. Kenneth. aker, University of Pennsylvania

= V GS, + - = B C 1 = - V T0,n ST IN Driver -> Cutoff, oa -> Sat = k ' n ( V T. ) = 0 Driver -> Sat, oa -> Sat V I V T0,n VIH V O ' ( V T. ) = k ' n ( V T 0,n ) Driver -> inear, oa -> Sat ' ( V T. ) = k ' n [ V T 0,n ] Kenneth. aker, University of Pennsylvania = V DS, ( )

+ = V BS, = 0 => V T, = V T0,n V BS, = - => V T, = V T0,n - = V GS, CCUTION OF : = = 0 = k ' n = V DS, V T. 0 ( ) = 0 V GS, = - > V T, < - V T Kenneth. aker, University of Pennsylvania

= V GS, + - = B C 3 = - V T0,n ST V O V I VIH IN = V DS, CCUTION OF V O : C ' ( V O V T. (V O )) = k ' n = ( [ V T 0,n ]V O V O ) V T0,n C EQUIES:, V T, (V O ) Kenneth. aker, University of Pennsylvania

' ( V O V T. (V O )) (1) = k ' n ( [ V T 0,n ]V O V O ) () 4 SSUME V T, = V T0,n YES Kenneth. aker, University of Pennsylvania CCUTE V O EQ. (1) CCUTE V T, (V O ) EQ. () V T, > ε? V O NO SOVE FO V O THOUGH NUMEIC ITETIONS CONTINUE ITETION?

= V GS, + - = B C 5 = - V T0,n ST V O V I VIH IN = V DS, CCUTION OF V I : B ' ( ) = k ' n V T. Differentiating wrt : ' V T. ( ) Kenneth. aker, University of Pennsylvania V T. ' = V T0,n ( V T 0,n ) ( V T 0,n ) B

' ( ) V T. SOVING FO / : ' = ' 1+ V T. V T. V in ' = ( V T 0,n ) V V out T. ( ) ( V T 0,n ) 6 IF = V T. << 1 ' ( V T 0,n ) V DD V T. ' = ( ) = Since / =-const; thus, efine V I = V T0,n ' ' = I = k Kenneth. aker, University of Pennsylvania

= V GS, + - = 7 = - V T0,n B ST IN slope = k C ' Kenneth. aker, University of Pennsylvania = V DS, V O CCUTION OF V IH : C VIH V ' OH V I = V T0,n ( V T. ) = k ' n C ( [ V T 0,n ] ) Differentiating wrt : -1 ( V T. ) V I out D V in V ' IH = ( V T 0,n ) V -1-1 out V V out in

' ( V T. ) = k ' n ( [ V T 0,n ] ) (3) ' ( V T. ) V -1 out V (4) in V ' IH = ( V T 0,n ) V -1-1 out V V out in V SOVING FO V in IH V IH = V T 0,n V ( DD V T. )+ + V out ( = V IH ) (5) where V T. ( ) = V T 0,n + γ ( φ F + φ F ) (6) an where (sub V IH Eq (4) into Eq () an solving for ) ( = V IH ) = Kenneth. aker, University of Pennsylvania + 3 ( V T. ) (7) 8

9 SSUME V T, = V T0,n YES CCUTE EQ. (7) CCUTE V T, ( ) EQ. (6) V T, > ε? NO CCUTE V IH EQ. (5) CCUTE V IH THOUGH NUMEIC ITETIONS CONTINUE ITETION? Kenneth. aker, University of Pennsylvania

V GG INE ENHNCEMENT-OD INVETE 30 = - V T0,n + - = B ST C IN = = V DS, V GG > + V T, V BS, = 0 => V T, = V T0,n V BS, < 0 => V T, = V T0,n V O V I VIH = 0 V T0,n = => incease NM H vs. ST enh-loa inverter V O > 0; arge river-to-loa ratio k neee to reuce V O & increase NM, NM H. Kenneth. aker, University of Pennsylvania