Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Similar documents
Quantum Information Processing with Semiconductor Quantum Dots

Lecture 8, April 12, 2017

Lecture 2: Double quantum dots

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Semiconductor few-electron quantum dots as spin qubits

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Electron spin qubits in P donors in Silicon

Supporting Online Material for

Determination of the tunnel rates through a few-electron quantum dot

Two-qubit Gate of Combined Single Spin Rotation and Inter-dot Spin Exchange in a Double Quantum Dot

Quantum Dot Spin QuBits

Enhancement-mode quantum transistors for single electron spin

Few-electron quantum dots for quantum computing

Quantum physics in quantum dots

Driven coherent oscillations of a single electron spin in a quantum dot

SUPPLEMENTARY INFORMATION

Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique

Electrical control of spin relaxation in a quantum dot. S. Amasha et al., condmat/

Introduction. Resonant Cooling of Nuclear Spins in Quantum Dots

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Quantum Computing with Semiconductor Quantum Dots

We study spin correlation in a double quantum dot containing a few electrons in each dot ( 10). Clear

Quantum information processing in semiconductors

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

single-electron electron tunneling (SET)

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay

Electron counting with quantum dots

Spins in few-electron quantum dots

collaboration D. G. Austing (NTT BRL, moved to NRC) Y. Tokura (NTT BRL) Y. Hirayama (NTT BRL, CREST-JST) S. Tarucha (Univ. of Tokyo, NTT BRL,

Developing Quantum Logic Gates: Spin-Resonance-Transistors

Wave function engineering in quantum dot-ring structures

Qubits by electron spins in quantum dot system Basic theory

Spin-orbit qubit in a semiconductor nanowire

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Quantum Computing with Electron Spins in Semiconductor Quantum Dots

Magnetic Resonance in Quantum Information

Electron Spin Qubits Steve Lyon Electrical Engineering Department Princeton University

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Intrinsic Charge Fluctuations and Nuclear Spin Order in GaAs Nanostructures

SUPPLEMENTARY INFORMATION

Coherent Control of a Single Electron Spin with Electric Fields

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Nano devices for single photon source and qubit

Solid-State Spin Quantum Computers

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Coulomb blockade in metallic islands and quantum dots

Supplementary Material: Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires

Superconducting quantum bits. Péter Makk

Quantum Computation With Spins In Quantum Dots. Fikeraddis Damtie

Electrical control of superposed quantum states evolution in quantum dot molecule by pulsed field

Supplementary Information: Electrically Driven Single Electron Spin Resonance in a Slanting Zeeman Field

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Title: Co-tunneling spin blockade observed in a three-terminal triple quantum dot

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Quantum Confinement in Graphene

Experimental Quantum Computing: A technology overview

and conversion to photons

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Spin electric coupling and coherent quantum control of molecular nanomagnets

Quantum Computing Architectures! Budapest University of Technology and Economics 2018 Fall. Lecture 3 Qubits based on the electron spin

Driving Qubit Transitions in J-C Hamiltonian

Magnetic Resonance in Quantum

Quantum Optics with Mesoscopic Systems II

Imaging a Single-Electron Quantum Dot

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University

Strong tunable coupling between a charge and a phase qubit

Weak-measurement theory of quantum-dot spin qubits

Stability Diagram of a Few-Electron Triple Dot

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

M.C. Escher. Angels and devils (detail), 1941

Scalable Quantum Computing With Enhancement Quantum Dots

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station

Quantum Dots: Artificial Atoms & Molecules in the Solid-State

SUPERCONDUCTING QUANTUM BITS

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Concepts in Spin Electronics

Experimental Studies of Single-Molecule Transistors

The effect of surface conductance on lateral gated quantum devices in Si/SiGe heterostructures

Decoherence in molecular magnets: Fe 8 and Mn 12

Coulomb blockade and single electron tunnelling

How a single defect can affect silicon nano-devices. Ted Thorbeck

SUPPLEMENTARY INFORMATION

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

A New Mechanism of Electric Dipole Spin Resonance: Hyperfine Coupling in Quantum Dots

Tunable Non-local Spin Control in a Coupled Quantum Dot System. N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus

Few-electron molecular states and their transitions in a single InAs quantum dot molecule

Spin manipulation in a double quantum-dot quantum-wire coupled system

arxiv: v1 [cond-mat.mes-hall] 8 May 2009

Electrical quantum engineering with superconducting circuits

Coherence and Correlations in Transport through Quantum Dots

Manipulation of Majorana fermions via single charge control

Single Microwave-Photon Detector based on Superconducting Quantum Circuits

arxiv: v1 [cond-mat.mes-hall] 25 Feb 2016

Transcription:

Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft

Can we access the quantum world at the level of single-particles? in a solid state environment? S L S R Kane, Nature 1998 Imamoglu et al, PRL 1999 Loss & DiVincenzo PRA 1998

Electrically controlled and measured quantum dots A small semiconducting (or metallic) island where electrons are confined, giving a discrete level spectrum SOURCE e ISLAND DRAIN GATE V sd V g I Coupled via tunnel barriers to source and drain reservoirs Coupled capacitively to gate electrode, to control # of electrons

Examples of quantum dots single molecule self-assembled QD lateral QD nanotube 1 nm 10 nm 100 nm 1µm metallic nanoparticle vertical QD nanowire

Electrostatically defined quantum dots Electrically measured (contact to 2DEG) Electrically controlled number of electrons Electrically controlled tunnel barriers

Spin qubits in quantum dots S L SR Loss & DiVincenzo, PRA 1998 Vandersypen et al., Proc. MQC02 (quant-ph/0207059) Initialization 1-electron, low T, high B 0 H 0 ~ Σ ω i σ zi Read-out convert spin to charge then measure charge ESR SWAP pulsed microwave magnetic field H RF ~ Σ A i (t) cos(ω i t) σ xi exchange interaction EZ = gµbb H J ~ Σ J ij (t) σ i σ j Coherence long relaxation time T 1 long coherence time T 2 J(t)

Spin qubits in quantum dots S L SR Loss & DiVincenzo, PRA 1998 Vandersypen et al., Proc. MQC02 (quant-ph/0207059) Initialization 1-electron, low T, high B 0 H 0 ~ Σ ω i σ zi Read-out convert spin to charge then measure charge ESR SWAP pulsed microwave magnetic field H RF ~ Σ A i (t) cos(ω i t) σ xi exchange interaction EZ = gµbb H J ~ Σ J ij (t) σ i σ j Coherence long relaxation time T 1 long coherence time T 2 J(t)

Transport through quantum dot - 50 Coulomb blockade Current dot [pa] 40 30 20 10 µ N=3 µ N=2 µ L µ R µ N=1 Is this the last electron?? 0-1350 -1400-1450 -1500-1550 -1600-1650 Gate Voltage [mv]

A quantum point contact (QPC) as a charge detector Field et al, PRL 1993 Conductance (e 2 /h) 2 0-0.80-0.85-0.90-0.95-1.00 QPC gate voltage (V) QPC Current (na) 2.0 1.5 1.0-1.17-1.20-1.23-1.26-1.29 Dot plunger voltage (V)

The last electron! 50 2000 40 1500 Dot current [pa] 30 20 10 N=2 N=1 N=0 1000 500 Current QPC [pa] 0 0-1350 -1400-1450 -1500-1550 -1600-1650 Gate Voltage [mv] Sprinzak et al 01

Few-electron double dot design Ciorga et al 99 I DOT T Elzerman et al., PRB 2003 Open design Field et al 93 Sprinzak et al 01 QPC-L I QPC I QPC QPC-R QPC for charge detection GaAs/AlGaAs wafers: L P L M P R R 200 nm NTT (T. Saku, Y. Hirayama) Sumitomo Electric Universität Regensburg (W. Wegscheider)

Few-electron double dot Measured via QPC J.M. Elzerman et al., PRB 67, R161308 (2003) -1.1 diqpc/dv L 0 Tesla -1.02 01 00 V L (V) 00 V L (V) 12 22 11 21 10-0.9 0-0.6 V PR (V) -0.96 V PR (V) -0.15-0.30 Double dot can be emptied QPC can detect all charge transitions

Single electron tunneling through two dots in series Γ L Γ R ΓΓ L L Γ R Γ R µ S µ (N+1,N) µ (N,N+1) µ D µ D Vg1 Vg2

Few-electron double dot Transport through dots J. Elzerman et al., cond-mat/0212489 Peak height -1.02 01 00 < 1 pa V L (V) 12 22 11 21 10 2 pa -0.96 V PR (V) -0.15-0.30 70 pa

Energy level spectroscopy at B = 0 10 di DOT /dv SD SOURCE T DRAIN (mv) V SD 0 N=1 B = 0 T -10-653 -695 V T (mv) E ~ 1.1meV E C ~ 2.5meV N=0 No transport Γ 200 nm M P R Ground state transport Q Ground and excited state transport

Single electron Zeeman splitting in B // V SD (mv) 2 2 ES 0 GS N=0-2 0T Hanson et al, PRL 91, 196802 (2003) Also: Potok et al, PRL 91, 016802 (2003) B=0 B> 0 gµbb g =0.44 V SD (mv) 0-2 -657 N=1 N=1 6T N=0 V T (mv) -675 N=0 10 T -995 V R (mv) -1010 E Z (mev) 0.2 0.1 0 0 5 10 15 B // (T)

Initialization of a single electron spin Method 1: spin-selective tunneling Method 2: relaxation to ground state

Spin qubits in quantum dots S L SR Loss & DiVincenzo, PRA 1998 Vandersypen et al., Proc. MQC02 (quant-ph/0207059) Initialization 1-electron, low T, high B 0 H 0 ~ Σ ω i σ zi Read-out convert spin to charge then measure charge ESR SWAP pulsed microwave magnetic field H RF ~ Σ A i (t) cos(ω i t) σ xi exchange interaction EZ = gµbb H J ~ Σ J ij (t) σ i σ j Coherence long relaxation time T 1 long coherence time T 2 J(t)

Spin read-out principle: convert spin to charge charge SPIN UP N = 1 0 -e time charge 0 SPIN DOWN N = 1 N = 0 N = 1 -e Γ -1 time

Observation of individual tunnel events Vandersypen et al, APL 85, 4394, 2004 Also: Schlesser et al, 2004 RESERVOIR Γ T I QPC DRAIN Q 200 nm M P R SOURCE V SD = 1 mv I QPC ~ 30 na I QPC ~ 0.3 na Shortest steps ~ 8 µs

Pulse-induced tunneling I QPC (na) 0.8 0.4 0.0 response to pulse response to electron tunneling -0.4 0 0.5 1.0 1.5 Time (ms)

Spin read-out procedure V pulse empty QD inject & wait read-out spin empty QD I QPC Inspiration: Fujisawa et al., Nature 419, 279, 2002

V pulse empty QD Spin read-out results Elzerman et al., Nature 430, 431, 2004 inject & wait read-out spin empty QD I QPC I QPC (na) 2 1 0 SPIN UP SPIN DOWN 0 0.5 1.0 Time (ms) 1.5 0 0.5 1.0 1.5 Time (ms)

Spin qubits in quantum dots S L SR Loss & DiVincenzo, PRA 1998 Vandersypen et al., Proc. MQC02 (quant-ph/0207059) Initialization 1-electron, low T, high B 0 H 0 ~ Σ ω i σ zi Read-out convert spin to charge then measure charge ESR SWAP pulsed microwave magnetic field H RF ~ Σ A i (t) cos(ω i t) σ xi exchange interaction EZ = gµbb H J ~ Σ J ij (t) σ i σ j Coherence long relaxation time T 1 long coherence time T 2 J(t)

ESR detection in a single dot ESR lifts Coulomb blockade Engel & Loss, PRL 2001

Double dot in spin blockade for ESR detection E z ~µev<<kt!! ~mev T(0,2) S(0,2) Advantage: interdot transition instead of dot-lead transition Insensitive to temperature can use B < 100 mt, f < 500 MHz Insensitive to electric fields ESR flips spin, lifts spin blockade Combine Engel & Loss (PRL 2001) ESR detection with Ono & Tarucha (Science 2002) spin blockade

ESR device design B DC B AC Gates ~ 30 nm thick gold Dielectric ~ 100nm calixerene Stripline ~ 400nm thick gold Expected AC current ~ 1mA Expected AC field ~ 1mT Maximize B 1, minimize E 1 Ω Ω 250 µm

ESR spin state spectroscopy Dotcurent(fA) (mv) V R Dot current (fa) 500 400 300 200 100 0 RF at 460 MHz P~-16dBm RF off -150 0 Magnetic 500 field (mt) 150 RF frequency (MHz) 700 600 400 300 200 100 ESR signature: Sattelite peaks emerge at spin resonance condition ( g-factor ~ 0.35) I dot (fa) 400 300 100 200 0 Koppens et al., Nature 2006 0-150 -100-50 0 50 100 150 Magnetic field (mt)

V(mV) R Coherent manipulation: pulse scheme Spin blockade Coulomb blockade Spin manipulation Projection S(0,2) V(mV) 6 RF signal 0 Gate pulse Initialization Manipulation Read-out time Initialization in mixture of and Measurement switched off (by pulsing to Coulomb blockade) during manipulation Read-out: projection on {,} vs. {,} basis

Dotcurent(fA) Coherent rotations of single electron spin! Koppens et al. Nature 2006 Oscillations visible up to 1µs Decay non exponential slow nuclear dynamics (non-markovian bath) Agreement with simple Hamiltonian taking into account different resonance conditions both dots

Dotcurent(fA) Driven coherent oscillations -6 I dot (fa) RF Power (dbm) -12 210 110-18 0 400 600 800 1000 Burst time (ns) Oscillation frequency ~ B AC π/2 pulse in 25ns max B 1 = B AC /2 = 1.9 mt B N,z = 1.3 mt clear signature of Rabi oscillations estimated fidelity ~73% Koppens et al. Nature 2006

Spin qubits in quantum dots S L SR Loss & DiVincenzo, PRA 1998 Vandersypen et al., Proc. MQC02 (quant-ph/0207059) Initialization 1-electron, low T, high B 0 H 0 ~ Σ ω i σ zi Read-out convert spin to charge then measure charge ESR SWAP pulsed microwave magnetic field H RF ~ Σ A i (t) cos(ω i t) σ xi exchange interaction H J ~ Σ J ij (t) σ i σ j Coherence long relaxation time T 1 long coherence time T 2 EZ = gµbb J(t)

Coherent exchange of two spins Petta et al., Science 2005 free evolution under exchange Hamiltonian swap 1/2 in as little as 180 ps three oscillations visible, independent of J

Spin qubits in quantum dots - present status Initialization 1 electron, low T, high B 0 H 0 ~ Σ ω i σ zi S L S R Read-out convert spin to charge then measure charge ESR SWAP pulsed microwave magnetic field H RF ~ Σ A i (t) cos(ω i t) σ xi exchange interaction EZ = gµbb Coherence H J ~ Σ J ij (t) σ i σ j measure coherence time J(t) T 1 ~ 1 ms; T 2 > 1 µs