Lesson 2 - The Copernican Revolution

Similar documents
Gravitation and the Motion of the Planets

Gravitation and the Waltz of the Planets

Gravitation and the Waltz of the Planets. Chapter Four

5. Universal Laws of Motion

Chapter 4. The Origin Of Modern Astronomy. Is okay to change your phone? From ios to Android From Android to ios

Overview of Astronautics and Space Missions

History of Astronomy. Historical People and Theories

History. Geocentric model (Ptolemy) Heliocentric model (Aristarchus of Samos)

Earth Science, 13e Tarbuck & Lutgens

Chapter 1 The Copernican Revolution

Planetary Orbits: Kepler s Laws 1/18/07

Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler

The History of Astronomy. Please pick up your assigned transmitter.

Announcements. Topics To Be Covered in this Lecture

Lecture #5: Plan. The Beginnings of Modern Astronomy Kepler s Laws Galileo

Johannes Kepler ( ) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it!

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy

The Acceleration of Gravity (g)

The great tragedy of science the slaying of a beautiful hypothesis by an ugly fact. -Thomas Huxley. Monday, October 3, 2011

Astr 2320 Tues. Jan. 24, 2017 Today s Topics Review of Celestial Mechanics (Ch. 3)

ASTR 1010 Spring 2016 Study Notes Dr. Magnani

Ch. 22 Origin of Modern Astronomy Pretest

Gat ew ay T o S pace AS EN / AS TR Class # 19. Colorado S pace Grant Consortium

Evidence that the Earth does not move: Greek Astronomy. Aristotelian Cosmology: Motions of the Planets. Ptolemy s Geocentric Model 2-1

9/12/2010. The Four Fundamental Forces of Nature. 1. Gravity 2. Electromagnetism 3. The Strong Nuclear Force 4. The Weak Nuclear Force

Monday, October 3, 2011

Astronomy Notes Chapter 02.notebook April 11, 2014 Pythagoras Aristotle geocentric retrograde motion epicycles deferents Aristarchus, heliocentric

Physics Unit 7: Circular Motion, Universal Gravitation, and Satellite Orbits. Planetary Motion

Test 1 Review Chapter 1 Our place in the universe

PHY2019 Observing the Universe

Module 3: Astronomy The Universe Topic 6 Content: The Age of Astronomy Presentation Notes

Occam s Razor: William of Occam, 1340(!)

Early Theories. Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle

Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM

Models of the Solar System. The Development of Understanding from Ancient Greece to Isaac Newton

How big is the Universe and where are we in it?

Unit 2: Celestial Mechanics

January 19, notes.notebook. Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM

THE SUN AND THE SOLAR SYSTEM

Chapter. Origin of Modern Astronomy

Newton s Laws and the Nature of Matter

Lecture 4: Kepler and Galileo. Astronomy 111 Wednesday September 6, 2017

Learning Objectives. one night? Over the course of several nights? How do true motion and retrograde motion differ?

How High Is the Sky? Bob Rutledge

Ancient Cosmology: A Flat Earth. Alexandria

Chapter 2. The Rise of Astronomy. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Kepler s Laws. Determining one point on Mars orbit

18. Kepler as a young man became the assistant to A) Nicolaus Copernicus. B) Ptolemy. C) Tycho Brahe. D) Sir Isaac Newton.

Days of the week: - named after 7 Power (moving) objects in the sky (Sun, Moon, 5 planets) Models of the Universe:

2.4 The Birth of Modern Astronomy

Planetary Mechanics:

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

2.7 Kepler s Laws of Planetary Motion

The following notes roughly correspond to Section 2.4 and Chapter 3 of the text by Bennett. This note focuses on the details of the transition for a

History of Astronomy. PHYS 1411 Introduction to Astronomy. Tycho Brahe and Exploding Stars. Tycho Brahe ( ) Chapter 4. Renaissance Period

Motions of the Planets ASTR 2110 Sarazin

In so many and such important. ways, then, do the planets bear witness to the earth's mobility. Nicholas Copernicus

Basics of Kepler and Newton. Orbits of the planets, moons,

Astronomy Lesson 8.1 Astronomy s Movers and Shakers

b. Remember, Sun is a second or third generation star the nebular cloud of dust and gases was created by a supernova of a preexisting

2 1 History of Astronomy

Philosophical Issues of Computer Science Historical and philosophical analysis of science

By; Jarrick Serdar, Michael Broberg, Trevor Grey, Cameron Kearl, Claire DeCoste, and Kristian Fors

Copernican Revolution. Motions of the sky. Motions of the sky. Copernican Revolution: questions on reading assignment

ASTRONOMY LECTURE NOTES MIDTERM REVIEW. ASTRONOMY LECTURE NOTES Chapter 1 Charting the Heavens

Chapter 02 The Rise of Astronomy

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws Laws of Motion. Laws of Motion

AST 105. Introduction to Astronomy: The Solar System. Announcement: First Midterm this Thursday 02/25

Astronomy- The Original Science

Universal Gravitation

towards the modern view

Comments. Focus on important information Be more interactive!

Scientific Method. Ancient Astronomy. Astronomy in Ancient Times

Chapter 2 The Science of Life in the Universe

Physics Mechanics. Lecture 29 Gravitation

Ast ch 4-5 practice Test Multiple Choice

ASTR-1010: Astronomy I Course Notes Section III

Finding Extrasolar Planets. I

Astronomy 1 Fall 2016

7.4 Universal Gravitation

Introduction To Modern Astronomy I

This Week... Week 3: Chapter 3 The Science of Astronomy. 3.1 The Ancient Roots of Science. How do humans employ scientific thinking?

Lecture #4: Plan. Early Ideas of the Heavens (cont d): Geocentric Universe Heliocentric Universe

Birth of Science. Questions on reading

Today. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws of Planetary Motion. Laws of Motion. in physics

1. The Moon appears larger when it rises than when it is high in the sky because

Kepler, Newton, and laws of motion

What was once so mysterious about planetary motion in our sky? We see apparent retrograde motion when we pass by a planet

Copernican Revolution 15 Jan. Copernican Revolution: questions on reading assignment

Test Bank for Life in the Universe, Third Edition Chapter 2: The Science of Life in the Universe

Benefit of astronomy to ancient cultures

cosmogony geocentric heliocentric How the Greeks modeled the heavens

Tycho Brahe

The History of Astronomy. Theories, People, and Discoveries of the Past

PHYS 155 Introductory Astronomy

Chapter 8 - Gravity Tuesday, March 24 th

INTRODUCTION TO CENTRAL FORCE FIELDS

Astr 1050 Mon. Feb. 6, 2017

Gravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields

Revolution and Enlightenment. The scientific revolution

Transcription:

Lesson 2 - The Copernican Revolution READING ASSIGNMENT Chapter 2.1: Ancient Astronomy Chapter 2.2: The Geocentric Universe Chapter 2.3: The Heliocentric Model of the Solar System Discovery 2-1: The Foundations of the Copernican Revolution Chapter 2.4: The Birth of Modern Astronomy Chapter 1.6: The Measurement of Distance More Precisely 1-2: Measuring Distance with Geometry Chapter 2.5: The Laws of Planetary Motion More Precisely 2-1: Some Properties of Planetary Orbits Chapter 2.7: Newton s Laws Chapter 2.8: Newtonian Mechanics More Precisely 2-2: Weighing the Sun SUMMARY OF HISTORICAL FIGURES AND TEXTS Aristotle (384-322 BC) Aristarchus (310-230 BC) Ptolemy (2 nd century AD) Megale Syntaxis tes Astronomias (Great Syntaxes of Astronomy), also known as Syntaxis, but more commonly known as Almagest (The Greatest) (c. 141 AD) Nicholas Copernicus (1473-1543) De Revolutionibus Orbium Coelestium (On the Revolutions of the Celestial Spheres), also known as De Revolutionibus (1543) Tycho Brahe (1546-1601) Often pictured with a metal nose, because he lost his real one in a dual. Sadly, he wasn t defending the honor of a lady or anything noble like that. A fellow student claimed to be the better mathematician and that pissed him off. So it was a nerd fight. History does not record what happened to the other student. c 2011 Advanced Instructional Systems, Inc. and Daniel Reichart 1

Galileo Galilei (1564-1642) Sidereus Nuncius (The Starry Messenger) (1610) Dialogue Concerning the Two Chief World Systems Ptolemaic and Copernican, also known as Dialogue (1632) Johannes Kepler (1571-1630) Always desperate to get his hands on his boss Tycho s planetary measurements, history raises an eyebrow when a modern analysis of Tycho s exhumed fingernails showed that he had died from an extreme case of...mercury poisoning (not from drinking so much that his bladder burst, as his detractors rumored). Shortly after Tycho s death, his planetary data were found in Kepler s possession. Hmmm. Tycho s family sued for their return, but Kepler only partially complied. The result? Kepler s three laws of planetary motion. And one dead Tycho. Isaac Newton (1642-1727) Philosophie Naturalis Principia Mathematica (The Mathematical Principals of Natural Philosophy), also know as Principia (1687) KEPLER S LAWS OF PLANETARY MOTION Read Chapter 2.5 and More Precisely 2-1. Kepler s First Law The orbital paths of the planets are elliptical (not circular), with the sun at one focus. Kepler s Second Law An imaginary line connecting the sun to any planet sweeps out equal areas of the ellipse in equal intervals of time. Kepler s Third Law The square of a planet s orbital period, P, is proportional to the cube of its semi-major axis, a: P 2 is proportional to a 3. NEWTON S LAWS OF MOTION Newton s First Law Every body continues in a state of rest or in a state of uniform motion in a straight line, unless it is compelled to change that state by a force acting on it. c 2011 Advanced Instructional Systems, Inc. and Daniel Reichart 2

Newton s Second Law When a force, F, acts on a body of mass, m, it produces in it an acceleration, a, equal to the force divided by the mass: a = F / m or F = ma. Newton s Third Law To every action, there is an equal and opposite reaction. NEWTON S LAW OF UNIVERSAL GRAVITATION Newton s Law of Universal Gravitation Every particle of matter in the universe attracts every other particle with a force that is directly proportional to the product of the masses of the particles and inversely proportional to the square of the distance between their centers. NEWTON S FORMS OF KEPLER S LAWS OF PLANETARY MOTION Read Chapter 2.7 and Chapter 2.8. Kepler s First Law The orbital paths of the planets are elliptical (not circular), with the center of mass of the sun-planet system at one focus. Kepler s Third Law The square of a planet s orbital period, P, is proportional to the cube of its semi-major axis, a, and inversely proportional to the total mass, M total, of the sun-planet system: P 2 is proportional to a 3 /M total. MATH NOTES Parallax Read Chapter 1.7 and More Precisely 1-2. baseline = distance between different observing points angular shift = apparent shift in angular position of object when viewed from different observing points. distance = distance to object c 2011 Advanced Instructional Systems, Inc. and Daniel Reichart 3

If you know the baseline and the angular shift (in degrees), you can calculate the distance using the following equation. ( ) ( ) 360 baseline distance = 2π angular shift (1) If you know the baseline and the distance, you can calculate the angular shift using the following equation. ( 360 angular shift = 2π ) ( ) baseline distance (2) Standard astronomical baselines diameter of Earth = 12,756 km diameter of Earth s orbit = 2 astronomical units (or AU) 1 AU is the average distance between Earth and the sun. By the mid-19 th century, telescopes were being built that were powerful enough to detect and measure stellar parallaxes. This confirmed the final major prediction of the heliocentric model. In the geocentric model, Earth does not move and consequently stellar parallaxes are not expected. Kepler s Third Law Read Chapter 2.5, Chapter 2.7, and Chapter 2.8 P = orbital period a = orbital semi-major axis M total = total mass of two orbiting objects G = Newton s gravitational constant ( ) ( ) 4π P 2 2 a 3 = G M total We will now simplify this equation to make it easier to use, for two special cases. In this course, you will never need to use Newton s gravitational constant to solve a problem. Case 1. For objects that orbit the sun Since the masses of all objects that orbit the sun are significantly less than the mass of the sun, M total M sun. Hence, P 2 constant a 3, where constant = 4π 2 /GM sun. c 2011 Advanced Instructional Systems, Inc. and Daniel Reichart 4

Consider the case of Earth orbiting the sun. For Earth, P = 1 yr and a = 1 AU. Hence, for Earth (1 yr) 2 constant (1 AU) 3. Dividing this equation into the previous equation yields P 2 / (1 yr) 2 [constant a 3 ] / [constant (1 AU) 3 ]. Simplification yields (P / 1 yr) 2 (a / 1 AU) 3. Solving for P and a yields the following. P ( a ) 3/2 yr (3) 1 AU a ( ) P 2/3 AU (4) 1 yr Hence, as long as P is measured in years, a is measured in AU, and the object orbits the sun, Kepler s Third Law should be very easy to use. Case 2. For objects that orbit Earth Since the masses of all objects that orbit Earth are significantly less than the mass of Earth, M total M earth. Hence, P 2 constant a 3, where constant = 4π 2 /GM earth. Consider the case of the moon orbiting Earth. For the moon, P = 1 lunar month and a = 1 Earth-Moon distance. Hence, for the moon (1 lunar month) 2 constant (1 Earth-Moon distance) 3. Dividing this equation into the previous equation yields P 2 / (1 lunar month) 2 [constant a 3 ] / [constant (1 Earth-Moon distance) 3. Simplification yields (P / 1 lunar month) 2 (a / 1 Earth-moon distance) 3. Solving for P and a yields the following two equations. ( a ) 3/2 P lunar months (5) 1 Earth-Moon distance ( ) P 2/3 a Earth-Moon distance (6) 1 lunar month c 2011 Advanced Instructional Systems, Inc. and Daniel Reichart 5

Hence, as long as P is measured in lunar months, a is measured in Earth-Moon distances, and the object orbits Earth, Kepler s Third Law should again be very easy to use. Newton s Second Law F = force acting on object m = mass of object a = acceleration of object produced by force F = ma (7) Newton s Universal Law of Gravitation F = force of gravity between two objects M = mass of first object m = mass of second object r = distance between first and second objects G = Newton s gravitational constant F = GMm r 2 (8) Derivation of Kepler s Laws from Newton s Laws Read Chapter 2.5, Chapter 2.7, Chapter 2.8, and More Precisely 2-2. All three of Kepler s laws can be derived from Newton s laws using calculus. Special Case For the special case of an object of mass m that travels at speed v in a circular orbit of radius r around an object of mass M, where m is much less than M, Kepler s Third Law can be derived using only algebra. From More Precisely 2-2, the acceleration a of any object that travels at speed v in a circular orbit of radius r is given by a = v 2 /r. c 2011 Advanced Instructional Systems, Inc. and Daniel Reichart 6

By Newton s Second Law, the force on this object is then F = ma = mv 2 / r. By Newton s Universal Law of Gravitation, F = GMm / r 2. Hence, mv 2 / r = GMm / r 2. Solving for v yields the following equation. This is the speed at which an object in a circular orbit of radius r around an object of mass M travels. ( ) GM 1/2 v = (9) r [The speed that is necessary to escape an object of mass M from a distance r is only 41% greater.] ( ) 2GM 1/2 ( ) GM 1/2 v esc = = 1.41 (10) r r Since v is simply distance / time, and the object of mass m travels the circumference 2πr of the orbit every orbital period P, v = 2πr/P. Hence, 2πr/P = (GM/r) 1/2. Simplifications yields: P 2 = (4π2 / GM ) r 3, where 4π 2 / GM is a constant for all such objects that orbit the object of mass M, and where r is also the semi-major axis since the orbit is circular. EXERCISE 4 Hold your index finger vertically in front of your nose and focus on some distant object, such as a wall. Close one eye and then open it while closing the other. Notice how much your finger appears to shift with respect to the far-off object. Now, hold your finger at arm s length and repeat this exercise. Do you notice a difference? HOMEWORK 2 Download Homework 2 from WebAssign. Feel free to work on these questions together. Then submit your answers to WebAssign individually. Please do not wait until the last minute to submit your answers and please confirm that WebAssign actually received all of your answers before logging off. c 2011 Advanced Instructional Systems, Inc. and Daniel Reichart 7