Research Article Soil Saturated Simulation in Embankment during Strong Earthquake by Effect of Elasticity Modulus

Similar documents
2D Liquefaction Analysis for Bridge Abutment

Model tests and FE-modelling of dynamic soil-structure interaction

Seismic Analysis of Soil-pile Interaction under Various Soil Conditions

Safety analyses of Srinagarind dam induced by earthquakes using dynamic response analysis method.

Numerical analysis of effect of mitigation measures on seismic performance of a liquefiable tailings dam foundation

Seismic Design of a Hydraulic Fill Dam by Nonlinear Time History Method

NONLINEAR ANALYSIS OF A DAM-RESERVOIR-FOUNDATION SYSTEM UNDER SPATIALLY VARIABLE SEISMIC EXCITATIONS

Seismic stability safety evaluation of gravity dam with shear strength reduction method

Dynamic Analysis Contents - 1

On seismic landslide hazard assessment: Reply. Citation Geotechnique, 2008, v. 58 n. 10, p

EVALUATION OF SITE CHARACTERISTICS IN LIQUEFIABLE SOILS

Research Article 3D FE Analysis of an Embankment Construction on GRSC and Proposal of a Design Method

Numerical simulation of inclined piles in liquefiable soils

STUDY OF DYNAMIC SOIL-STRUCTURE INTERACTION OF CONCRETE GRAVITY DAMS

Behaviour of Earth Dam under Seismic Load Considering Nonlinearity of the Soil

NUMERICAL ANALYSIS OF DAMAGE OF RIVER EMBANKMENT ON SOFT SOIL DEPOSIT DUE TO EARTHQUAKES WITH LONG DURATION TIME

Seismic Analyses of Concrete Gravity Dam with 3D Full Dam Model

Back Analysis of the Lower San Fernando Dam Slide Using a Multi-block Model

Seismic Evaluation of Tailing Storage Facility

Numerical model comparison on deformation behavior of a TSF embankment subjected to earthquake loading

Benefits of Collaboration between Centrifuge Modeling and Numerical Modeling. Xiangwu Zeng Case Western Reserve University, Cleveland, Ohio

COMPARISON BETWEEN 2D AND 3D ANALYSES OF SEISMIC STABILITY OF DETACHED BLOCKS IN AN ARCH DAM

The Effect of Using Hysteresis Models (Bilinear and Modified Clough) on Seismic Demands of Single Degree of Freedom Systems

FINITE ELEMENT SIMULATION OF RETROGRESSIVE FAILURE OF SUBMARINE SLOPES

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL

Dynamic Analysis to Study Soil-Pile Interaction Effects

Embedment Depth Effect on the Shallow Foundation - Fault Rupture Interaction

Landslide FE Stability Analysis

J. Paul Guyer, P.E., R.A.

Shake Table Study of Soil Structure Interaction Effects in Surface and Embedded Foundations

Endochronic model applied to earthfill dams with impervious core: design recommendation at seismic sites

Dynamic Response of EPS Blocks /soil Sandwiched Wall/embankment

Research Article Experimental Parametric Identification of a Flexible Beam Using Piezoelectric Sensors and Actuators

1D Analysis - Simplified Methods

Dynamic modelling in slopes using finite difference program

Seismic Stability of Tailings Dams, an Overview

Micro Seismic Hazard Analysis

AN IMPORTANT PITFALL OF PSEUDO-STATIC FINITE ELEMENT ANALYSIS

Research Article Trapped-Mode Resonance Regime of Thin Microwave Electromagnetic Arrays with Two Concentric Rings in Unit Cell

Geotechnical Earthquake Engineering

Soil-Structure Interaction in Nonlinear Pushover Analysis of Frame RC Structures: Nonhomogeneous Soil Condition

Research Article Dispersion of Love Waves in a Composite Layer Resting on Monoclinic Half-Space

The Preliminary Study of the Impact of Liquefaction on Water Pipes

Analytical and Numerical Investigations on the Vertical Seismic Site Response

2D Embankment and Slope Analysis (Numerical)

Research Article Travel-Time Difference Extracting in Experimental Study of Rayleigh Wave Acoustoelastic Effect

An Overview of Geotechnical Earthquake Engineering

EA (kn/m) EI (knm 2 /m) W (knm 3 /m) v Elastic Plate Sheet Pile

APPENDIX J. Dynamic Response Analysis

Deformation And Stability Analysis Of A Cut Slope

1.8 Unconfined Compression Test

Evaluation of Fault Foundation Interaction, Using Numerical Studies

NON-LINEAR ANALYSIS OF SOIL-PILE-STRUCTURE INTERACTION UNDER SEISMIC LOADS

Seismic Response Analysis of Structure Supported by Piles Subjected to Very Large Earthquake Based on 3D-FEM

Dynamic Soil Pressures on Embedded Retaining Walls: Predictive Capacity Under Varying Loading Frequencies

Fujinuma Dam Performance during 2011 Tohoku Earthquake, Japan and Failure Mechanism by FEM

Behavior of Concrete Dam under Seismic Load

Test Study on Strength and Permeability Properties of Lime-Fly Ash Loess under Freeze-Thaw Cycles

Rock slope failure along non persistent joints insights from fracture mechanics approach

Numerical and Theoretical Study of Plate Load Test to Define Coefficient of Subgrade Reaction

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER

PRINCIPLES OF GEOTECHNICAL ENGINEERING

EARTHQUAKE SAFETY OF AN ARCH-GRAVITY DAM WITH A HORIZONTAL CRACK IN THE UPPER PORTION OF THE DAM

STABILITY ANALYSIS OF EARTH DAM SLOPES SUBJECTED TO EARTHQUAKE USING ERT RESULTS INTERPRETATION

Applicability of Multi-spring Model Based on Finite Strain Theory to Seismic Behavior of Embankment on Liquefiable Sand Deposit

S Wang Beca Consultants, Wellington, NZ (formerly University of Auckland, NZ)

Seismic Analysis of Siri Dam Using Pseudo-Static Approach

Application of pseudo-symmetric technique in dynamic analysis of concrete gravity dams

Liquefaction Potential Variations Influenced by Building Constructions

Effect of structural design on fundamental frequency of reinforced-soil retaining walls

SEISMIC BEHAVIORS OF EARTH-CORE, CONCRETE-FACED- ROCK-FILL, AND COMPOSITE DAMS

Numerical Modeling of Interface Between Soil and Pile to Account for Loss of Contact during Seismic Excitation

Lateral Earth Pressure

COMPARATIVE STUDY OF LINEAR-ELASTIC AND NONLINEAR- INELASTIC SEISMIC RESPONSES OF FLUID-TANK SYSTEMS

Evaluating the Seismic Coefficient for Slope Stability Analyses

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials

Modelling of Concrete Gravity Dam Including Dam-Water-Foundation Rock Interaction

Effective stress analysis of pile foundations in liquefiable soil

Frequency-Dependent Amplification of Unsaturated Surface Soil Layer

Role of hysteretic damping in the earthquake response of ground

NUMERICAL ANALYSIS OF A PILE SUBJECTED TO LATERAL LOADS

Deflections and Strains in Cracked Shafts due to Rotating Loads: A Numerical and Experimental Analysis

Research Article Two Mathematical Models for Generation of Crowned Tooth Surface

SEISMIC COEFFICIENTS FOR PSEUDOSTATIC SLOPE ANALYSIS

The Nonlinear Time-Domain Modeling of Earthquake Soil Structure Interaction for Nuclear Power Plants: Nonlinear Contact Between Foundation and Rock

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil

Objectives. In this section you will learn the following. Rankine s theory. Coulomb s theory. Method of horizontal slices given by Wang (2000)

Centrifuge Evaluation of the Impact of Partial Saturation on the Amplification of Peak Ground Acceleration in Soil Layers

Dynamics Manual. Version 7

Finite Element analysis of Laterally Loaded Piles on Sloping Ground

Research Article Investigations of Dynamic Behaviors of Face Gear Drives Associated with Pinion Dedendum Fatigue Cracks

Horizontal bulk material pressure in silo subjected to impulsive load

Recent Research on EPS Geofoam Seismic Buffers. Richard J. Bathurst and Saman Zarnani GeoEngineering Centre at Queen s-rmc Canada

Centrifuge modelling of municipal solid waste landfills under earthquake loading

Influences of material dilatancy and pore water pressure on stability factor of shallow tunnels

EVALUATING RADIATION DAMPING OF SHALLOW FOUNDATIONS ON NONLINEAR SOIL MEDIUM FOR SOIL-STRUCTURE INTERACTION ANALYSIS OF BRIDGES

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

DYNAMIC RESPONSE APPROACH AND METHODOLOGY

The Seismic Performance of Tousheh Dam During the Chi-Chi Earthquake

Research Article An Analysis of the Quality of Repeated Plate Load Tests Using the Harmony Search Algorithm

Transcription:

Modelling and Simulation in Engineering, Article ID 191460, 7 pages http://dx.doi.org/10.1155/2014/191460 Research Article Soil Saturated Simulation in Embankment during Strong Earthquake by Effect of Elasticity Modulus Behrouz Gordan, Azlan Adnan, and Mariyana A. K. Aida Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia Correspondence should be addressed to Behrouz Gordan; bh.gordan@yahoo.com Received 20 February 2014; Revised 12 June 2014; Accepted 12 June 2014; Published 1 July 2014 Academic Editor: Hongyi Li Copyright 2014 Behrouz Gordan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The dynamic analysis process was started after failure in some embankments during an earthquake. In this context, maximum displacement was reported at the crest based on interaction between structure and reservoir. This paper investigates the dynamic behavior of short embankment on soft soil. For this purpose, numerical analysis was carried out using ANSYS13 program based on finite-element method. Simulated models were vibrated by strong earthquake, so the peak ground acceleration (PGA) and duration were 0.65 g and 5.02 seconds, respectively. The comparison results were discussed in key points of plane strain analysis based on modulus ratio between saturated embankment and foundation. As concluded, the modulus ratio between 0.53 and 0.66 led to having a minimum value of horizontal displacement, relative displacement in vertical direction, and shear stress. Consequently, the shear stress was increased while the modulus ratio was decreased. Finally, to avoid more rigidity in the embankment on the soft soil, optimum modulus ratio was recommended at 0.66 in order to reduce the probabilistic of body cracks at the crest with respect to homogeneous behavior during an earthquake. 1. Introduction Dynamicanalysisisoneofthemainaspectsforembankment designing. As a lesson learned, some huge damages such as different types of body cracks were recorded during an earthquake. It seems that a specific attention to complete research in this area is one of the major concerns for geotechnical designers. According to the literature, depth review in this category demonstrated that since the beginning of 1920 until 1960, pseudostatic method was well known. With full respect for this technique, this method was very simple and indicated the weak performance in order to cover some factors such as nature of the slope-forming and foundation material. Based on deformation characteristics, the sliding block method was completely presented by Newmark in 1965 [1]. Among other methods, shear beam method was presented by Mononobe [2]. As stated by Gazetas [3], an improved inhomogeneous shear beam model was investigated and it was concluded that the shear modulus was variable value in earth dams or rock fill dams and increased with 2/3 power of depth from the crest. To estimate the dynamic response of an embankment, the finite-element method was successfully presented by Clough et al. [4] using plan-strain analysis (2D). In this study, materials for modeling were consisted of linearly elastic, homogeneous, and isotropic. Later, this study was developed by other researchers using finite-element method and finitedifference method to cover some factors such as nonlinear, inelastic, nonuniform, and anisotropic behavior of materials under dynamic loads. As stated by Zeghal et al. [5], a localglobal finite-element method was proposed to determine the nonlinear behavior of earth dams. Ming et al. [6] investigated fully coupled analysis of failure and remediation of lower San Fernando dam. The significant reasons for dam failure were reported in this study. In terms of earthquake engineering research, quick development in the computer programs directly led to the comprehensive analysis. For instance, several programs [7 11] were widely used for dynamic analysis of embankment. As presented by Namdar et al. [12], the assessment of embankment behavior was investigated using shaking table and finite-element method. The good agreement between analytical and physical modeling was obtained in this study. According to study from Wang et al. [13],

2 Modelling and Simulation in Engineering Table 1: A dimension of models. H=30m K = 15.00 m X = 108.92 m R = 36.37 m H1 = 21.00 m L = 9.00 m Z = 15.00 m W = 5.00 m θ=30 W R H Saturate body D C E L H 1 Z K B θ Zone A Earthquake record on bedrock X K Figure 1: A modeling dimension according to Table 1 forplanstrain(2d). the geotextile-reinforced soil in embankment body was studied using centrifuge modeling, and they discussed embankment behavior during an earthquake. According to Zhu et al. [14]andBrinkgreveetal.[15], a two-dimensional seismic stability for a levee embankment was possible using PLAXIS program based on finite-element method. After all, as mentioned, the maximum displacement during earthquake was at the crest, as regards the soil amplification and interaction between dam and reservoir. In terms of dynamic behavior with respect to flexibility, the main role was featured by elasticity modulus. This paper tried to evaluate the effect of material properties based on parametric study in the saturate embankment on dynamic performance in order to find the best modulus ratio between saturated zone and loose sand foundation. 2. Modeling Process This process includes some phases such as introducing program, element, boundary conditions, parametric dimension, material properties, meshing, key points, and earthquake record which are described below. 2.1. Introduce ANSYS Program and Element. This program is one of the comprehensive software s under finite-element method, and 100000 coed line are available, as related to thecomputer-aidedengineering(cae).infact,thisprogram is very famous with strong ability to analyze in different engineering purposes. In the present study, solid42 element for embankment and foundation was used. In addition, fluid79 was applied for water element according to help menu. Both elements were recommended for plan strain (2D). In fact, the lateral strain in the simulated models assumed zero. 2.2. Boundary Conditions. In terms of boundary condition for modeling, earthquake record in the horizontal direction ofthebaseofmodelwasusedwithrespecttodisplacementtime. For this case, NAGAN record with accelerationtime converted to displacement time using SISMOSOFT3 program. Vertical displacement was assumed zero in the bedrock, and earthquake duration was 5.02 seconds with substep (0.02 second). Both lines of vertical boundary were restricted by zero value in vertical direction, and 0.01 meters for horizontal displacement using trial-error procedure in order to create transient elasticity property for wave during vibration. 2.3. Modeling Parameters. Table 1 presents the dimension of simulated models in the parametric study. As seen, the height of embankment is short, and slope is moderate in order to satisfy slope stability. In addition, the width of the crest is five meters with respect to compaction and the minimum road width. Figure 1 illustrates the parametric dimension of the simulatedmodels.asshown,thebedrockwascoupledbyearthquake record. Moreover, based on water level in reservoir, two parts such as saturated zone (C) and unsaturated zone (D) were separated in models. In addition, water tank located in the right side of model, as marked (E). 2.4. Material Properties. Threematerialswereusedformodeling such as water, foundation, and embankment. The structural body was the clay soil with homogeneous characteristics. Foundation material was the soft loose sand saturated. Help menu recommends for modeling the incompressible water; water properties were also presented in Table 2. This table presents the material property in different zone using three properties of the dam body. It is worth noting that the solid material was simulated using hardening isotropic bilinear. In addition, the friction coefficient was used in models in order to establish interface effect between different materials. The amplitude of material properties in different zone of the model for the present parametric study was applied [16]. The nonlinear behavior of soil was utilized using some factors such as density, elasticity modulus, Poisson s ratio, yield stress, and tangent modulus. Table 2 presents the material properties in different zones (A, B, C, D, and E). Ascanbeseeninthistable,thehugeelasticitymoduluswas applied for incompressible behavior of water as mentioned earlier.

Modelling and Simulation in Engineering 3 Zone Density (Kg/m 3 ) Table 2: Material properties. Elasticity modulus (Kg/m 2 ) Poisson ratio Yield stress (Kg/m 2 ) Tangent modulus Friction coefficient A-foundation (loose-sand saturate) 800 3E6 0.25 1.20E4 0.01 0.30 B-foundation (loose-sand saturate) 800 3E6 0.25 1.20E4 0.01 0.001 C1-embankment (clay saturation) 900 2E6 0.45 8.00E3 0.01 0.001 C2-embankment (clay saturation) 900 16E5 0.45 3.20E3 0.01 0.001 C3-embankment (reinforcement) 900 8E5 0.45 6.40E3 0.01 0.001 D-embankment (unsaturated) 1900 4E5 0.30 1.60E3 0.01 E-water 1000 1E12 0.01. σ 1 σ (stress) L2 σ 2 =2σ 1 L1 0.20 ε (strain) Figure 2: Nonlinear property of soil in bilinear method. Unsaturated Water 1 2 3 Saturated 4 Loose sand foundation 5 Displacement (m) 0.02 0.01 0 0.01 0.02 Figure 4: Regular meshing method. 0 1 2 3 4 5 Time of the Nagan earthquake (s) Figure 5: Input data from Nagan earthquake record according to displacement in the vertical axis (m) and time in horizontal axis (seconds). Figure 3: Key points (1 5) in models. Figure 2 shows the nonlinear behavior of soil based on twostages.itcanbeseenthatlinel1forelasticandlinel2 to evaluate elastic-plastic and plastic condition, respectively. Line L1 is related to linear performance with respect to elasticity modulus, elastic stress according to 0.2% strain, and Poisson s ratio. Line L2 is related to the nonlinear behavior (elastic-plastic and plastic) with tangent modulus; both lines show bilinear isotropic hardening. It is noted that ultimate stress is double in comparison to elastic stress. In this figure, horizontal and vertical axes are, respectively, strain and stress. 2.5. Meshing and Key Points. According to Figure 3, fivekey points 1 5 have been selected to evaluate existing data. Both of them are at the crest, and other points are in the middle of zones in D, C, and A. Figure 4 shows the regular meshing in models. This mesh is used in order to interface between both different lines with same nodes. 2.6. Earthquake Record. In terms of earthquake vibration, all models were carried out based on time history analysis using Nagan earthquake. For this case, PGA (peak ground acceleration) and duration are, respectively, 0.65 g and 5.02 seconds. In terms of input data for ANSYS, this record was converted to displacement-time. For converting, SIS- MOSOFT3 program from Berkeley University was used. Figure 5 shows displacement-time for Nagan earthquake after converting. As shown, the maximum and minimum displacements are 16.5 mm and 11 mm. In this figure, horizontal axis shows the earthquake duration (substep equal to 0.02 seconds). Vertical axis also shows the distribution of displacement based on meter measurement unit. 3. Results and Analysis Numerical analyses were carried out based on scope of study and research methodology as explained earlier. After analysis

4 Modelling and Simulation in Engineering Shear stress (kg/m 2 ) 1500 1200 900 600 300 0.00 300 600 900 1200 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Figure 6: Shear stress in point 4 from model 1; vertical axis is value of shear stress, and horizontal axis is time of earthquake. Time ( 10E 01) 1.645 Displacement value 1.316 0.987 0.659 0.329 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Time Figure 7: Horizontal displacement of point 1 in model 1; vertical axis is value of displacement (meter), and horizontal axis is time of earthquake (seconds). in order to discuss, some results such as displacement distribution in both directions and shear stress were significantly compared. First of all, Figures 6 and 7 show the nonlinear behavior of material under dynamic load for shear stress and displacement. Figure 8 shows the distribution of shear stress for different models for the same key points. As observed, thesefactorswerechangedineachtimewithpositiveor negative position. It means that the transient analysis was obviously performed in models. Figures 6 and 7 illustrated the shear stress of point 4 in model 1 and horizontal displacement of point 1 in model 1, respectively. However, this trend was obtained for structural behavior during an earthquake, as expected. This role was repeated in all key points as introduced earlier. This ability was one of the best engineering earthquake purposes using Ansys program. Due to the results classification, one modulus ratio (λ) was definedaccordingtothefollowing: Elasticity modulus in embankment λ= Elasticity modulus in foundation. (1) This ratio was the simple relationship between elasticity modulusinthesaturatedembankmentandsoftsoilforfoundation. Figure 8 shows the distribution of horizontal displacement in models. As seen, displacement in the first model was less than in second model, with respect to increasing elasticity modulus. This value was dramatically increased in the third model in comparison to other models. In fact, displacement distribution depends on the modulus ratio, and the maximum ratio led to the homogeneous behavior during the strong earthquake. Therefore, horizontal displacement can be decreased while system was limited to the isotropic behavior. The maximum displacement was exposed at key point 4, as located at the middle of saturated embankment. In this case, the influence of water interaction according to the static pressure in the 1/3 of the height was very important. A raise of the modulus ratio led to the increase of horizontal displacement in the middle of foundation zone. However, the minimum horizontal displacement was featured in the key point 5 for all models. Hence, the suitable ratio was obtained in the first model to control horizontal dynamic displacement of the short saturated embankment. Based on the displacement distribution in the vertical direction, the relative displacement for both edges of the crest can play main role for controlling body cracks. Figure 9 shows the vertical displacement in the models. As compared, the maximum and minimum relative displacement were, respectively, found in the second model and first model. As seen, this factor was reduced while the modulus ratio was increased. The reduction of this ratio led to the increased flexibility and settlement. It is worth noting that maximum horizontal displacement occurred at the crest for

Modelling and Simulation in Engineering 5 Horizontal dynamic displacement (m) Key points 2.60E 01 2.40E 01 2.20E 01 2.00E 01 1.80E 01 1.60E 01 1.40E 01 1.20E 01 1.00E 01 8.00E 02 6.00E 02 4.00E 02 2.00E 02 0.00E + 00 λ = 0.66 λ = 0.26 λ = 0.53 1 2 3 4 5 Series1 Series2 Series3 Figure 8: Horizontal displacement at the end of earthquake; horizontal and vertical axes are key points and dynamic displacement (meter). Vertical dynamic displacement (m) Key points 3.40E 02 3.20E 02 3.00E 02 2.80E 02 2.60E 02 2.40E 02 2.20E 02 2.00E 02 1.80E 02 1.60E 02 1.40E 02 1.20E 02 1.00E 02 8.00E 03 6.00E 03 4.00E 03 2.00E 03 0.00E + 00 λ = 0.66 λ = 0.26 λ = 0.53 1 2 3 4 5 Series1 Series2 Series3 Figure 9: Vertical dynamic displacement at the end of earthquake for models, horizontal and vertical axis show key points and vertical displacement (meter), respectively. all models, and there was good agreement between numerical result and case studies reported in the literature. Figure 10 illustrates that the body cracks occurred at the crest in terms of relative displacement during vibration [17]. Consequently, the first model represented the appropriate aspectstocontrolverticaldynamicdisplacementoftheshort saturated embankment. In addition, the prediction of cracks and damage requires nonlinear dynamic analyses [17]. After theabovediscussion,theshearstressdistributioninmodels was shown in Figure 11. The maximum shear stress was placed in the middle of the foundation as expected. Shear stress increased, while modulus ratio decreased. It was revealed that stress on the foundation was four times in the first model in comparison to other models. In brief, the structural behavior indicated the suitable modulus ratio equal to 0.66. As mentioned earlier, the first model also was the best position in order to minimize relative displacement. Finally, modulus ratio that equals 0.66 indicated the flexible behavior when the foundation was placed on the loose soft soil. 4. Conclusion In this study, the short saturated embankment was evaluated during the strong earthquake while it was coupled by foundation with loose sand. The modulus ratio between saturated embankment and foundation showed the main role to choose the best performance. As a result, based on comparison of the displacement in both direction and shear stress on some key points of the simulated model using ANSYS program, the suitable modulus ratio was 0.66. Finally, the good agreement was revealed between results based on numerical analysis and casestudiesaccordingtoliterature.moreattempttofindthis ratio for tall embankment is the best suggestion to investigate at next.

6 Modelling and Simulation in Engineering Figure 10: Cracking and inelastic deformations of the crest in an embankment dam caused by the 2001 Buhl earthquake in India. XY shear stress Main points 6.00E + 0.3 5.40E + 03 4.80E + 03 4.20E + 03 3.60E + 03 3.00E + 03 2.40E + 03 1.80E + 03 1.20E + 03 6.00E + 02 0.00E + 00 λ = 0.66 λ = 0.26 λ = 0.53 1 2 3 4 5 Series1 Series2 Series3 Figure 11: XY Shear stress in the end of earthquake for models; horizontal axis is main points, and vertical axis is shear stress (Kg/m 2 ). Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. Acknowledgment This study is made possible by the support of the International Doctorate Fellowship of Universiti Teknologi Malaysia, and it is very much appreciated. References [1] N. M. Newmark, Effects of earthquakes on dams and embankments, Geotechnique, vol. 15, no. 2, pp. 139 160, 1965. [2] N. Mononobe, A. Takata, and M. Matumura, Seismic stability of the earth dam, in Proceedings of the 2nd Congress on Large Dams (CLD '36), Washington, DC, USA, 1936. [3] G. Gazetas, A new dynamic model for earth dams evaluated through case histories, Soils and Foundations,vol.21,no.1,pp. 67 78, 1981. [4] R. W. Clough and A. K. Chopra, Earthquake Stress Analysis in Earth Dams, Department of Civil Engineering, University of California, 1965. [5] M. Zeghal and A. M. Abdel-Ghaffar, Local-global finite element analysis of the seismic response of earth dams, Computers and Structures,vol.42,no.4,pp.569 579,1992. [6]H.Y.MingandX.S.Li, Fullycoupledanalysisoffailure and remediation of Lower San Fernando Dam, Geotechnical and Geoenvironmental Engineering,vol.129,no.4, pp. 336 349, 2003. [7] J. L. Borges, Microstructural weathering of sedimentary rocks by freeze-thaw cycles: experimental study of state and transfer parameters, ComptesRendusGeoscience,vol.31,no.8,pp.665 676, 2004. [8] A. Yildiz, Numerical analyses of embankments on PVD improved soft clays, Advances in Engineering Software,vol.40, no.10,pp.1047 1055,2009. [9]G.A.Ordóñez, SHAKE2000: A Computer Program for the 1D Analysis of Geotechnical Earthquake Engineering Problems, User s Manual, Geomotions, LLC, Lacey, Wash, USA, 2011. [10] R. Noorzad and M. Omidvar, Seismic displacement analysis of embankment dams with reinforced cohesive shell, Soil Dynamics and Earthquake Engineering,vol.30,no.11,pp.1149 1157, 2010. [11] Z. F. Xia, G. Ye, J. Wang, B. Ye, and F. Zhang, Fully coupled numerical analysis of repeated shake-consolidation process of earth embankment on liquefiable foundation, Soil Dynamics and Earthquake Engineering, vol. 30, no. 11, pp. 1309 1318, 2010. [12] A.NamdarandA.K.Pelko, Seismicevaluationofembankment by shaking table test and finite element method, The Pacific JournalofScienceandTechnology, vol. 11, no. 2, pp. 699 707, 2010. [13] L. Wang, G. Zhang, and J.-M. Zhang, Centrifuge model tests of geotextile-reinforced soil embankments during an earthquake, Geotextiles and Geomembranes,vol.29,no.3,pp.222 232,2011.

Modelling and Simulation in Engineering 7 [14] Y. Zhu, K. Lee, and G. H. Collison, A 2D seismic stability and deformation analysis, in Proceeding of the Geo-Frontiers, pp. 1121 1135, Austin, Tex, USA, January 2005. [15] R.B.J.Brinkgreve,R.Al-Khoury,K.J.Bakkeretal.,PLAXIS 2D-Version 8 Full Manual, Delft, The Netherlands, 2002. [16] M. D. Braja, Advanced Soil Mechanics,CRCPress,2013. [17] M. Wieland, Analysis aspects of dams subjected to strong ground shaking, International Water Power & Dam Construction,2008.

Rotating Machinery Engineering The Scientific World Journal Distributed Sensor Networks Sensors Control Science and Engineering Advances in Civil Engineering Submit your manuscripts at Electrical and Computer Engineering Robotics VLSI Design Advances in OptoElectronics Navigation and Observation Chemical Engineering Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Modelling & Simulation in Engineering Shock and Vibration Advances in Acoustics and Vibration