EVALUATiON OF YUKON HERBICIDE RATES FOR YELLOW NUTSEDGE CONTROL IN CORN GROWN IN ROTATIONS FOLLOWED BY ONION

Similar documents
YELLOW NUTSEDGE CONTROL IN ONION AFTER THREE YEARS OF CORN HERBICIDES

YELLOW NUTSEDGE CONTROL IN CORN AND DRY BEAN CROPS

YELLOW NUTSEDGE CONTROL IN VARIOUS CROPS

YELLOW NUTSEDGE CONTROL IN LIBERTY AND ROUNDUP RESISTANT SUGAR BEETS

Corey V. Ransom, Charles A. Rice, and Joey K. Ishida Malheur Experiment Station Oregon State University Ontario, OR, 2004.

Evaluation of Fall Application of Dual Magnum for Control of Yellow Nutsedge in Onions Grown on Muck Soils

ALS-Resistant Kochia Management in a Corn - Sugarbeet Rotation 2005 to 2006 and 2007 to Robert Wilson

EFFECTS OF HEATING AND FREEZING ON TRANSLUCENT SCALE IN ONION BULBS

Alion, Sencor, and Sharpen for Preemergence Kochia Control in an Abandoned Alfalfa Field

EFFECT OF VARIOUS HERBICIDES ON NEWLY ESTABLISHED BERMUDAGRASS

Weed Control Studies in Onions Focus on 2007 Yellow Nutsedge Trials. Richard Smith Vegetable Crop and Weed Science Farm Advisor, Monterey County

Trial 1: Weed control in established grapes

Controlling Sedges in Landscape Plantings. Joseph C. Neal, Extension Specialist, Weed Management Department of Horticultural Science

OPTIMIZING NITROGEN USE AND EVALUATING ETHEPHON USE IN WAXY BARLEY

Tom Lanini UC Cooperative Extension. This research was supported by the

Southern Illinois University. General Trial Information. Trial Location. Personnel. Pest Description. Maintenance.

Background and Assumptions

Tomato and Pepper Scout Training

2014 Evaluation of Non Irrigated Early Maturing Cotton Varieties, Jay, Florida

Background and Assumptions

2014 Evaluation of Non Irrigated Mid to Full Season Maturing Cotton Varieties, Jay, Florida

2018 // Potato // HARS // CPB Systemic Trial Pg. 1

Response of Cotton to Precision-Guided Cultivation and DSMA in a Dense Stand of Purple Nutsedge

Background & Assumptions

Evaluation of Insecticides for Control of Insect Pests in an MG VII Soybean Beaumont, TX 2009 Soybean Nursery North No. 4

EARLY POST-EMERGENT CONTROL OF SMOOTH CRABGRASS AND THIN PASPALUM WITH TANK-MIXES OF VARIOUS HERBICIDES.

Background and Assumptions

Inspired by nature. Callisto is currently under review by the Pest Management Regulatory Agency and not yet registered for use in Canada.

3. Potato / HARS / CPB Systemic Trial

Background and Assumptions

Soybean Agronomy and Host Plant Resistance Beaumont, TX 2009

Foliar Application of 2,4-D Reduces Damage to Potato Tubers by Common Scab

Biology and Management of Amur honeysuckle (Lonicera maackii) R.J. Smeda, S.A. Riley

Paul Patterson Background and Assumptions

WEED MANAGEMENT PROGRAMS FOR FIELD- GROWN NURSERY STOCK JOHN AHRENS EMERITUS PLANT SCIENTIST CONNECTICUT AGRICULTURAL EXPERIMENT STATION WINDSOR

% control June 2005 Aminopyralid Aminopyralid Aminopyralid Picloram

Plan with Purple. Registered Crops - Delta: When you need to get tough weeds, Dry beans Fallow ground Rice Sugarcane Cotton

temperature. March ended unseasonably warm but was followed by an extended cold

2017 Appling County Cotton Meeting. Weed Control and a few other things

2017 Cotton Weed Control and a few other things

Knapweeds Controlled in Pastures and Grass Hayfields with New Herbicide

Flower Species as a Supplemental Source of Pollen for Honey Bees (Apis mellifera) in Late Summer Cropping Systems

AGRONOMIC POTENTIAL AND LIMITATIONS OF USING PRECIPITATED CALCIUM CARBONATE IN THE HIGH PLAINS

Control. Crabgrass. in Georgia Hayfields

Southern Illinois University Plexus with Fomesafen Herbicides.

Background and Assumptions

Southwestern Idaho. The Model Farm. Production Practices

2015 CNY SMALL GRAIN WORKSHOP Russ Hahn Soil and Crop Sciences Cornell University

Background and Assumptions

Paul Patterson, Steven Hines and Juliet Marshall. Background and Assumptions

Background and Assumptions

Effective Management of Hard-to- Control Weeds in Zoysiagrass Lawns

Weeds, Weed Control and PGRs Ronald N. Calhoun and Aaron D. Hathaway Department of Crop and Soil Sciences Michigan State University

FN15Nostoc. Objective: to determine the effectiveness of different herbicides on Nostoc in gravel in container nurseries.

MISSISSIPPI SOYBEAN PROMOTION BOARD PROJECT NO FINAL REPORT

Paul Patterson and Steven Hines Background and Assumptions

By the end of this lesson, you should be able to

3 c 0.3 b 2 b 1.7 b 2 c 10 c. 0 c 0 b 0.7 b 0.7 b 0.7 c 3.7 c b 34 b 26 b 26.7 b 56.3 b 73.3 b. 5.7 c 7.7 b 9.7 b 8.3 b 16.

New Grass and Broadleaf Weed Management Options in Coastal Bermudagrass Pastures

Site Information William H. Daniel Research and Diagnostic Center Starks-Fincastle silt loam Soil ph: 7.2. Preemergent and 1 to 2 tiller

Eastern Idaho. Paul E. Patterson and Juliet M. Marshall Background and Assumptions

EFFECTS OF DIFFERENT DOSES OF GLYCINE BETAINE AND TIME OF SPRAY APPLICATION ON YIELD OF COTTON (GOSSYPIUM HIRSUTUM L.)

BI NAMED MONTEREY FARM ADVISOR

PURPOSE To develop a strategy for deriving a map of functional soil water characteristics based on easily obtainable land surface observations.

W285. Matthew S. Wiggins Graduate Research Assistant Department of Plant Sciences. C. Owen Gwathmey Professor Emeritus Department of Plant Sciences

Herbicide Label Changes for Asparagus - Doug

ORNAMENTALS NORTHWEST ARCHIVES

Crop Enterprise Budget Sugar Beets, Thick-Planted, Wheatland Area

Evaluation of Herbicide Carryover Sub-Surface Drip Irrigated Tomato. Kurt Hembree and Tom Turini Farm Advisors, UCCE Fresno County

Weed Identification and Control Options Katie Jennings NC State University November 9, 2012

those in Arizona. This period would extend through the fall equinox (September 23, 1993). Thus, pending variation due to cloudiness, total light flux

2014 Ryan Lawn and Tree Overseeding Evaluation. University of Nebraska-Lincoln & Kansas State University. Zac Reicher, Jared Hoyle, and Matt Sousek

DICAMBA 2018: HOPE MEETS REALITY

MICROCOMPUTER CROP COST AND RETURN GENERATOR

Weed Competition and Interference

Estimated Effectiveness of Recommended Herbicides on Selected Common Weeds in Florida Vegetables 1

List of Equipment, Tools, Supplies, and Facilities:

Volume XVII, Number July Chasing Petioles

Nutsedge Control in Turfgrass practical approaches to consider. Kai Umeda Area Extension Agent

Kentucky Seed Certification Standards. I. Explanation of General Standards as Applied to Corn Hybrids

Avoiding Stink Bug Damage and Flat Pod Syndrome in Soybean with a MGVI Cultivar and Planting Date Beaumont, TX 2005

T.W. Gannon and F. H. Yelverton North Carolina State University Department of Crop Science

Devrinol (once soil settles after transplanting); Poast OR Venture (as needed). Authority. Ignite OR Aim for primocane control (Late. Spring.

Title Sorghum/Cotton Rotation under Extreme Deficit Irrigation Conditions. Location Texas Agricultural Research and Extension Center, Halfway, TX

VEGETABLE CULTIVAR AND CULTURAL TRIALS 2009

The Dicamba Conundrum

Location Field 30 at the University of Delaware Research and Education Center Farm, Georgetown, DE.

Trial Report: Slicing Cucumber Variety Evaluation Spring 2014

The Safety and Efficacy of Slow Release Diuron.

Nutrient Recommendations for Russet Burbank Potatoes in Southern Alberta

Development and Test of Potassium Management Algorithms for Corn. Ron Potok (Solum), Kyle Freeman (Mosaic), and Scott Murrell (IPNI) Project Summary:

University of Georgia, Cooperative Extension Service

I. heavy wheat residue - Table 1. II. light wheat residue - Table 2. III. alfalfa - Table 3. IV. blue-grass for seed - Table 4.

Effect of Organic Soil Fertility and Fungicide Treatments on Yield and Pest Management, Neely-Kinyon Farm-2015

Evaluation of Quinoclamine and Diuron for Postemergence Control of Liverwort (c)

NCSU Turf Website.

Soybean Insecticide Screening Test 1 Field north of TRIA house Beaumont, TX 2014 I II III IV

Background and Assumptions

$25 per bin, minimum $50 per on-site visit

University of Florida-IFAS

Transcription:

EVALUATiON OF YUKON HERBICIDE RATES FOR YELLOW NUTSEDGE CONTROL IN CORN GROWN IN ROTATIONS FOLLOWED BY ONION Joel Felix and Joey Ishida Malheur Experiment Station Oregon State University Ontario, OR, 2008 Introduction Yellow nutsedge has become a major production threat in many agricultural fields in the Treasure Valley of eastern Oregon. The gravity of this problem is especially noticeable when the land is planted to onions. Thus, development of effective yellow nutsedge control strategies is necessary for the continued sustainability of the local onion industry. Control of yellow nutsedge presents a challenge because of its ability to reproduce vegetatively through rhizomes and tubers that can survive in the soil for 2-5 years. Research results at the Malheur Experiment Station indicate that millions of tubers are produced per acre each season in heavily infested fields (Felix and Ishida 2007, Shock et al. 2006). Successful control of yellow nutsedge will partly require development of elaborate crop rotation schemes that include tillage, fumigation, and herbicides to destroy those pesky tubers. Farming activities play a significant role in yellow nutsedge distribution in infested fields (Schippers et al. 1993). Yukon herbicide is a premix of halosutfuron-methyl and sodium salt of dicamba marketed by Gowan Company for selective control of some annual broadleaf weeds and yellow nutsedge. Herbicides containing the active ingredient halosulfuron are arguably the best products on the market for yellow nutsedge control. The downside to these products is that onions tend to be ultra sensitive to even low soil residues. This study is an attempt to test products that will enhance yellow nutsedge control in rotations that include onions. Materials and Methods A field study was established in 2008 in a grower field near Fruitland, Idaho to determine the rates of Yukon herbicides that can be used to control yellow nutsedge in corn grown in rotation preceding onion in the Treasure Valley of eastern Oregon and southwestern Idaho. The trial was conducted in a well-drained, furrow-irrigated field that had been planted to corn the previous year. The predominant soil was an Owyhee silt loam with a ph of 6.8, organic matter of 1.1 percent, and a cation exchange capacity of 9 meq/loog soil. The study area was moldboard plowed, disked, and bedded to 30-inch spacing on April 29, 2008. The study was laid out in a randomized complete block design with four replications. Individual plots were 10 ft wide (4 rows) by 30 ft long. Four soil core samples (4.25-inch diameter) for yellow nutsedge quantification were taken to 12-inch depth on May 8, 2008. Follow-up samples to characterize treatment performance were taken on October 6 using the same methodology. The wash and sieve method was used to recover tubers from the soil samples, and tubers were 197

counted for each plot. Pre-emergence (PRE) treatments were applied on May 19 and a bed harrow was used for incorporation into the soil. Roundup Ready corn hybrid 'DK C52-59-RR' was planted with a John Deere model 71 flexi planter on May 22, at 7%- inch spacing within the row. Corn plants were fertilized on June 18 using a compound fertilizer at the rate of 180, 20, and 3 lb/acre, nitrogen, potassium, and zinc, respectively. The study was corrugated and watered on June 20 and postemergence (POST) treatments were applied on June 24. All herbicide treatments were applied using a CO2-pressurized backpack sprayer calibrated to deliver 20 gal/acre at 40 psi and 3 mph. Plots were visually evaluated for crop injury and weed control using 0-100 percent scale (where 0 = no crop injury or no weed control and 100 = complete crop kill or complete weed control) at 8 and 24 days after POST herbicide application timing. Treatment performance, changes in yellow nutsedge tubers, and corn yield data are presented in Tables I and 2. Harvesting was done by hand-picking corn ears at maturity on October 17, 2008 from the 2 center rows and 20-ft length. Results and Discussion Corn growth in the untreated plots was severely reduced (Table 1). Similarly, plant growth reduction was noticed in plots not treated with PRE herbicides. Use of PRE Eradicane 6.7E or Dual Magnum at 6 pt/acre or 1.33 pt/acre, respectively, produced the best early corn growth before POST applications. Yellow nutsedge control 8 days after POST application ranged between 19 and 86 percent with plots that received PRE herbicides giving the best performance. Visual control for common lambsquarters, pigweed species, and large crabgrass at 8 days after treatment (DAT) was recorded at 99 percent. In fact all herbicide treatments provided season-long control for these weed species. Samples taken at the beginning of the study suggested uniform distribution of yellow nutsedge tubers at the site (Table 2). The average tuber population density ranged between 207 and 278/ft2. Yellow nutsedge control 24 DAT ranged between 70 and 97 percent across herbicide treatments. Plots treated with PRE herbicides had the highest control once again. Soil samples taken at the end of the season indicated dramatic reduction in the number of yellow nutsedge tubers across treatments. Herbicide treatments reduced yellow nutsedge tubers by 54 to 72 percent across treatments. Corn yield varied greatly across herbicide treatments, with plots that received PRE herbicides producing the highest yield and the untreated control the lowest. Yield ranged from 137 bu/acre to 276 bu/acre across treatments. The results suggest significant reduction in yellow nutsedge when corn is planted, preferably, in the first year of a 3-year rotation. The Yukon label recommends that at least 18 months must elapse before planting onions. In fields heavily infested with yellow nutsedge, a generalized rotation of growing corn for 2 years in a row, with applications of Yukon in year I followed by Dual Magnum in year 2 before planting wheat in the year preceding onions, may provide the best yellow nutsedge control. 198

References Felix, J., and J. Ishida. 2007. Effect of tuber placement on yellow nutsedge reproduction. Oregon State University Agricultural Experiment Station Special Report 1087:206-210. Schippers, P., S.J. Ter Borg, J.M. Van Groenendael, and B. Habekotte. 1993. What makes Cyperus esculentus (yellow nutsedge) an invasive species? A spatial model approach. Proceedings Brighton Crop Protection Conference: 495-504. Shock, C.C., J. Ishida, and E. Feibert. 2006. Yellow nutsedge nutlet production in response to nutlet planting depth. Oregon State University Agricultural Experiment Station Special Report 1075:160-162. 199

Table 1. Visual weed control at 8 days after herbicide application in Fruitland, Idaho, 2008. Treatment Rate Unit Corn Weed control Application growth Yellow Common Pigweed Large timing reduction nutsedge lambsquarters species crabgrass Untreated check 46a Od Ob Ob Ob Eradicane 6.7E 6 pt/a PPI 0 b 86 ab 99 a 99 a 99 a Yukon 4 ozla POST * * Eradicane 6.7E 6 pt/a PPI 8 b 74 b 99 a 99 a 99 a Yukon 8 oz/a POST Yukon 4 oz/a POST 35 a 31 C 99 a 99 a 99 a Yukon 8 oz/a POST 30 a 25 c 99 a 99 a 99 a Yukon + 4 oz/a EPOST 43 a 23 c 99 a 99 a 99 a Roundup PowerMax 20 fi oz/a Yukon + 4 ozla 2wks after Roundup PowerMax 20 fi oz/a EPOST Sandea 1.33 oz/a POST 38 a 19 c 99 a 99 a 99 a Dual Magnum 1.33 pt/a PPI 3 b 89 a 99 A 99 a 99 a Sandea 1.33 ozla POST 2.34 pt/a PPI = Preplant incorporated, EPOST = Early postemergence, POST = postemergence. Means within a co'umn followed by the same letter are not significantly different according to LSD P 0.05. * = ammonium sulfate, = non-ionic surfactant. 200

Table 2. Number of yellow nutsedge tubers before (5/8/2008) and after (10/16/2008) the herbicide treatment, control at 24 days after herbicide application, and corn yield (bu/acre) in Fruitland, Idaho, 2008. Treatment Rate Unit Timing Yellow nutsedge Tubers (before) Control Tubers (after) Corn yield* Number/ft2 % Number/ft2 bu/acre Untreated check 228 a 0.0 d 287 (+21%) A 137 D Eradicane 6.7E 6 pt/a PPI 250 a 95 a 80 (-68%) B 276 A Yukon 4 oz/a POST ** ** Eradicane 6.7E 6 pt/a PPI 207 a 94 a 78 (-62%) B 242 Ab Yukon 8 oz/a POST Yukon 4 ozla POST 259 a 86 ab 95 (-63%) b 218 bc Roundup PowerMax 20 fi oz/a Yukon 8 oz/a POST 259 a 79 bc 120 (-54%) b 195 C Yukon + 4 oz/a EPOST 272 a 79 bc 121 (-56%) b 219 bc Yukon + 4 oz/a 2wks after EPOST Sandea 1.33 oz/a POST 271 a 70 c 102 (-62%) b 187 c Dual Magnum 1.33 pt/a PPI 278 a 97 a' 78 (-72%) b 267 a Sandea 1.33 oz/a POST 2.34 pt/a PPI = Preplant incorporated, EPOST = Early postemergence, POST = postemergence. tmeans within a column followed by the same letter are not significantly different according to LSD P = 0.05. * Corn yield has been adjusted to 15.5 percent moisture content and 56 Ibs/bu. ** = ammonium sulfate, = non-ionic surfactant. 201